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Abstract

With the increasing number of financial services available online,

the rate of financial fraud has also been increasing. The traffic and

transaction rates on the internet have increased considerably, lead-

ing to a need for fast decision-making. Financial institutions also

have stringent regulations that often require transparency and ex-

plainability of the decision-making process. However, most state-

of-the-art algorithms currently used in the industry are highly pa-

rameterized black-box models that rely on complex computations

to generate a score. These algorithms are inherently slow and lack

the explainability and speed of traditional rule-based learners. This

work introduces SR-MCTS (Symbolic Regression MCTS), which

utilizes a foundational GPTmodel to guide theMCTS, significantly

enhancing its convergence speed and the quality of the generated

expressions which are further extracted to rules. Our experiments

show that SR-MCTS can detect fraud more efficiently than widely

used methods in the industry while providing substantial insights

into the decision-making process.

1 Introduction

Traditionally, financial fraud detection relied on rules constructed

by subject matter experts to approve or deny transactions [15].

While these methods were fast and explainable, they struggled to

adapt to evolving fraud patterns. Later, machine learning techniques

like Logistic Regression [14], Support Vector Machines [13], Ran-

dom Forest [12], and XGBoost [11] offered better adaptability but

made decision-making less interpretable. Tree-based learners em-

ployed algorithms like SHAP [17] for insights, but these were com-

putationally expensive and challenging to interpret as rules. Ad-

vanced Graph Neural Network models like Graph Attention Net-

works [9], Care-GNN [8], and Semi-GNN [10] improved decision-

making but remained black-box and costly. In the recent past, Gen-

erative Pre-trained Transformers (GPT) [21] have shown path-breaking

success in different domains ofmachine learning. Despite of its suc-

cess, GPT suffers from issues like hallucinations [22], limiting their

use in critical decision-making.

For real-time applications, fraud detectionmethodsmust be fast,

interpretable, and accurate. Rule-based methods excel in speed and

interpretability. This work introduces SR-MCTS, an algorithm that

enhances rule-based methods to match state-of-the-art accuracy.

We fine-tune a large language model, Symbolic-GPT [18], with fi-

nancial data and use it to guide Monte Carlo Tree Search (MCTS)

[16]. SR-MCTSgenerates mathematical expressions combining dataset

features, operators, and constants to create rule sets for fraud de-

tection. It also minimizes the effect of hallucinations due to limited

guidance to the MCTS from Symbolic-GPT.

We evaluate SR-MCTS on our proprietary dataset, showing it

outperforms widely used industry methods.

2 Method

In this section, we define the Markov Decision Process (MDP) for

SR-MCTS, describe Symbolic GPT’s role in guiding the search, and

outline the reinforcement learning-style approach for evaluating

and refining expressions. Finally, we explain how rule sets are ex-

tracted from the generated expressions.

2.1 MDP Formulation

The symbolic regression problem is modeled as an MDP where:

The state space ( consists of all valid combinations of features

and constantswhich form the operands. Operators consist of unary

({sin, cos, log, exp}) and binary ({+,−,×,÷}) mathematical opera-

tions that can be combined with operands to form expressions.

The action space AB ⊂ A for a state B ∈ ( is a conditional set

of operators and operands, determined by the current state (e.g.,

operand followed by operator). The transition function T (B, 0)

defines the next state B′ given B and action 0, ensuring mathemat-

ically valid expressions. The reward function '(B, 0) is inversely

proportional to the loss L(~, ~̂) of the generated expression, with

~ as the target and ~̂ as the prediction.

The goal is to find a sequence of states and actions that maxi-

mizes cumulative reward, minimizing the loss function in a rein-

forcement learning style.

2.2 PUCT and Symbolic GPT Guidance

SR-MCTS uses the PUCT (Predictor + Upper Confidence bounds

for Trees) [20] strategy to search the expression space:

PUCT(B, 0) = & (B, 0) + 2 ·

√

log# (B)

# (B, 0)
· PGPT (B, 0), (1)

where & (B, 0) is the expected reward (negative loss) for action

0 in state B , based on previous simulations. # (B) is the number

of visits to state B , # (B, 0) is the number of times action 0 was

selected in B , and PGPT (B, 0) is the probability of selecting 0 in B as

predicted by Symbolic GPT. The constant 2 balances exploration

and exploitation.

2.3 Evaluation and Loss Calculation

After generating trajectories (expressions) using SR-MCTS, they

are evaluated based on their predictive performance relative to the

target variable. For a given expression ~̂ generated from trajectory

) , the binary cross-entropy loss is:
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LBCE (~, ~̂) = − [~ log(~̂) + (1 − ~) log(1 − ~̂)] (2)

where ~ is the true value and ~̂ is the predicted value.

The top : trajectories with the lowest loss are selected, and re-

wards are assigned as:

'() ) =
1

L(~, ~̂) + n
, (3)

where n avoids division by zero.

2.4 Symbolic GPT Model and Retraining

Symbolic GPT, a generative model trained on symbolic regression

datasets, is fine-tuned on financial transaction data to guide MCTS.

The input to Symbolic GPT is the current state B (a partial expres-

sion), and the output is a probability distribution over the next pos-

sible actions (operands or operators), effectively serving as the pol-

icy c (B) for MCTS. This policy guides action selection, enhancing

the search process and expression quality.

To further refine Symbolic GPT, the top: trajectories fromMCTS

are used to retrain the model. The loss function for retraining is

cross-entropy with L2 regularization:

LCE = −

<
∑

8=1

~8 log(~̂8) + _
∑

9

\29 , (4)

where ~8 is the true distribution (one-hot encoded) of the next

action, ~̂8 is the predicted distribution from Symbolic GPT for the

8-th action, \ 9 are the model weights, and _ controls the L2 penalty.

2.5 Extracting Rules

After generating the top : expressions using SR-MCTS, we create

rules by solving the system of linear equations formed by equating

these expressions. By finding the solutions to these equations, we

derive interpretable rules that can be used to evaluate transactions

as fraudulent or non-fraudulent based on the features present in

the dataset.

Algorithm 1 SR-MCTS (Symbolic Regression using MCTS)

Require: Pre-trained Symbolic GPT model, Transaction dataset

T

Ensure: Optimized set of symbolic regression expressions

1: Initialize an empty set of expressions T0;; ← ∅

2: for each transaction C ∈ T do

3: Initialize an empty set of expressions TC ← ∅

4: for each iteration 8 do

5: Generate an expression )8
6: Add the expression )8 to TC ← TC ∪ {)8 }

7: end for

8: Evaluate each expression )8 ∈ TC and calculate the loss

9: Select the top : expressions TC,top
10: Update reward '()8 )

11: Retrain Symbolic GPT with TC,top
12: Add the expression )C to T0;; ← T0;; ∪ {)C }

13: end for

14: Repeat the process until convergence

15: Extract rule sets out of the generated expressions

3 Experiments

Our dataset, the Proprietary Financial FraudDataset (PFFD), sourced

from our organization’s e-commerce clients, contains hashed cus-

tomer order details (e.g., Name, Address, Email, Phone, Device, Pay-

ment) to ensure privacy. It covers diverse fraud scenarios, demon-

strating the robustness of our approach. Our target label, Fraud

Score (fs), ranges from 0 to 100, indicating the likelihood of fraud.

The dataset includes approximately 1.25 million transactions, with

13,454 fraudulent cases, making up 1.07% of the data.

In the experiments, we set : to 0.2, selecting the top 20% of

expressions from each training iteration for fine-tuning Symbolic-

GPT. The maximum expression length is 40, with the MDP termi-

nating at the next operand. All categorical variables are one-hot

encoded.

We benchmarked SR-MCTS against industry-standard algorithms,

including Logistic Regression [2], XGBoost [3], Random Forest [4],

LSTM [5], GCN [6], and GAT [7], training and testing each model

on the same datasets.

Results show SR-MCTS surpasses these techniques, while also

providing interpretable decision-making.

Table 1: Fraud detection evaluation

Algorithm Recall AUC

SVM 0.536 0.507

Random Forrest 0.629 0.574

XGBoost 0.678 0.634

LSTM 0.621 0.587

GCN 0.725 0.711

GAT 0.784 0.765

SR-MCTS 0.812 0.797

4 Conclusion

The SR-MCTS approach significantly improves the speed and inter-

pretability of financial fraud detection. Guided by Symbolic GPT,

ourmethod achieves faster convergence and generates high-quality

expressions that effectively detect fraud. When combined with ex-

isting techniques, SR-MCTS enhances performance while main-

taining full transparency in decision-making. Future work will re-

fine the model, explore other domains, and experiment with longer

expressions, more complex operators, and dynamic detection of :

and the terminal state.
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A Neural Networks with MCTS

Monte Carlo Tree Search (MCTS) [23] [24] is widely used for solv-

ing combinatorial problems, with its effectiveness enhanced by in-

tegrating deep neural networks for value estimation. This approach,

known as Neural MCTS, is exemplified in methods like Expert

Iteration [25] and AlphaZero [26]. AlphaZero employs a neural

network to approximate both policy and value functions. During

learning, multiple self-play rounds are conducted, with MCTS sim-

ulations estimating a policy at each state. The selected policy guides

the next move, and outcomes are propagated back through the

states, with trajectories stored in a replay buffer to train the net-

work. In each self-play, MCTS runs a fixed number of simulations

to generate an empirical policy. These simulations involve four

phases:

(1) SELECT: The algorithm begins by selecting a path from

the root to a leaf (either a terminal or unvisited state) using

an PUCT algorithm [20]. Starting at the root B0, a sequence

of states {B0, B1, ..., B; } is determined as follows:

08 = argmax0

[

& (B8 , 0) + 2c\ (B8 , 0)

√

# (B8)

# (B8 , 0)

]

B8+1 = move(B8 , 08)

(5)

Here, & represents the value of the state-action pair, # is

the number of visits to the state-action pair, and c\ is the

policy learned by the network.

MCTS optimizes the output policy to maximize the action

valuewhileminimizing deviations from the policy network,

assuming accurate value estimates.

(2) EXPAND: If the selection phase ends at a previously unvis-

ited state B; , it is fully expanded and marked as visited. All

child nodes are considered leaf nodes in the next iteration.

(3) ROLL-OUT: Each child of the expanded leaf node con-

ducts a roll-out, where the network estimates the trajec-

tory’s outcome. This value is backpropagated to the previ-

ous states.

(4) BACKUP:The statistics for each node in the selected states

{B0, B1, ..., B; } are updated.

For the sequence {(B0, 00), (B1, 01), ...(B;−1, 0;−1), (B; , _)}, the

value +\ (B8) for child B8 updates the Q-value iteratively as

follows:

# (BC , 0C ) ← # (BC , 0C ) + 1

& (BC , 0C ) ← & (BC , 0C ) +
+\ (BA ) −& (BC , 0C )

# (BC , 0C )

(6)

This process is repeated for all roll-out outcomes from the

previous phase.

After the required number of iterations, the algorithm returns

the empirical policy ĉ (B) for the current state B . The next action is

sampled from ĉ (B), and the process continues.

B Feature Descriptions

In this work, we utilize both base and derived features to construct

symbolic expressions for financial fraud detection. The features

can be categorized as follows:

B.1 Base Features

The base features consist of direct transactional attributes that are

commonly available during online purchases. Some of these fea-

tures are:

• Shipping Features:
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– Shipping Email (Bemail): The email address associ-

ated with the shipping address of the transaction.

– Shipping Phone (Bphone): The phone number asso-

ciated with the shipping address.

– Shipping Address (Baddress): The physical address

provided for shipping purposes.

• Billing Features:

– Billing Email (1email): The email address associated

with the billing address of the transaction.

– Billing Phone (1phone): The phone number associ-

ated with the billing address.

– Billing Address (1address): The physical address pro-

vided for billing purposes.

• Other Transactional Features:

– Card Number: The credit or debit card number used

for the transaction.

– Bin Number: The bank identification number (BIN)

that identifies the institution issuing the card.

– Device ID: The unique identifier associated with the

device used to complete the transaction.

– IP Address: The IP address from which the transac-

tion is conducted.

Traditional Velocity Features

The traditional velocity features capture temporal patterns in trans-

actional activity by calculating the count and sum of base features

over different time windows. These windows include: 15 minutes,

30 minutes, 1 hour, 4 hours, 12 hours, 1 day, 7 days, 14 days, 30

days, 60 days, and 90 days. The velocity features help detect un-

usual activity patterns in a short or long time frame. For example:

• Count of Shipping Emails (countBemail
): The number of

times the shipping email appears in transactions during a

specified time window.

• SumofTransactionAmounts for aCardNumber (sumbin):

The total sum of transaction amounts associated with the

same card number over a specified time window.

Relational Velocity Features

Relational velocity features represent aggregations of one base fea-

ture relative to another within a specified time window. This helps

capture interactions between different transaction attributes that

may indicate fraudulent behavior. For example:

• Shipping Email vsBillingAddress (rv(Bemail, 1address)):

The number of unique shipping emails associated with a

particular billing address in a given time window.

• Device IDvsCardNumber (rv(device_id, card_number)):

The number of times the same device ID is used with dif-

ferent card numbers in a specific time window.

These base and velocity features form the core input for con-

structing the symbolic expressions generated through the SR-MCTS

process. By considering both temporal patterns and relationships

between features, the model can detect fraudulent activities more

effectively and interpretably.

C Generated Expressions

Following is an example of the expression generated by Symbolic

MCTS:

Fraud Score = 0.31 log
(

1 + count
30 day
Bemail

)

+ 0.54 log
(

1 + sum15 min
1address

+ count1 hr
card_number

)

+ 1.21 sin
(

sum
1 day

bin_number
· count4 hr

device_id

)

+ exp
(

−0.77
(

sum
7 day
Bphone + count

90 day
ip

))

+ 0.93
(

count12 hr
1email

+ sum
30 day

device_id

)

− 2.53 log
(

1 +
(

sum
60 day
Bemail

+ count
90 day

1address

))

+ 0.26
(

count1 hr
Bphone

+ count
30 day
ip

)2

− 1.84 log
(

1 + exp
(

sum4 hr
1email

− sum
1 day
Baddress

))

+ 0.41 log (1 + rv (Bemail, 1address, 30 day))

− 0.68 exp
(

log
(

1 + sum
1 day

card_number
+ count

7 day

device_id

))

+ 1.31 sin
(

log
(

1 + count
90 day
Bphone

)

+ log
(

1 + sum
30 day
ip

))

− 0.83
(

count4 hr
bin_number + log (1 + rv (dev_id, bin, 603))

)

+ 0.25
(

count12 hr
Baddress

+ log
(

1 + sum
30 day

1email

))2
+ 0.27

(7)

The coefficient of each term has been rounded-off to the nearest

second digit after the decimal. AE in the above equation stands for

relational velocity. A rule can be further created from the above

equation assigning the Fraud Score to be 1 and creating inequalities

to trigger the rules.
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