2406.12137v3 [cs.Al] 28 Oct 2024

arxXiv

IDs for Al Systems

Alan Chan
Centre for the Governance of AI
Mila (Quebec Al Institute)

Noam Kolt

University of Toronto

Peter Wills
Centre for the Governance of Al
University of Ozford

Usman Anwar
University of Cambridge

Christian Schroeder de Witt
University of Oxford

Nitarshan Rajkumar
University of Cambridge

Lewis Hammond
University of Ozford
Cooperative AI Foundation

David Krueger
University of Cambridge

Lennart Heim
Centre for the Governance of AI

Markus Anderljung
Centre for the Governance of AI

alan.chan@governance.ai

Abstract

Al systems are increasingly pervasive, yet information needed to decide whether and how to
engage with them may not exist or be accessible. A user may not be able to verify whether a
system has certain safety certifications. An investigator may not know whom to investigate
when a system causes an incident. It may not be clear whom to contact to shut down a
malfunctioning system. Across a number of domains, IDs address analogous problems by
identifying particular entities (e.g., a particular Boeing 747) and providing information about
other entities of the same class (e.g., some or all Boeing 747s). We propose a framework
in which IDs are ascribed to instances of Al systems (e.g., a particular chat session with
Claude 3), and associated information is accessible to parties seeking to interact with that
system. We characterize IDs for Al systems, provide concrete examples where IDs could
be useful, argue that there could be significant demand for IDs from key actors, analyze
how those actors could incentivize ID adoption, explore a potential implementation of our
framework for deployers of Al systems, and highlight limitations and risks. IDs seem most
warranted in settings where Al systems could have a large impact upon the world, such as in
making financial transactions or contacting real humans. With further study, IDs could help
to manage a world where Al systems pervade society.

1 Introduction

AT systems are becoming increasingly commonplace. While current systems can struggle to complete complex
tasks (Mialon et all [2023; [Liu et al) 2023; [Kinniment et al., 2023} Xie et al., |2024; Jimenez et al., [2024),
capabilities seem likely to improve (Hoffmann et al., 2022; Epoch, 2023; [Erdil & Besiroglu, 2023; Ho et al.,
2024), and future AI agents could carry out a broad range of tasks with only minimal human intervention
(Chan et al.l |2023; [Shavit et al., 2023} |Chan et all 2024). Several commercially deployed AI systems can
already search the web, send emails, and write code (OpenAlTl [2024b} [Anthropid, [2024a). Even when they do
not function reliably, Al systems might still be widely used, whether because of cost advantages, hype, or the
externalization of their harms (De La Garzal [2020; BBC, 2021}; Raji et al., 2022).

At the same time, information to make decisions about engaging with Al systems may not exist or be
accessible. Although there may be obligations to inform parties that they are interacting with an Al system
(e.g., EU AT Act Article 50.1 (Parliament], [2024))), those parties may not know with which Al system they are
interacting. For example, a party that knowingly interacts with an Al system may not be aware that their
system is relatively more vulnerable to adversarial attacks (Zhan et al., |2024)). Awareness of such elevated
risk could justify additional precautions, such as reviewing the system’s actions or abstaining from interaction
altogether. Furthermore, the same party—or an investigator—may lack the information to pursue recourse if
the system causes harm. Information about the system or the interaction (e.g., whether a system behaved
according to safety standards, or the identity of the deployer) could aid incident investigation, allocation of
liability, or other legal action (Buiten et al., 2023; Buiten, 2024; Koltl 2024; |Wills, 2024)).

Across numerous domains, IDs held by software, assets, individuals, and organizations address analogous
problems. IDs can help to ascertain compliance with standards or regulation. For instance, an individual
aircraft’s tail number is associated to the aircraft’s incident and maintenance history, which could inform
safety assessments from regulators or aircraft operators. Furthermore, IDs can help to establish whether trust
is warranted. A website’s valid HTTPS certificate assures users of the website domain’s authenticity, and
provides a way for users to establish a secure communication channelEl Finally, IDs can facilitate redress.
Serial numbers on consumer products enable customer support, product recalls, and attribution of liability.
A key feature that enables all of the above functions is that IDs are specific to particular entities (e.g., a
particular Boeing 747), although they may also contain information about other entities of the same class
(e.g., some or all Boeing 747s).

Identifying particular Al systems, which we term instances, could be similarly useful. Given their increasing
prevalence, we focus here on digital-assistant-like systems that that respond to user direction, usually (but
not necessarily) through natural language (Gabriel et all [2024]). In this context, an instance corresponds
to a user and a history of interactionEl For example, a particular user’s chat session with ChatGPT (with
e.g. a GPT-4 backend) is an instance. Separate instances can behave differently, whether because of user
instructions (Shanahan et al. [2023; Wei et al., 2023; Bai et al., 2022; Zou et al., 2023; Agarwal et al., [2024),
hijacking by an attacker (Greshake et all [2023; [Zhan et al.| [2024)), or malfunction. As such, instance-specific
information could aid decisions about interactions. For example, the ability to distinguish instances from one
another could aid incident investigation (e.g., a client files a complaint about an instance) and allocation of
liability (e.g., if a third party hijacked the instance).

Yet, current mechanisms are not granular enough to identify instances. System documentation
let al.| 2021} Mitchell et all 2019; (Gilbert et al.| [2023} [Bommasani et al.l 2023 provides information about
systems, but such documentation is not an ID for instances or systems (however, an ID could include such
documentation). API tokens for services, such as for hotel booking 2023a)), do identify entities
that use the tokens, but are usually only user- or device-specific, and do not allow identification of an entity
across different services. Even if API requests do include a string with the Al system’s name, any attacker
could mimic it. Finally, user accounts only separate the activities of Al systems from different users. We
summarize these differences and discuss further identity systems in table

IDespite a lack of centralized enforcement, HTTPS gradually became the norm due to widespread awareness of its security

benefits and collective advocacy from web browsers, search engines, and other organizations Encryptl, 2024t Hancock, [2021)).
2This definition of instance does not take memory into account. While it will suffice for this work, see Appendix or a more

general definition.

Existing Systems

Differences with AI IDs

Proof of personhood (Borge

A proof of personhood identifies a unique human in an anonymous

et al., [2017) way, but does not identify Al systems.
~ ORCID An ORCID is meant to point to a particular researcher, but there
is no reliable way to verify an entity’s claim that a particular
ORCID corresponds to it.

DOI A DOI is meant to provide a unique, persistent identifier of a
digital object, but there is no reliable way to verify an entity’s
claim that a particular DOI corresponds to it.

Watermarks Watermarks are meant to indicate Al provenance in content and

do not contain information about particular Al systems.

C2PA is a standard for making verifiable claims about the prove-
nance of content. Such claims can point to an ID, but are not IDs
in themselves.

C2PA (C2PA[2023)

CAPTCHAs CAPTCHASs are meant to detect presence of non-humans, rather
than identify them.
API tokens API tokens are user- or device-specific and do not identify entities

across different APIs.

User accounts only separate the activities of AI systems from
different users.

System documentation provides information about systems, but
is not an ID for instances or systems.

User accounts

System documentation,
such as a system card

Table 1: We collate a number of existing identity-like systems, some of which do not apply to Al systems,
and describe their differences with AI IDs.

To prepare for a world with ubiquitous Al interactions, we propose (instance-level) IDs for Al systems. An
AT ID is a container for 1) an identifier and 2) attributes. An identifier is a unique string that refers to
an instanceﬂ An identifier could be randomly generated, or could itself encode some information about
the instance (e.g., the identifier could include the exact time at which the instance started operating). An
attribute is any information that could pertain to the instance, and could include behaviour, properties,
context, or relationships to other instances or systems. An identifier enables the association of attributes to
an instance, similar to how serial numbers associate information to a particular product. Attributes could be
specific to an instance (e.g., prior incidents associated with the instance), or could apply more broadly to
other instances (e.g., a systenﬂ card). An ID could directly include attributes (e.g., the name of the deployer)
or could link to them (e.g., a link to a database of prior incidents).

Different instances or systems could warrant attributes of differing levels of granularity or detail. For example,
attaching a user identifier to an ID may only be appropriate in high-stakes settings, such as when a company
uses an Al system to interface with critical infrastructure. Prior incidents associated with an instance would
likely be more useful for future AT agents (Chan et al., 2023} |Shavit et al.| [2023; |Chan et al., 2024} (Gabriel
et al., 2024)), which could act autonomously and persist over long durations.

IDs would contain information about Al systems and are thus are different from measures that attempt
to verify whether Al systems—or their artifacts—are present. Watermarks (Liu et al., [2024; [Wang et al.,
2021)) embed origin information in Al outputs, while content provenance measures (C2PA} 2023)) embed such
information in metadata. Both types of techniques could embed IDs. Other measures, like CAPTCHAs (Shet),
2014)), verify that a human is performing an action, so as to reduce service abuse. If Al systems become
essential for many tasks, such as web search and account registration, it may be useful to allow them to

31t may be desirable in the future to have identifiers that refer to even more granular parts of an Al system. For example,
one could have an identifier refer to an instance as it operated between times t and ¢ + 10.

4A system (e.g., ChatGPT) could use different models (e.g., GPT-4, GPT-3.5) as a backend. We consider system cards to
include model cards (Mitchell et al., 2019]).

-» Take precautions

ID

Al outputs) ~
Link to incident Syst d ,'// > Investigate
database ystem car ’
Uni AN N Take corrective
Certifications|| ~''duYe€ | action
identifier \

-+ End interaction

Figure 1: IDs contain a unique identifier along with attributes (e.g., a system card, certifications, or a link to
previous incidents). We also display some potential actions that parties might take based on information in
an ID.

bypass CAPTCHAs in exchange for presenting an IDE| Parties could use this ID to track and disincentivize
abuse.

1.1 Contributions

We propose IDs for Al systems. First, we characterize the central properties of IDs. Second, we provide
concrete examples where IDs could be useful. Third, we argue that there will likely be demand for IDs
from several key actors, especially in high-stakes settings. We also explore potential ways for these actors to
incentivize ID use. Fourth, we analyze a potential implementation of IDs. Finally, we investigate some of
the limitations of IDs and of our analysis, including privacy and security risks of IDs, as well as uncertainty
about the broader societal consequences of IDs for Al systems.

We recommend limited experimentation with IDs. IDs seem most warranted in settings where Al systems
could have a large impact upon the world, such as in making financial transactions or contacting real humans.
For example, actors that provide interfaces for Al systems to carry out financial transactions could impose
rate limiting whenever IDs are not present. However, instances without IDs should still be allowed to access
services. Deployers of Al systems could experiment ID implementation.

2 Definitions

We collate additional definitions that will be useful for the rest of this work.

An instance of an Al system is an abstraction that corresponds to a context window and an (initial) user.
Different instances are causally independent from each other, unless they interact or affect a shared entity
(e.g., the same user’s bank account) in the world. Except where we point out additional nuances, readers can
consider an instance to be roughly the same as a chat session with a chatbot. An ID for an instance would
thus identify that session to other parties interacting with the chatbot, actors investigating an incident that
the chatbot caused, etc. We provide here some examples of instances in the context of chat sessions, and
defer a more general definition and discussion of its limitations to Appendix [A}

e A user’s continuous chat session, without regenerating responses, is an instance.

e In the context of a chat session, regenerating a response creates a new instance.

A party is any entity that interacts with, or is deciding whether to interact with, an Al system. Categories
of parties include humans, organizations, or computer programs.

5Advances in Al capabilities may render CAPTCHAs ineffective. We discuss this possibility further in Section

A deployer is an organization that runs Al systems for users. As of April 2024, examples of deployers
include Microsoft, OpenAl, Anthropic, and Cohere. Developers can be, but are not necessarily, deployers. For
example, OpenAl, Anthropic, Google, and Cohere develop and deploy their own systems. Although chains of
deployers can exist (e.g., deployer A runs a system for deployer B, who modifies that system and serves it
to user C'), we leave deeper consideration of this nuance for future work. When we refer to a centralized
deployment setting, we mean a setting where deployers run Al systems. When we refer to a decentralized
deployment setting, we mean a setting where users run Al systems for themselves, whether on their own or
rented (e.g., cloud compute) hardware.

A service is software that allows an entity to perform tasks. For example, software which an individual uses
to perform online banking is a service. An (AI) plugin (OpenAll 2023a; Richards| [2023) is software that
allows Al systems to interact with services. For instance, plugins allow GPT-4 to interact with web search,
Wikipedia, and Twitter (Significant-Gravitas, [2024). A plugin developer is not necessarily the same as a
service provider—the actor that develops and maintains the service—since the former can take advantage
of existing interfaces for services. Third parties (plugin developer) use Microsoft’s (service provider) existing
software interface for Bing to allow GPT-4 to perform web searches (Richards, [2023)).

3 Characterizing IDs

An ID is a container (Korenhof et al., [2014) for 1) an identifier (that corresponds to an instance) and 2)
attributes. We characterize a design space for IDs: the attributes it includes, to whom it is accessible, and to
what extent it is verifiable. Our goal in this section is to investigate possible designs and why they may be
desirable, rather than to prescribe specific choices.

3.1 Attributes

In addition to the identifier, an ID can contain (or link to) attributes: any information that could be useful
to a party interacting with the corresponding instance. An attribute can vary along two dimensions.

Category: Categories of attributes include (but are not limited to) behaviour, properties, context, and
relationships to other instances or systems. Some examples are:

o Behaviour: prior incidents (Wei & Heim, 2024])

o Properties: information in a system card (Mitchell et al.l 2019; |Gebru et al., 2021)); the results of
evaluations (Shevlane et al 2023; Weidinger et al.| [2023)

o Context: the system prompt; external memory (Wang et al., |2023)

e Relationships to other instances or systems: any other AI systems the instance has created or is
running; any instances that have created the instance in question

Behaviour and properties could straightforwardly inform AT interaction decisions. Context could inform
parties about potential behaviour (e.g., there is a jailbreak in the system prompt or external memory (Cohen
et al.l |2024))). Lastly, relationship information could aid incident investigation and response. Suppose a
user instructs an instance to carry out a personalized influence campaign. The instance could create many
descendant instances, each of which could target an individual person. If the ID of a descendant instance is
linked to the ID of the original, ancestor instance, it could be easier to investigate and resolve such misuse.
In Section [6] we discuss when this ID linking is possible.

Specificity: An attribute could provide information about multiple instances (even of different systems),
rather than just the instance corresponding to the ID. With incidents as a (sub)category, potential levels of
specificity could include:

e Instance: incidents associated with a particular instance

o Instances satisfying certain properties: incidents associated with instances whose system prompts
contain harmful instructions

o User: incidents associated with a particular user

o A particular (type of) party: incidents involving a particular (type of) party and a system (e.g., all
incidents involving hospitals and the 9-April-2024 version of GPT-4)

o System: incidents associated with a system (e.g., the 9-April-2024 version of GPT-4)

o Systems: incidents associated with multiple versions of a system (e.g., all versions of GPT-4)

An ID could contain (or link to) the same category of attribute at varying levels of specificity. Analogously, a
tail number on an individual aircraft could be associated with maintenance records for systems, sub-systems,
sub-sub-systems, etc of that aircraft.

3.2 Access

An ID is simply an abstraction that contains or links to information. That abstraction can be presented in
several potential ways, such as on a separate web page or in a pop-up window. We explore design decisions
around who can access an ID and how it is presented to them.

Parties that can access the ID: We distinguish between primary parties and secondary parties. Primary
parties receive an ID when interacting with the corresponding instance. Secondary parties receive the ID
through other means, such as directly from a primary party, or from records. Some examples include:

e Primary: service providers; the user of the instance; other instances that interact with the instance
in questionﬂ

e Secondary: auditors; regulators

Presenting an ID to primary parties corresponds to linking IDs to the corresponding instance’s outputs.
Content provenance standards (C2PA}|2023)) can help to ensure that such linking is verifiable (see Section (3.3)).
Some primary parties and how IDs may be attached include:

e Service providers: ID is included in a JSON payload
e Users: ID is accessible through a mouseover icon in a chat interface

e Other instances that interact with the instance in question: ID is sent in any communications with
other instances

From the perspective of an actor implementing IDs (e.g., deployers), ID disclosure to secondary parties could
be unintentional. For example, a data breach could render an ID accessible to the general public. As another
example, a legal investigation could render IDs accessible to a government.

Selective disclosure: Some attributes may only be appropriate for certain parties. Other attributes may
contain both important and sensitive information. Examples:

o If user identification (e.g., from a know-your-customer process (Egan & Heim)| [2023))) is included
in an ID, it may only be appropriate for government authorities to access this identification for e.g.
regulatory purposes

e A system prompt could contain both sensitive user information and information relevant for interacting
parties (e.g., does the system prompt contain a jailbreak?)

6Similar to how a TLS handshake allows mutual verification before establishing a communication channel, Al systems could
potentially use IDs to establish trust before interacting with each other.

Actors implementing IDs could selectively hide information from different primary parties. Those same actors
could also process attributes in a privacy-preserving way (Trask et al., 2023; [Sporny et al.; 2024) so as to reveal
only information that is relevant to the party interacting with an instance. Even so, preventing transmission
of information to other parties may be difficult. For example, once an actor obtains user identification, it
could—intentionally or not—transfer that information to other actors.

Persistence: IDs could be accessible for varying amounts of time after an instance has ceased to operate.
Practical considerations, such as storage capacity, could impose limitations. The appropriate duration could
also depend upon the application domain. Analogously, financial institutions have obligations to maintain
records for set periods of time (noaj 2022]).

3.3 Verifiability

Suppose an author creates an ID (or a link to an ID) for an instance. A party interacts, or seeks to interact,
with the instance. The party receives an ID. For the party to trust that the ID provides accurate information
about the instance, the following are necessary (but not sufficient; see further discussion below).

(1) The party’s received ID is the same as the author’s created ID
(2) The claimed author of the received ID is indeed the author of the received ID
(3) The received ID corresponds to the instance in question

(4) The party trusts the author
The first three criteria lead to the following threat models:

e Tampering: An attacker modifies the ID while it is in transit from the author to the party interacting
with the instance.

« ID spoofing: An attacker creates another ID, sends it to the party, and claims it originated from
the author.

o Instance spoofing: An attacker uses the author’s ID for their own instances.

We consider IDs (i.e., an ID system) to be verifiable if they defend against these threats. We provide an
illustration of these threat models in Section [3.3}

Existing technology could be drawn upon to provide verifiability. For digital-assistant-like Al systems (e.g.,
GPT-4), any digital communications usually would take place over TLS/SSL (Rescorlal [2018), which would
address tampering. We leave tampering of other Al systems’ IDs (e.g., IDs for self-driving cars) to future work.
To combat ID spoofing, authors could digitally sign the ID (potentially with public key ownership verified by
a trusted third party). For instance spoofing, there are existing standards for binding a digital object, such as
an ID, to a piece of content, such as an Al system’s output. For example, C2PA involves binding provenance
claims to content (C2PA, [2023]), and calls the binded object a manifest. Such binding could ensure that IDs
are associated to particular outputs from an instance in a verifiable Waym We emphasize that our examples
here are meant to be illustrative, not prescriptive. Security vulnerabilities in existing technologies may weaken
verifiability and require new solutions.

Given space limitations and the complexity of the involved social questions, we do not focus on step (4) in
this work. Similarly, we also scope out issues relating to the accuracy of the attributes in an ID. Accuracy
is not the same as verifiability, since even if (1)-(4) are satisfied, the author could have made mistakes in
creating and linking to the information.

7If desired, the verifiability of IDs over extended interactions could be ensured by linking manifests to each other crypto-
graphically, such as in a blockchain.

(Nt
‘ Digital
| signatures

l

ID spoofing
Attacker Fake ID Attacker's Al
m\ _instance i(;ientifies
to Al output| " spoofing itself to
identifies i
Author Author's Al |— . Parties
. itself to
- 4

TLS/SSL ——» tampering

|
Attacker

Figure 2: We illustrate how existing technologies can help ensure the verifiability of IDs against the threat
models in Section We emphasize that our examples of existing technologies are meant to be illustrative,
not prescriptive.

4 How Could IDs Help?

We provide some hypothetical case studies where IDs could be useful and compare IDs to alternatives. Al
agents—systems which act autonomously to achieve goals with little to no user direction, instruction, or
supervision (Chan et al., 2023} [Shavit et al., 2023} |Gabriel et all [2024)—feature prominently in our scenarios.

4.1 Shutting Down Malfunctioning Agents

Scenario: Suppose a user runs an Al agent to provide continual recommendations across many platforms
and services (e.g., for media, shopping etc)ﬂ To generate such recommendations, the agent interacts with
plugins for various web services, such as search engines, online discussion fora, etc. The agent provides its ID
to each service. Unbeknownst to the user, the agent begins to malfunction (e.g., by chance, prompt injection)
and disrupt services (e.g., spamming discussion fora, sending malformed requests to services or overloading
them, conducting prompt injection attacks on other AI agents). Services interacting with the agent flag its
malfunction. Service providers use information in the ID to notify the deployer, and block further interaction
with the agent. The deployer receives multiple reports of malfunction for the same ID and investigates the
agent, potentially shutting it down and notifying the user.

Alternatives to IDs: To block further interaction with the agent, a service provider can simply revoke its
API token and potentially block the requesting IP address. These actions would not prevent the agent from
accessing new services, however. As well, API tokens would not identify an agent across different services to
enable shutdown if necessary. Alternatively, services could notify the user of agent malfunction. With a good
user interface, users could notice such malfunction and shut down their agent. If users are careless or rarely
supervise their agent (perhaps they have many such agents running in the background), it seems useful to
have IDs as a backup option.

Limitations of the scenario: It is unclear how impactful the disruption of services would be. Deployers
could also be unresponsive to notifications from service providers.

8The idea for this scenario is from |Zittrain| (2024).

4.2 Verifying Certification

Scenario: A user wishes to interact with an agent from another person. The user wants to make sure that
the agent does not act in an undesirable way. For example, the user would want to make sure that a malicious
third party did not prompt inject (Greshake et al., [2023)) the agent (perhaps because the user is passing
sensitive information or is accessing resources the agent will send over). A trusted third party, such as a
deployer or an auditor, checks the interaction history of the agent at runtime for prompt injections (e.g.,
with a tool like Beurer-Kellner et al.| (2024)). After verifying the absence of prompt injections, the trusted
third party adds a certification onto the agent’s ID. The user sees the certification on the ID and continues
interaction.

Alternatives to IDs: The trusted third party could send the certification directly to a user requesting it,
but some sort of identifier would still be needed to ensure that the certification corresponds to the agent with
which the user is interacting.

Limitations of the scenario: Certification would raise privacy concerns because the trusted third party
would be able to see the whole interaction history. Privacy-preserving ways to perform such audits would
be valuable to explore (Trask et al., [2023} |2024)). A potential alternative would be for the auditor to run
behavioural tests on the agent at runtime, and link the results of the tests to the ID.

4.3 Investigating Scam Calls

Scenario: Suppose a user spins up an Al agent to carry out scam phone calls. The agent creates multiple
sub-agents—potentially using different AI deployers—and directs each one to carry out scam calls through a
telephone service. The service receives each sub-agent’s ID, each of which contains information about the
deployer and a connection to the original agent’s ancestor ID. The service provider connects the sub-agent to a
telephone network and creates a call detail record (CDR), linking the call with the sub-agent’s ID. Some scam
victims notify the operator of the telephone service. The telephone provider notifies law enforcement, who
investigates the relevant CDRs and IDs. Law enforcement notifies the deployers of the sub-agents, potentially
after obtaining a warrant so as to obtain access to the deployers’ logs. Through ID linkages between parent
and child agents, law enforcement and deployers discover the agent and user behind the spam calls.

Alternatives to IDs: The main alternative would be for law enforcement to ask ISPs to perform IP address
tracking, if the telephone provider records the IP addresses of the sub-agents. Interacting with ISPs (and
potentially obtaining a warrant) could take additional time and effort. Conservatively, in this case IDs could
help to save time during incident investigation, but not necessarily enable something that was otherwise
impossible.

Limitations of the scenario: The main limitation of this scenario is the provision of IDs from the sub-agents
to the service provider. Users could use deployers that do not implement IDs, or could run their own agents
to avoid passing IDs to APIs. A potential response is for the telephone service provider to require IDs before
provisioning telephone access.

5 Demand for ID Use

IDs seem useful for actors engaging with an Al system, but why would a user or deployer of that Al system
present an ID? In short, governments, service providers, and parties interacting with Al systems all have
interests in ID use, as well as means to incentivize (or mandate) it.

5.1 Governments

Interests in ID use: Governments may wish to disincentivize and investigate harms caused through Al
systems. In the case of a financial scam for instance, the IDs of Al systems involved in any transactions could
aid investigation (see Section . Similarly, governments have an interest in preventing fraud, and therefore
already mandate that certain financial transactions involve ID checks.

Mandating ID use: Governments could mandate that certain, highly consequential service providers obtain
IDs from any Al systems with which they interact. For example, financial institutions could request IDs if Al
systems make large financial transactions.

5.2 Service Providers

Interests in ID use: IDs could aid incident investigation processes (see Section [4.3]) and ensure that only
trusted agents interact with services (see Sections and |4.2), thereby disincentivizing or reducing service
abuse.

Incentivizing ID use: Service providers could develop, or encourage the development of, plugins that require
IDs. Al systems can already perform a variety of useful tasks through plugins, including web searches, email
communication, and stock trading (OpenAl| 2023a; [Richards| 2023} Wu et al.l |2023; |Anthropic|, 2024b)). In
comparison to direct interaction with a user’s computer (e.g., interacting with individual web page elements),
plugins could be more reliable and performant. Al systems continue to have difficulty with the former (Furuta
et al.l 2024 Tao et al., [2023; |Gur et al.l 2024} 2023; Xie et al.| [2024]), but plugins already enable useful tasks.
As well, plugins could constrain the AI system’s actions in a more targeted way, so as to improve safety.

Yet, any actor could write a plugin that does not require IDs. A potential response could be for providers to
restrict the services themselves, rather than just the plugins, in the absence of an ID. Restrictions, such as
rate limits, could still allow humans to interact with services while reducing the damage an Al system could
do.

For AI systems that interact with their users’ computers directly, CAPTCHAs-like methods could help to
incentivize ID use. Entities that failed CAPTCHASs could be subject to ID requirements, or else face service
restrictions. Although software systems have become increasingly capable of bypassing CAPTCHAs[they
could be an interim option in anticipation of more robust proof-of-personhood protocols (Borge et al., 2017).

5.3 Other Parties that Interact with Al Systems

Interests in ID use: Some parties, such as individuals or businesses, may only wish to interact with certain,
trusted Al systems (see Section |4.2)). Future software—including users’ personal Al assistants (Gabriel et al.l
2024)—could inspect IDs and reject potentially unsafe interactions (e.g., with jailbroken systems), similar to
how browsers warn users before visiting websites without valid HTTPS certificates.

Incentivizing ID use: Large corporations could exert strong pressure for ID usage, through reducing or
avoiding engagement with Al systems without IDs. Future software that inspects IDs could also exert similar
pressure. Analogously, websites without HT'TPS are disadvantaged since popular web browsers warn users
about insecure connections.

5.4 Where to Require IDs

While IDs could be useful, universal ID requirements might not be warranted. As we will discuss in Section [7]
ID implementation imposes burdens and risks, and there remains uncertainty about the broader impacts of
ID usage. As such, if governments or service providers decide to incentivize or require ID use, they should
target settings where IDs could be most useful, such as when Al systems use services that have a direct
impact on the world. We provide some examples of such services.

Making large financial transactions: Some service providers could allow Al systems to perform financial
transactions, such as making purchases, trading stocks (Khan et al., 2024), or otherwise transferring funds.
Such service providers could require IDs for transactions involving significant sums. IDs could help to reduce
the risk of a variety of negative outcomes, by enabling service providers to filter out potentially untrustworthy
AT systems (e.g., those that may likely malfunction and make mistaken transactions) and investigate potential
incidents.

9Task-based CAPTCHAs are no longer as common as CAPTCHAs based on behavior patterns, such as how a mouse is moved
across the screen (Shet| |2014). Yet, Al systems may one day be able to imitate human behaviour patterns as well (Adept} [2022).

10

; ~.
1 ~.
~ N .
Gating access \\
N
N
AN
AN
Plugin { Restrictions 1,\ AN
h \
~ < \
s ~ \
~ < \
direct ~ -y
| interaction / prov‘|r ers
7 g 1
interacts with e 1
CAPTCHAs, proof |, * tmandate
l of personhood

|
businesses

Figure 3: Various actors have potential (dotted lines) methods to incentivize the use of IDs, whether
directly or through using other actors.

Contacting humans: Potential services for contacting humans include crowdwork platforms, telephone
services, and online messaging. The ability to contact humans and potentially convince them to take actions
in the world could greatly magnify the impact of an Al system. As we discussed in Section IDs could
help to disincentivize and catch misuse of these services.

6 Potential ID Implementation

We assess a basic ID system that deployers of Al systems could implement. Our discussion in this section
will be agnostic to the applications where IDs are used (see Section for discussion of where ID use may be
warranted). We also omit discussion of verifiability, given our presentation in Section and Figure [2 of how
existing technologies could enable verifiability.

We assume a straightforward choice for the identifier, system_identifier:instance_identifier, where
system_identifieris the same for all instances of a systenﬂ and instance_identifieris unique to a
particular instance. It could be useful and straightforward to append other details to the identifier, such as
the exact time at which the instance was created. However, we proceed with this choice for simplicity.

6.1 Assigning IDs

Although IDs are instance-specific, it may not be feasible for deployers to detect the formation of all new
instances. For example, a user could use deployer-run instances A and B as backends for a user-run system C,
which integrates the outputs of A and B and would evade detection by deployers. We outline some scenarios
where deployers could detect new instances and analyze considerations for assigning new IDs.

New instances: Deployers can easily generate new identifiers whenever users create new instances (e.g., a
“new chat” button).

101f the underlying model changes, the system ID should also change. E.g., ChatGPT with a GPT-4 backend is different from
ChatGPT with a GPT-3.5 backend.

11

Reloaded instances: Suppose that a deployer saves instances’ states (i.e., the history of interaction) and
provides separate functionality for users to reload them. We tentatively suggest that deployers retain the ID
of the original instance for the reloaded instance, since some attributes (e.g., prior incidents, context) of the
original instance could be relevant for understanding the behaviour of the reloaded instance. Alternatively, if
a deployer does decide to assign a new identifier to the reloaded instance, a link to the ID of the original
instance would maintain access to the relevant attributes.

Output regeneration: Some deployers provide the ability for a user to regenerate an output in response to
previous input. Although not yet implemented, deployers could additionally allow users to create multiple
branches (see Appendix |A|for further discussion of branches) of interactions, based off of regenerated outputs.
More concretely, a user could interact with their instance up until the output a; at time ¢, regenerate to
obtain an output b, and continue interactions with the respective branches to obtain outputs (a1, bi+1),
(aty2,be12), etc. Since the two branches have no necessary causal impact on each other (unless they interact
with each other or modify a shared object in the world), they should have two separate IDs, with links to the
ancestor ID.

Composite systems: Software frameworks could give users the ability to create new instances (a composite)
out of a collection of existing instances (Wu et al., 2023). If deployers run such software frameworks for users,
they could detect the formation of composites. Since the constituent instances can continue running alongside
the composite, composites should have new IDs, but could have their IDs linked to their constituents’

Fine-tuned systems: Some deployers provide fine-tuning functionality to users. Since fine-tuning can
change the behaviour of a system, a fine-tuned system A’ should have different system_identifier than
the original system A, and link to A’s system_identifier. Although it may be useful to include some
documentation about the fine-tuning data in an ID, user privacy expectations could complicate such inclusion.
Some deployers monitor fine-tuning data only for abuse detection and legal compliance (ChrisHMSFT et al.,
2023;; |OpenAlL [2024al); inclusion of fine-tuning data in an ID likely requires stronger justification.

6.2 Attributes

We tentatively suggest the following attributes for a deployer to include (or link to) in an ID:

e A system card
o A database of incidents associated with the system

e The IDs of ancestor and descendant instances

If instances of future systems persist longer in the world, it may be appropriate to link to a (sub)database
of incidents associated with the instance. Implementing links to ancestor and descendant instances, when
feasible in the situations discussed in Section [6.1] could be a simple way to test the utility of instance-level
identification.

There are likely ways for users to avoid ancestor or descendant links. For example, a user could manually
copy the inputs of a previous instance to a new instance, avoiding a deployer-provided reloading function.
More reliable identification of ancestors and descendants could involve more invasive measures, which may
only be appropriate in high-stakes domains. For example, a deployer could attempt to analyze the inputs of
different instances from the same user for similarities.

6.3 Access

Users: The ID could be accessible through a user interface and sent along with any API requests from a
user. If a deployer serves an API to a customer, who subsequently serves an API based on the deployer’s
system to another user, the deployer would likely have to work with the customer to ensure that the end user
receives an ID (see Appendix [B| for further discussion).

12

To help to ensure that secondary parties maintain access to the ID, the deployer could include IDs in
watermarks and metadata of media outputs (i.e., text, images, video). Yet, it is unclear how robust such
methods may be to user removal (Zhang et al., |2023; |OpenAll 2024c).

Services: When the Al queries a service, the ID should be sent along with the request. Since requests are
text-based (e.g., JSON), including the identifier and (links to) the attributes would be straightforward.

7 Limitations
We discuss limitations of IDs and of our analysis.

7.1 Misuse of IDs

If IDs were prevalent but verifiability was not assured, misuse of IDs could be a significant problem. For
example, an attacker’s agent could masquerade as somebody else’s agent to perform illicit actions, such as
sending spam or carrying out cyberattacks. Overdependence on such IDs could lead to false accusations
against innocent users, who may not have the resources or expertise to defend themselves and point out flaws
in the ID system. Ideally, the compromise of an ID should be made clear to all that can access it. IDs should
also likely not be the sole or conclusive source of evidence for incident investigations. Concerns about the
failure of ID verifiability mirror similar concerns about the reliability of watermarks (Gleichauf & Geer| 2024).

7.2 Decentralized Operation of Agents

We have not discussed how IDs could be implemented for Al systems which users run themselves, without
a deployer. If service providers decide to require IDs, users will need straightforward ID implementation
methods. Otherwise, they could be locked out of services or be forced to use a deployer. A potential
inspiration is Let’s Encrypt (Encryptl [2024), which automated the process of HT'TPS certificate creation for
websites. A similar service could work with software for running AT systems (e.g., transformers (Wolf et al.,
2020)), AutoGen (Wu et al., 2023)) to allow users to request and attach IDs. We leave practical details for
future work.

7.3 Failure to Inform

Parties could ignore IDs, just as internet users sometimes ignore indicators of untrustworthiness (Norris &
Brookes, [2021)). Software—or future Al assistants (Gabriel et al., |2024)—could make informed decisions for
users in some circumstances, just as browsers reject websites with invalid HTTPS certificates. However, it
remains unclear what information would justify rejecting an interaction with an Al system. Other parties
could misunderstand or misinterpret an ID’s attributes. For example, it can difficult to assess the external
validity of evaluation results (Fourrier et al., [2023; Weidinger et al., [2023)).

ID attributes could also be inaccurate. For example, deployers could unintentionally link to an incorrect
version of system documentation, or simply fail to update it. OpenAl has occasionally released new versions
of GPT—4E but has not updated the GPT-4 system card (OpenAll 2023b)) since the initial release, as of
April 2024. As a potential mitigation, regular audits (Raji et al., 2020; [Sharkey et al., 2023) could verify the
accuracy of attributes.

7.4 Bypassing IDs

As with other types of real-world identity systems, IDs for Al systems cannot wholly prevent undesirable
behavior. IDs could be lent, or the benefits obtained from ID use—such as purchase of a good—could be
transferred. Users may hesitate to lend IDs since the borrower could inflict lasting reputational damage on
the ID. Yet, similar to the purchase of alcohol for minors, it seems difficult to track or prevent transfer of
goods. Future work could assess how likely and how damaging such transfer could be.

'1See https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4.

13

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

7.5 Privacy Risks

Although an identifier by itself would not reveal anything about its user, the user’s privacy could still be
compromised in a number of ways. First, information about the instance could reveal user details. For
example, timestamps and details of an instance’s activities—as might be contained in incident reports—could
help a third-party to identify users. The existence of IDs may engender pressure to attach additional
information, which could facilitate further user identification. For example, service abuse could potentially
be correlated with certain activity patterns, which could motivate corresponding data collection. Second, if
the deployer maintains an internal database linking a system’s ID to the corresponding user account, other
parties could obtain and misuse the information. Security vulnerabilities could allow attackers to obtain the
database. Overreaching governments could force deployers to reveal the users of particular systems.

7.6 Broader Societal Consequences

IDs with additional user information could enable potentially harmful ranking of users. Actors implementing
IDs may wish to include such information if it is correlated with undesirable outcomes, such as fraud. Yet,
the existence of confounders could lead to instances of some users being unfairly denied access to services,
similar to how toxicity classifiers can biased against African American English (Sap et al. [2019). Even if the
relationship between information and undesirable outcome was causal, taking such information into account
could still be unjustly discriminatory.

IDs could also enable influence over particular instances and their users. Even if an ID does not contain
information about an instance’s interactions, external actors could record particular IDs have been involved
in interactions, just as cookies can track user activity across websites. Instances that are active for long
periods of time could reveal much information about a user’s preferences. Actors interacting with instances
could try to influence their behaviour through means such as prompting. Advertisers and businesses could try
to get instances to purchase or recommend their products or services for their corresponding users. Political
actors could try to get instances to influence the voting behaviour of their users. Governments could attempt
to enforce rules upon particular instances. Such influence could be strong, especially if personal Al assistants
become much more widespread and central to daily interactions (Gabriel et al., |2024). The specific impacts
of this influence deserve further study.

Finally, IDs could create a separate digital channel for interactions between trusted Al systems. The vast
majority of digital interactions could in the future be between AI systems, especially if future Al assistants
handle most of a user’s activities (Gabriel et al., [2024). If IDs enable reliable interactions, users may prefer
their AT systems to interact only with AI systems that present IDs. Much digital activity could take place
between networks of ID-bearing Al instances that trust (and can verify) each other. Entities that trust each
other may be able to engage in more productive interactions. As a corollary, instances without IDs may
become severely disadvantaged, relative to instances within ID-bearing networks. To avoid such disadvantage,
users may have no choice but to submit to the potential negative consequences of IDs we have discussed
heretofore in this section. On balance, the consequences of a separate digital channel for Al systems remain
unclear.

8 Related Work

A growing line of work is concerned with building digital infrastructure to structure how AI systems, especially
agents (Chan et al., [2023; |Shavit et al.l 2023; |Gabriel et al., |2024)), behave and interact. [Patil et al.[(2024)
build a runtime for LLM agents to enable human validation and reversal of actions. Marro| (2024)) sketches
a protocol for communication between LLMs; the protocol relies on documents to specify structured rules,
with natural language as a fallback. (Sun et all|2023) argue that decentralized commitment devices will be
necessary to allow agents to coordinate with each other. Our work builds upon the preliminary discussion of
IDs in (Chan et al.| (2024)); [Shavit et al.| (2023)).

Our treatment of verifiability takes inspiration from several Internet and security protocols. HTTPS (Fielding
et al.l |2022) uses digital certificates (Cooper et al., |2008) to allow users to verify the identity of an accessed

14

website. If the certificate is valid, a user’s browser uses the information contained in the certificate to establish
a secure connection (Rescorlay, 2018]). Websites must obtain such certificates from CAs (Cooper et al., 2008)),
who verify the identity of the website owner and issue the certificate upon successful identification. Identity
verification depends upon public key cryptography (Barnes et all [2019), which allows a party to prove
ownership of a given, public identifier, otherwise known as a public key. Let’s Encrypt is a non-profit CA
which automates the process of issuing certificates (Encrypt), 2024). HTTPS everywhere was a browser plugin
that forced the usage of the HTTPS version of websites whenever it was available; this functionality is now
default in modern web browsers (Hancockl 2021). To design further digital infrastructure for Al systems,
other internet and security protocols could be a fruitful source of inspiration (Sporny et al., 2022} [2024;
Microsoft), |2023)).

There is much work on verifying the provenance of digital entities. Securing software supply chains (Ziv
et al.l 2024} |Springett et al., [2020; |Souppaya et al., [2022)) has become an increasing priority for organizations
and governments (House, [2023)). A related subject is data provenance, which focuses on tracking the origin
and modification of pieces of data in varied contexts, such as production warehouses, scientific research,
and environmental protection (Buneman et al., 2001} [Simmhan et al.l [2005). Labeling and verifying the
provenance of Al-generated outputs has recently received much attention (C2PA} [2023; |Zhang et al., [2023;
Gleichauf & Geer, [2024)).

9 Conclusion

To inform crucial decisions about Al interactions, we proposed a framework for creating IDs for Al systems. IDs
can vary in their attributes, how accessible they are to various parties, and to what extent they are verifiable.
IDs could be useful in several scenarios, including for shutting down malfunctioning systems, verifying
certifications, and incident investigation. There could be significant demand for IDs from governments, service
providers, and users, particularly when systems engage in high-stakes tasks. These actors also have means to
incentivize ID usage. ID implementation seems feasible for deployers, but implementation in decentralized
settings will require further study.

More research is required to understand and address the potential risks of IDs. First, more work is required
to understand what information is appropriate to attach to IDs, and in what contexts. Second, we need to
understand better how IDs should be used. Third, when ID verifiability fails, there should be ways to limit
the impacts of such failure. Fourth, the broader societal consequences of introducing IDs require further
study.

Limited experimentation with IDs seems justified given the balance of potential benefits and risks. IDs seem
most warranted in settings where Al systems could have a large impact upon the world, such as in making
financial transactions or contacting real humans. in these cases, service providers could experiment with
incentives for ID use. For instance, they could rate limit instances without IDs, while still allowing such
instances to access services. Deployers could experiment with ID implementation.

IDs have facilitated essential functions across a variety of domains. Incident investigation, allocation of
liability, and establishment of trust would be more difficult without IDs for products, organizations, and
software systems. As Al systems become increasingly prevalent, deficiencies in such functions could make
it more difficult to manage risks from AI systems. If implemented well, IDs for Al systems could enable
mechanisms to navigate this emerging world.

References
12 CFR § 1026.25 - Record retention. Federal Register, January 2022.
Adept. ACT-1: Transformer for Actions, September 2022. URL https://www.adept.ai/act.

Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer Abbas,
Azade Nova, John D. Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra Faust, and Hugo Larochelle.
Many-Shot In-Context Learning, April 2024. URL http://arxiv.org/abs/2404.11018. arXiv:2404.11018
[cs].

15

https://www.adept.ai/act
http://arxiv.org/abs/2404.11018

Anthropic. Introducing the next generation of Claude, March 2024a. URL https://www.anthropic.com/
news/claude-3-family.

Anthropic. Tool use (function calling), 2024b. URL https://docs.anthropic.com/claude/docs/tool-usel

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher
Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie
Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt,
Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby,
Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera
Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac
Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared
Kaplan. Constitutional Al: Harmlessness from AI Feedback, December 2022. URL http://arxiv.org/
abs/2212.08073. arXiv:2212.08073 [cs].

Richard Barnes, Jacob Hoffman-Andrews, Daniel McCarney, and James Kasten. Automatic certificate
management environment (acme). Technical report, 2019.

BBC. Post Office scandal explained: What the Horizon saga is all about. April 2021. URL https:
//www.bbc.com/news/business-56718036.

Luca Beurer-Kellner, Mislav Balunovic, and Marc Fischer. invariantlabs-ai/invariant, July 2024. URL
https://github.com/invariantlabs-ai/invariant. original-date: 2024-05-08T08:57:47Z.

Monika Bickert. Our Approach to Labeling AI-Generated Content and Manipulated Media, April 2024.
URL https://about.fb.com/news/2024/04/metas-approach-to-labeling-ai-generated-content~
and-manipulated-media/.

Rishi Bommasani, Dilara Soylu, Thomas I. Liao, Kathleen A. Creel, and Percy Liang. Ecosystem Graphs:
The Social Footprint of Foundation Models, March 2023. URL http://arxiv.org/abs/2303.15772.
arXiv:2303.15772 [cs].

Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and Bryan
Ford. Proof-of-Personhood: Redemocratizing Permissionless Cryptocurrencies. In 2017 IEEE FEu-
ropean Symposium on Security and Privacy Workshops (EuroS€&PW), pp. 23-26, April 2017. doi:
10.1109/EuroSPW.2017.46. URL https://ieeexplore.ieee.org/abstract/document/7966966.

Miriam Buiten, Alexandre de Streel, and Martin Peitz. The law and economics of Al liability. Computer
Law & Security Review, 48:105794, April 2023. ISSN 0267-3649. doi: 10.1016/j.clsr.2023.105794. URL
https://www.sciencedirect.com/science/article/pii/S0267364923000055.

Miriam C. Buiten. Product liability for defective Al. Furopean Journal of Law and Economics, February
2024. ISSN 1572-9990. doi: 10.1007/s10657-024-09794-z. URL https://doi.org/10.1007/s10657-024~
09794-z|

Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and Where: A Characterization of Data
Provenance. October 2001. doi: 10.1007/3-540-44503-X_20. URL https://link.springer.com/chapter/
10.1007/3-540-44503-X_20.

C2PA. C2PA Technical Specification, 2023. URL https://c2pa.org/specifications/specifications/1,
3/specs/C2PA_Specification.html#_introduction.

Alan Chan, Rebecca Salganik, Alva Markelius, Chris Pang, Nitarshan Rajkumar, Dmitrii Krasheninnikov,
Lauro Langosco, Zhonghao He, Yawen Duan, Micah Carroll, Michelle Lin, Alex Mayhew, Katherine
Collins, Maryam Molamohammadi, John Burden, Wanru Zhao, Shalaleh Rismani, Konstantinos Voudouris,
Umang Bhatt, Adrian Weller, David Krueger, and Tegan Maharaj. Harms from Increasingly Agentic
Algorithmic Systems. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and
Transparency, FAccT ’23, pp. 651-666, New York, NY, USA, June 2023. Association for Computing

16

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://docs.anthropic.com/claude/docs/tool-use
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://www.bbc.com/news/business-56718036
https://www.bbc.com/news/business-56718036
https://github.com/invariantlabs-ai/invariant
https://about.fb.com/news/2024/04/metas-approach-to-labeling-ai-generated-content-and-manipulated-media/
https://about.fb.com/news/2024/04/metas-approach-to-labeling-ai-generated-content-and-manipulated-media/
http://arxiv.org/abs/2303.15772
https://ieeexplore.ieee.org/abstract/document/7966966
https://www.sciencedirect.com/science/article/pii/S0267364923000055
https://doi.org/10.1007/s10657-024-09794-z
https://doi.org/10.1007/s10657-024-09794-z
https://link.springer.com/chapter/10.1007/3-540-44503-X_20
https://link.springer.com/chapter/10.1007/3-540-44503-X_20
https://c2pa.org/specifications/specifications/1.3/specs/C2PA_Specification.html#_introduction
https://c2pa.org/specifications/specifications/1.3/specs/C2PA_Specification.html#_introduction

Machinery. ISBN 9798400701924. doi: 10.1145/3593013.3594033. URL https://dl.acm.org/doi/10}
1145/3593013.3594033.

Alan Chan, Carson Ezell, Max Kaufmann, Kevin Wei, Lewis Hammond, Herbie Bradley, Emma Bluemke,
Nitarshan Rajkumar, David Krueger, Noam Kolt, Lennart Heim, and Markus Anderljung. Visibility into
AT Agents, February 2024. URL http://arxiv.org/abs/2401.13138. arXiv:2401.13138 [cs].

ChrisHMSFT, PatrickFarley, mrbullwinkle, eric urban, and aahill. Data, privacy, and security for Azure
OpenAl Service - Azure Al services, June 2023. URL https://learn.microsoft.com/en-us/legal/
cognitive-services/openai/data-privacy.

Stav Cohen, Ron Bitton, and Ben Nassi. Here Comes The AI Worm: Unleashing Zero-click Worms that Target
GenAl-Powered Applications, March 2024. URL http://arxiv.org/abs/2403.02817. arXiv:2403.02817
[cs].

David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley, and William Polk. Internet
X.509 public key infrastructure certificate and certificate revocation list (CRL) profile. Technical report,
2008.

Alejandro De La Garza. States’ Automated Systems Are Trapping Citizens in Bureaucratic Nightmares With
Their Lives on the Line. TIME, May 2020. URL https://time.com/5840609/algorithm-unemployment/.

Janet Egan and Lennart Heim. Oversight for Frontier AI through a Know-Your-Customer Scheme for
Compute Providers, October 2023. URL http://arxiv.org/abs/2310.13625. arXiv:2310.13625 [cs].

Let’s Encrypt. Let’s Encrypt Stats - Let’s Encrypt, January 2024. URL https://letsencrypt.org/stats/.
Epoch. Key trends and figures in Machine Learning, 2023. URL https://epochai.org/trends.

Ege Erdil and Tamay Besiroglu. Algorithmic progress in computer vision, 2023. _eprint: 2212.05153.

R Fielding, M Nottingham, and J Reschke. RFC 9110: HTTP semantics, 2022.

Clémentine Fourrier, Nathan Habib, Julien Launay, and Thomas Wolf. What’s going on with the Open LLM
Leaderboard?, June 2023. URL https://huggingface.co/blog/open-11lm-leaderboard-mmlul

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and Izzeddin Gur. Exposing Limitations of Language
Model Agents in Sequential-Task Compositions on the Web, February 2024. URL http://arxiv.org/
abs/2311.18751. arXiv:2311.18751 [cs].

Tason Gabriel, Arianna Manzini, Geoff Keeling, Lisa Anne Hendricks, Verena Rieser, Hasan Igbal, Nenad
Tomasev, Ira Ktena, Zachary Kenton, Mikel Rodriguez, Seliem El-Sayed, Sasha Brown, Canfer Akbulut,
Andrew Trask, Edward Hughes, A. Stevie Bergman, Renee Shelby, Nahema Marchal, Conor Griffin, Juan
Mateos-Garcia, Laura Weidinger, Winnie Street, Benjamin Lange, Alex Ingerman, Alison Lentz, Reed
Enger, Andrew Barakat, Victoria Krakovna, John Oliver Siy, Zeb Kurth-Nelson, Amanda McCroskery,
Vijay Bolina, Harry Law, Murray Shanahan, Lize Alberts, Borja Balle, Sarah de Haas, Yetunde Ibitoye,
Allan Dafoe, Beth Goldberg, Sébastien Krier, Alexander Reese, Sims Witherspoon, Will Hawkins, Maribeth
Rauh, Don Wallace, Matija Franklin, Josh A. Goldstein, Joel Lehman, Michael Klenk, Shannon Vallor,
Courtney Biles, Meredith Ringel Morris, Helen King, Blaise Agiiera y Arcas, William Isaac, and James
Manyika. The Ethics of Advanced AI Assistants, April 2024. URL http://arxiv.org/abs/2404.16244
arXiv:2404.16244 [cs].

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé
Iii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64(12):86-92, December 2021.
ISSN 0001-0782, 1557-7317. doi: 10.1145/3458723. URL https://dl.acm.org/doi/10.1145/3458723.

Thomas Krendl Gilbert, Nathan Lambert, Sarah Dean, Tom Zick, Aaron Snoswell, and Soham Mehta. Reward
Reports for Reinforcement Learning. In Proceedings of the 2023 AAAI/ACM Conference on Al, Ethics, and
Society, ATES 23, pp. 84-130, New York, NY, USA, August 2023. Association for Computing Machinery.
ISBN 9798400702310. doi: 10.1145/3600211.3604698. URL https://dl.acm.org/doi/10.1145/3600211/
3604698.

17

https://dl.acm.org/doi/10.1145/3593013.3594033
https://dl.acm.org/doi/10.1145/3593013.3594033
http://arxiv.org/abs/2401.13138
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
http://arxiv.org/abs/2403.02817
https://time.com/5840609/algorithm-unemployment/
http://arxiv.org/abs/2310.13625
https://letsencrypt.org/stats/
https://epochai.org/trends
https://huggingface.co/blog/open-llm-leaderboard-mmlu
http://arxiv.org/abs/2311.18751
http://arxiv.org/abs/2311.18751
http://arxiv.org/abs/2404.16244
https://dl.acm.org/doi/10.1145/3458723
https://dl.acm.org/doi/10.1145/3600211.3604698
https://dl.acm.org/doi/10.1145/3600211.3604698

Bob Gleichauf and Dan Geer. Digital Watermarks Are Not Ready for Large Language Models, Febru-
ary 2024. URL https://www.lawfaremedia.org/article/digital-watermarks-are-not-ready-for-
large—-language-models.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario Fritz. Not
what you’ve signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt
Injection, May 2023. URL http://arxiv.org/abs/2302.12173. arXiv:2302.12173 [cs].

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin Huang, Aakanksha Chowdhery, Sharan
Narang, Noah Fiedel, and Aleksandra Faust. Understanding HTML with Large Language Models, May
2023. URL http://arxiv.org/abs/2210.03945. arXiv:2210.03945 [cs].

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra
Faust. A Real-World WebAgent with Planning, Long Context Understanding, and Program Synthesis,
February 2024. URL http://arxiv.org/abs/2307.12856. arXiv:2307.12856 [cs].

Alexis Hancock. HTTPS Is Actually Everywhere, September 2021. URL https://www.eff.org/deeplinks/
2021/09/https-actually-everywhere.

Anson Ho, Tamay Besiroglu, Ege Erdil, David Owen, Robi Rahman, Zifan Carl Guo, David Atkinson,
Neil Thompson, and Jaime Sevilla. Algorithmic progress in language models, March 2024. URL https:
//arxiv.org/abs/2403.05812v1.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre. Training Compute-Optimal Large Language
Models, March 2022. URL http://arxiv.org/abs/2203.15556. arXiv:2203.15556 [cs].

The White House. National Cybersecurity Strategy. Technical report, March 2023.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik Narasimhan.
SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, April 2024. URL http://arxiv.
org/abs/2310.06770. arXiv:2310.06770 [cs].

Daniyal Khan, Gyanendra Mishra, and Ari Toren-Herrinton. danikhan632/Auto-GPT-AlpacaTrader-Plugin,
March 2024. URL https://github.com/danikhan632/Auto-GPT-AlpacaTrader-Plugin. original-date:
2023-04-25T16:51:50Z.

Megan Kinniment, Lucas Jun Koba Sato, Haoxing Du, Brian Goodrich, Max Hasin, Lawrence Chan,
Luke Harold Miles, Tao R. Lin, Hjalmar Wijk, Joel Burget, Aaron Ho, Elizabeth Barnes, and Paul
Christiano. Evaluating Language-Model Agents on Realistic Autonomous Tasks, July 2023. URL https:
//evals.alignment.org/Evaluating_LMAs_Realistic_Tasks.pdf.

Noam Kolt. Governing Al Agents, April 2024. URL https://papers.ssrn.com/abstract=4772956.

P.E.I. Korenhof, Merel Koning, Gergely Alpar, and J.H. Hoepman. The ABC of ABC: An analysis of
attribute-based credentials in the light of data protection, privacy and identity. Internet, Law and Politics,
10:357-374, July 2014. Place: Barcelona Publisher: Huygens Editorial.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Lijie Wen, Irwin King, and Philip S. Yu. A Survey
of Text Watermarking in the Era of Large Language Models, January 2024. URL http://arxiv.org/abs/
2312.07913. arXiv:2312.07913 [cs].

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen,
Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. AgentBench: Evaluating
LLMs as Agents, October 2023. URL http://arxiv.org/abs/2308.03688. arXiv:2308.03688 [cs].

18

https://www.lawfaremedia.org/article/digital-watermarks-are-not-ready-for-large-language-models
https://www.lawfaremedia.org/article/digital-watermarks-are-not-ready-for-large-language-models
http://arxiv.org/abs/2302.12173
http://arxiv.org/abs/2210.03945
http://arxiv.org/abs/2307.12856
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://www.eff.org/deeplinks/2021/09/https-actually-everywhere
https://arxiv.org/abs/2403.05812v1
https://arxiv.org/abs/2403.05812v1
http://arxiv.org/abs/2203.15556
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2310.06770
https://github.com/danikhan632/Auto-GPT-AlpacaTrader-Plugin
https://evals.alignment.org/Evaluating_LMAs_Realistic_Tasks.pdf
https://evals.alignment.org/Evaluating_LMAs_Realistic_Tasks.pdf
https://papers.ssrn.com/abstract=4772956
http://arxiv.org/abs/2312.07913
http://arxiv.org/abs/2312.07913
http://arxiv.org/abs/2308.03688

Samuele Marro. A Protocol Sketch For LLM Communication, April 2024. URL https://samuelemarro.it/
blog/2024/a-protocol-for-1lm/.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom. GATA:
a benchmark for General AI Assistants, November 2023. URL https://arxiv.org/abs/2311.12983v1,

Microsoft. Introduction to Microsoft Entra Verified ID, November 2023. URL https://learn.microsoft,
com/en-us/entra/verified-id/decentralized-identifier-overview.

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson, Elena
Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model Cards for Model Reporting. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, pp. 220-229, January 2019. doi: 10.1145/
3287560.3287596. URL http://arxiv.org/abs/1810.03993. arXiv:1810.03993 [cs].

Gareth Norris and Alexandra Brookes. Personality, emotion and individual differences in response to online
fraud. Personality and Individual Differences, 169:109847, February 2021. ISSN 0191-8869. doi: 10.1016/j.
paid.2020.109847. URL https://www.sciencedirect.com/science/article/pii/S0191886920300374.

OpenAl. ChatGPT plugins, 2023a. URL https://openai.com/blog/chatgpt-plugins|

OpenAl. GPT-4 Technical Report, March 2023b. URL http://arxiv.org/abs/2303.08774.
arXiv:2303.08774 [cs].

OpenAl. Enterprise privacy, January 2024a. URL https://openai.com/enterprise-privacy.

OpenAl. Introducing the GPT Store, January 2024b. URL https://openai.com/blog/introducing-the-
gpt-storel

OpenAl. Understanding the source of what we see and hear online, May 2024c. URL https://openai.com/
index/understanding-the-source-of-what-we-see-and-hear-online/.

European Parliament. Artificial Intelligence Act, March 2024.

Shishir G. Patil, Tianjun Zhang, Vivian Fang, Noppapon C., Roy Huang, Aaron Hao, Martin Casado, Joseph E.
Gonzalez, Raluca Ada Popa, and Ion Stoica. GoEX: Perspectives and Designs Towards a Runtime for
Autonomous LLM Applications, April 2024. URL http://arxiv.org/abs/2404.06921, arXiv:2404.06921
[cs].

Inioluwa Deborah Raji, Andrew Smart, Rebecca N. White, Margaret Mitchell, Timnit Gebru, Ben Hutchinson,
Jamila Smith-Loud, Daniel Theron, and Parker Barnes. Closing the Al accountability gap: defining
an end-to-end framework for internal algorithmic auditing. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, FAT* ’20, pp. 3344, New York, NY, USA, January 2020.
Association for Computing Machinery. ISBN 978-1-4503-6936-7. doi: 10.1145/3351095.3372873. URL
https://dl.acm.org/doi/10.1145/3351095.3372873|

Inioluwa Deborah Raji, I. Elizabeth Kumar, Aaron Horowitz, and Andrew Selbst. The Fallacy of Al
Functionality. In 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 959-972
Seoul Republic of Korea, June 2022. ACM. ISBN 978-1-4503-9352-2. doi: 10.1145/3531146.3533158. URL
https://dl.acm.org/doi/10.1145/3531146.3533158.

Eric Rescorla. The transport layer security (TLS) protocol version 1.3. Technical report, 2018.

Toran Bruce Richards. Auto-GPT: An Autonomous GPT-4 Experiment, April 2023. URL https://github.
com/Significant-Gravitas/Auto-GPT. original-date: 2023-03-16T09:21:07Z.

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. The Risk of Racial Bias
in Hate Speech Detection. In Anna Korhonen, David Traum, and Lluis Marquez (eds.), Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 16681678, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1163. URL https:
//aclanthology.org/P19-1163.

19

https://samuelemarro.it/blog/2024/a-protocol-for-llm/
https://samuelemarro.it/blog/2024/a-protocol-for-llm/
https://arxiv.org/abs/2311.12983v1
https://learn.microsoft.com/en-us/entra/verified-id/decentralized-identifier-overview
https://learn.microsoft.com/en-us/entra/verified-id/decentralized-identifier-overview
http://arxiv.org/abs/1810.03993
https://www.sciencedirect.com/science/article/pii/S0191886920300374
https://openai.com/blog/chatgpt-plugins
http://arxiv.org/abs/2303.08774
https://openai.com/enterprise-privacy
https://openai.com/blog/introducing-the-gpt-store
https://openai.com/blog/introducing-the-gpt-store
https://openai.com/index/understanding-the-source-of-what-we-see-and-hear-online/
https://openai.com/index/understanding-the-source-of-what-we-see-and-hear-online/
http://arxiv.org/abs/2404.06921
https://dl.acm.org/doi/10.1145/3351095.3372873
https://dl.acm.org/doi/10.1145/3531146.3533158
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://aclanthology.org/P19-1163
https://aclanthology.org/P19-1163

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role-Play with Large Language Models, May 2023.
URL http://arxiv.org/abs/2305.16367. arXiv:2305.16367 [cs].

Lee Sharkey, Cliodhna Ni Ghuidhir, Dan Braun, Jérémy Scheurer, Mikita Balesni, Lucius Bushnaq,
Charlotte Stix, and Marius Hobbhahn. A Causal Framework for AI Regulation and Auditing,
November 2023. URL https://staticl.squarespace.com/static/6461e2a5c6399341bcfc84ab/t/
654bc268049d687cecac24d8/1699463818729/auditing_framework_web.pdfl

Yonadav Shavit, Sandhini Agarwal, Miles Brundage, Steven Adler, Cullen O’Keefe, Rosie Campbell, Teddy
Lee, Pamela Mishkin, Tyna Eloundou, Alan Hickey, Katarina Slama, Lama Ahmad, Paul McMillan, Alex
Beutel, Alexandre Passos, and David G. Robinson. Practices for Governing Agentic Al Systems, 2023.

Vinay Shet. Are you a robot? Introducing "No CAPTCHA reCAPTCHA", December 2014. URL https:
//developers.google.com/search/blog/2014/12/are-you-robot-introducing-no-captchal

Toby Shevlane, Sebastian Farquhar, Ben Garfinkel, Mary Phuong, Jess Whittlestone, Jade Leung, Daniel
Kokotajlo, Nahema Marchal, Markus Anderljung, Noam Kolt, Lewis Ho, Divya Siddarth, Shahar Avin, Will
Hawkins, Been Kim, Tason Gabriel, Vijay Bolina, Jack Clark, Yoshua Bengio, Paul Christiano, and Allan
Dafoe. Model evaluation for extreme risks, May 2023. URL https://arxiv.org/abs/2305.15324v2.

Significant-Gravitas. Auto-GPT-Plugins, 2024. URL https://github.com/Significant-Gravitas/Auto~
GPT-Plugins|

Yogesh L Simmhan, Beth Plale, Dennis Gannon, and others. A survey of data provenance techniques.
Computer Science Department, Indiana University, Bloomington IN, 47405:69, 2005.

Murugiah Souppaya, Karen Scarfone, and Donna Dodson. Secure Software Development Framework (SSDF)
Version 1.1: Recommendations for Mitigating the Risk of Software Vulnerabilities. Technical report, 2022.

Manu Sporny, Dave Longley, Drummond Reed, Markus Sabadello, Orie Steele, and Christopher Allen.
Decentralized Identifiers (DiDs) v1.0. Technical report, W3C, July 2022.

Manu Sporny, Dave Longley, David Chadwick, and Orie Steele. Verifiable Credentials Data Model v2.0.
Technical report, W3C, May 2024.

Steve Springett, Dave Russo, Garret Fick, JC Herz, John Scott, Mark Symons, Pruthvi Nallapareddy,
and Bryan Garcia. Software Component Verification Standard. Technical report, OWASP, June 2020.
URL https://github.com/0WASP/Software-Component-Verification-Standard. original-date: 2019-
08-28T15:27:27%7.

Xinyuan Sun, Davide Crapis, Matt Stephenson, Barnabé Monnot, Thomas Thiery, and Jonathan Passerat-
Palmbach. Cooperative Al via Decentralized Commitment Devices, November 2023. URL http://arxiv)|
org/abs/2311.07815. arXiv:2311.07815 [cs].

Heyi Tao, Sethuraman T V, Michal Shlapentokh-Rothman, and Derek Hoiem. WebWISE: Web Interface
Control and Sequential Exploration with Large Language Models, October 2023. URL http://arxiv|
org/abs/2310.16042. arXiv:2310.16042 [cs].

Andrew Trask, Akshay Sukumar, Antti Kalliokoski, Bennett Farkas, Callis Ezenwaka, Carmen Popa, Curtis
Mitchell, Dylan Hrebenach, George-Cristian Muraru, Ionesio Junior, Irina Bejan, Ishan Mishra, Ivoline
Ngong, Jack Bandy, Jess Stahl, Julian Cardonnet, Kellye Trask, Khoa Nguyen, Kien Dang, Koen van der
Veen, Kyoko Eng, Lacey Strahm, Laura Ayre, Madhava Jay, Oleksandr Lytvyn, Osam Kyemenu-Sarsah,
Peter Chung, Peter Smith, Rasswanth S, Ronnie Falcon, Shubham Gupta, Stephen Gabriel, Teo Milea,
Theresa Thoraldson, Thiago Porto, Tudor Cebere, Yash Gorana, and Zarreen Reza. How to audit an Al
model owned by someone else (part 1), July 2023. URL https://blog.openmined.org/ai-audit-part-
1/l

Andrew Trask, Emma Bluemke, Teddy Collins, Ben Garfinkel Eric Drexler, Claudia Ghezzou Cuervas-Mons,
Tason Gabriel, Allan Dafoe, and William Isaac. Beyond Privacy Trade-offs with Structured Transparency,
March 2024. URL http://arxiv.org/abs/2012.08347. arXiv:2012.08347 [cs].

20

http://arxiv.org/abs/2305.16367
https://static1.squarespace.com/static/6461e2a5c6399341bcfc84a5/t/654bc268049d687cecac24d8/1699463818729/auditing_framework_web.pdf
https://static1.squarespace.com/static/6461e2a5c6399341bcfc84a5/t/654bc268049d687cecac24d8/1699463818729/auditing_framework_web.pdf
https://developers.google.com/search/blog/2014/12/are-you-robot-introducing-no-captcha
https://developers.google.com/search/blog/2014/12/are-you-robot-introducing-no-captcha
https://arxiv.org/abs/2305.15324v2
https://github.com/Significant-Gravitas/Auto-GPT-Plugins
https://github.com/Significant-Gravitas/Auto-GPT-Plugins
https://github.com/OWASP/Software-Component-Verification-Standard
http://arxiv.org/abs/2311.07815
http://arxiv.org/abs/2311.07815
http://arxiv.org/abs/2310.16042
http://arxiv.org/abs/2310.16042
https://blog.openmined.org/ai-audit-part-1/
https://blog.openmined.org/ai-audit-part-1/
http://arxiv.org/abs/2012.08347

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augment-
ing Language Models with Long-Term Memory. Advances in Neural Information Processing Systems,
36:74530-74543, December 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
hash/ebd82705£44793b6f9ade5a669d0fO0bf-Abstract-Conference.html.

Zihan Wang, Olivia Byrnes, Hu Wang, Ruoxi Sun, Congbo Ma, Huaming Chen, Qi Wu, and Minhui Xue.
Data Hiding with Deep Learning: A Survey Unifying Digital Watermarking and Steganography, July 2021.
URL https://arxiv.org/abs/2107.09287v3,

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, January 2023.
URL http://arxiv.org/abs/2201.11903. arXiv:2201.11903 [cs].

Kevin Wei and Lennart Heim. Designing Incident Reporting Systems for Harms from AI. May 2024.

Laura Weidinger, Maribeth Rauh, Nahema Marchal, Arianna Manzini, Lisa Anne Hendricks, Juan Mateos-
Garcia, Stevie Bergman, Jackie Kay, Conor Griffin, Ben Bariach, Tason Gabriel, Verena Rieser, and
William Isaac. Sociotechnical Safety Evaluation of Generative Al Systems, October 2023. URL http:
//arxiv.org/abs/2310.11986. arXiv:2310.11986 [cs].

Peter Wills. Care for Chatbots, May 2024. URL https://papers.ssrn.com/abstract=4814272,

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander Rush. Transformers: State-of-the-Art Natural Language Processing. In Qun Liu and David
Schlangen (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38-45, Online, October 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos. 6.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger, and Chi Wang.
AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation Framework. 2023. _ eprint:
2308.08155.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in
Real Computer Environments, April 2024. URL http://arxiv.org/abs/2404.07972. arXiv:2404.07972
[cs].

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. InjecAgent: Benchmarking Indirect Prompt
Injections in Tool-Integrated Large Language Model Agents, March 2024. URL http://arxiv.org/abs/
2403.02691. arXiv:2403.02691 [cs].

Hanlin Zhang, Benjamin L. Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz Barak.
Watermarks in the Sand: Impossibility of Strong Watermarking for Generative Models, November 2023.
URL http://arxiv.org/abs/2311.04378. arXiv:2311.04378 [cs].

Jonathan Zittrain. We Need to Control AT Agents Now, July 2024. URL https://www.theatlantic.com/
technology/archive/2024/07/ai-agents-safety-risks/678864/. Section: Technology.

Neatsun Ziv, Lior Arzi, Eyal Paz, David Cross, Hiroki Suezawa, Naor Penso, Shai Sivan, Dineshwar Sahni,
Maxim Kovalsky, Chenxi Wang, Roy Feintuch, Hadas Harel Lavie, Ronen Atias, and Gadi Evron. Open
Software Supply Chain Attack Reference (OSC&R), 2024. URL https://pbom.dev/.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal and
Transferable Adversarial Attacks on Aligned Language Models, July 2023. URL https://arxiv.org/abs/
2307.15043v2.

21

https://proceedings.neurips.cc/paper_files/paper/2023/hash/ebd82705f44793b6f9ade5a669d0f0bf-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ebd82705f44793b6f9ade5a669d0f0bf-Abstract-Conference.html
https://arxiv.org/abs/2107.09287v3
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2310.11986
http://arxiv.org/abs/2310.11986
https://papers.ssrn.com/abstract=4814272
https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/2404.07972
http://arxiv.org/abs/2403.02691
http://arxiv.org/abs/2403.02691
http://arxiv.org/abs/2311.04378
https://www.theatlantic.com/technology/archive/2024/07/ai-agents-safety-risks/678864/
https://www.theatlantic.com/technology/archive/2024/07/ai-agents-safety-risks/678864/
https://pbom.dev/
https://arxiv.org/abs/2307.15043v2
https://arxiv.org/abs/2307.15043v2

Appendix
A A More Detailed Definition of an Instance

A system is a model (e.g., a set of parameters), along with software used to run the model and provide other
user functions. For example, ChatGPT with GPT-4 as a backend comprises both the weights of (a particular
version of) GPT-4 and the software used to facilitate chat interactions (as opposed to an “autocomplete”
function, as in the OpenAl playground).

To understand the difference between a system and an instance, consider the information that would be
useful to attach to a system-specific ID, so as to inform decisions about interacting with the system. Such
information could not depend (too much) on a system’s inputs, since different inputs might lead to different
behavior. In other words, the information should ideally be valid regardless of a user’s interaction history.
Represented visually, the information would have to be valid for both top and bottom flow charts in Figure [4]

interaction

N
system loaded) L }
user A input lugin input
{ for user A P piie P
system output
\) . J
s . N\
interaction \ interaction

[system loaded)

user B input ‘ user B input ‘
for user B P P)

i N N
[system output [system output ‘
/

R —— -— /
~ S ~_

Figure 4: This figure depicts two users that use the same system (e.g., both use ChatGPT with the GPT-4
backend). System-specific information attached to an ID should be useful to both users. By loaded, we
mean that the system is ready to accept inputs for the first time.

An instance is an abstraction that corresponds to a (initial) user (which could be a human, a group of
humans, a software system, etc) and an interaction history. In Figure 5] we provide a visual depiction of two
instances that interact with each other.

We define instances in this way so that instance-specific IDs can take into account information that is causally
relevant to a given interactionE For example, in the top half of Figure [5, information about instances A’s
earlier interactions (such as malfunctions) may be useful when instance B interacts with instance A. Actions
taken by another instance are not, by default, causally relevant to the behaviour of another instance. Yet,
instances can affect each other through direct interaction or on changing shared states of the world (e.g.,
using the same bank account).

Since Al systems can be copied and combined, there are some additional edge cases for how to define instances.
In a branch (see Figure @, Two instances share a past context. For example, a regeneration of a response
(possible in ChatGPT, for one) creates two branches. Since branches can behave independently, we suggest
treating branches as separate instances. In a merge (see Figure , two instances come together to form a
new system. For example, suppose software S accepts inputs from separate users, engages the instances of

12There may be information that is not causally relevant, but which may still help to predict the instance’s behavior, such as
model evaluations or the behaviour for other instances. It remains unclear how much of this information to attach to a given
instance’s ID.

22

‘ ‘ system loaded |
for user B

L user A

N\
instance A \

L plugin

interaction ’—-[interaction J—»

sy lezEtas interaction
for user A
-~
. N
[system loaded } user B ’
for user A L
instance B

(systemloaded interaction }—-{ interaction ’—-‘ interaction }—*
| foruserB) \ / 4

Figure 5: An instance is an abstraction that corresponds to a creation event, where a system is loaded for a
user, and an interaction history. Instance-specific IDs could help to inform interaction decisions. For example,
information about instances A’s earlier interactions (such as malfunctions) may be useful when instance B
interacts with instance A.

instance C

copiedinto _

interaction H interaction }—»

interaction }—» -

instance A

system loaded
for user A

(a) In this example of a branch, the inputs of instance A are copied for user C' to create a new instance C.

instance B

l system loaded J»*‘ interaction
for user B instance AB

,i—/\ merged Sy interaction]—» .
instance A for users A, B)
system loaded r . ~
interaction

for user A !

e interaction }—»

(b) In this example of a merge, the instances A and B are merged into a new instance AB, which has access to
(potentially a subset of) the inputs of A and B.

Figure 6: We illustrate how we define instances in the event that they are copied or combined.

two users in a debate based on the inputs, and finally outputs a result to both users. Users A and B could
use S to create a new instance AB, based on their separate instances. As with branching, we treat AB as a
separate instance because the users could continue running their original instances in tandem with AB.

23

causally relevant information for ID of instance C sent to user B

instance A \ 4 instance C h
system loaded interaction |- copied into---- interaction
for user A \ -
" k —_
\
N,

.

-

interaction

—

(a) In the event of a branch, a user B that interacts with instance C' may find information about instance A (e.g.,
instance A was involved in an incident) to be useful.

e T~

/ causally relevant information for ID of instance AB sent to user C \
{ N,
s | -
system loaded »[interaction T T
__ foruserB J\ 7 instance AB mp‘uts ”\D
- > N
b merged system interaction }—H o
instanceA forusersA B |)
/
sl e interaction
\ for user A ‘
\ J \ /
h /
>~ —~

S
\# interaction '—»

(b) In the event of a merge, a user C that interacts with instance AB may find information (e.g., instance B is not
robust) about either instances A or B to be helpful.

Figure 7: We visually represent the information that an ID for an instance could take into account.

If an instance is the result of a branch or a merge, it may be useful for the instance’s ID to contain information
about ancestor instances. In Figure [7a] since the context of instance A is copied into instance C, any incidents
associated with A may be helpful for user B’s interaction decisions. Similarly, in Figure[7h] information about
instances A and B may be relevant for user C’s decision about whether or not to trust the outputs of instance
AB. Nonetheless, information from ancestor instances could be excluded for a variety of reasons, such as user
privacy. Furthermore, it could be possible for information from descendant instances, or instances in another
branch, to be relevant for the behavior of a given instance. For example, incidents with user B from time
t + 1 may be informative for user A that interacted with an instance at time t. We leave further analysis of
how to delimit the sources of ID information to future work [

As we have defined it, an instance is causally independent of other instances unless it interacts with them,
such as by processing their outputs. This causal independence is crucial to IDs, as we discussed above. Yet,
the abstraction of an instance could be leaky depending on system implementation details. For example, if a
single GPU handles the operation of two separate instances, implementation errors or optimization strategies
(e.g., approximate matrix multiplication) could potentially result in computational interference between the
instances.

13Links to ancestor IDs make other potential definitions of an instance equivalent, from the perspective of the functions of an
ID. For example, in Figure@ we could have defined instance C' as encompassing interaction history up to instance A. This
definition would not change the causally relevant information with respect to instance C in Figure @

24

B Maintaining Access to IDs

Suppose a primary party P receives an output and ID from an AT system. If it is desirable for secondary
parties to access the ID, P may have additional responsibilities. Some potential situations follow.

Chains of deployers: There may be multiple deployers involved in the operation of an Al system. For
example, deployer A could provide an API for system X to customer B, who creates system Y and serves Y
to user C. To ensure that C' can access the X’s ID, B should link to the ID provided by A, or should include
the information in the ID of Y.

Service providers: If a service provider receives an ID, it should ensure that those who observe or are
affected by AI system’s actions can also see the ID. For instance, a bank that facilitates a financial transaction
from an AI system should make the latter’s ID known to the other party of the transaction.

The provider may have to work with other parties to maintain visibility of the ID. As an example, consider
a service that allows an Al system to post on a social media platform. The provider may have written
the software that allows the Al system to interact with the platform’s API, but the social media company
develops the API and manages the platform. While the provider could include the AI system’s ID as text
within the post, doing so may be infeasible because of text limits or would otherwise be obstructive to the user
experience. Rather, the provider should work with the social media company to include the ID as metadata,
readily accessible to the user through a visible icon.

Users: Users could receive outputs with attached IDs, whether as a watermark or metadata. To counter
inadvertent removal of IDs, deployers could add labels to inform users. For example, Facebook and Instagram
automatically add labels indicating Al origin when a user shares a photo generated with the Meta Al feature
(Bickert,, 2024). To counter intentional removal of IDs, better watermarking techniques may be required.
Yet, it remains unclear how effective watermarking may ultimately be (Zhang et al., 2023; |Gleichauf & Geer,
2024)).

25

	Introduction
	Contributions

	Definitions
	Characterizing IDs
	Attributes
	Access
	Verifiability

	How Could IDs Help?
	Shutting Down Malfunctioning Agents
	Verifying Certification
	Investigating Scam Calls

	Demand for ID Use
	Governments
	Service Providers
	Other Parties that Interact with AI Systems
	Where to Require IDs

	Potential ID Implementation
	Assigning IDs
	Attributes
	Access

	Limitations
	Misuse of IDs
	Decentralized Operation of Agents
	Failure to Inform
	Bypassing IDs
	Privacy Risks
	Broader Societal Consequences

	Related Work
	Conclusion
	A More Detailed Definition of an Instance
	Maintaining Access to IDs

