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Abstract
We investigate the effectiveness of a momentum trading signal
based on the coverage network of financial analysts. This signal
builds on the key information-brokerage role financial sell-side
analysts play in modern stock markets. The baskets of stocks cov-
ered by each analyst can be used to construct a network between
firms whose edge weights represent the number of analysts jointly
covering both firms. Although the link between financial analysts
coverage and co-movement of firms’ stock prices has been investi-
gated in the literature, little effort has been made to systematically
learn the most effective combination of signals from firms covered
jointly by analysts in order to benefit from any spillover effect. To
fill this gap, we build a trading strategy which leverages the analyst
coverage network using a graph attention network. More specifi-
cally, our model learns to aggregate information from individual
firm features and signals from neighbouring firms in a node-level
forecasting task. We develop a portfolio based on those predictions
which we demonstrate to exhibit an annualized returns of 29.44%
and a Sharpe ratio of 4.06 substantially outperforming market base-
lines and existing graph machine learning based frameworks. We
further investigate the performance and robustness of this strategy
through extensive empirical analysis. Our paper represents one of
the first attempts in using graph machine learning to extract action-
able knowledge from the analyst coverage network for practical
financial applications.

Keywords
Spillover,Momentum,Network science,Portfolio Optimization,Graph
Machine Learning

1 Introduction
Financial analysts play an important information-processing role in
modern financial markets. They provide signals about firm health,
and their predictions about future firm outcomes have traditionally
been regarded as a shorthand for stock pickers to easily keep their
finger on the ‘pulse’ of the market. However, simultaneous coverage
of two firms by one or more analysts is also shown to explain higher
levels of return correlation between those firms’ returns [1, 15, 29].
This suggests that beyond providing information, sell-side analyst
coverage also has an effect on investor attention which we propose
to leverage in order to build a trading strategy.

Indeed, as investors follow specific analyst reports, they tend to
focus their finite attention on specific baskets of firms covered by
sell-side analysts [14]. Limited investor attention has been identified

as a source of investment opportunities [1] as information overload
leads to delayed recognition of the impact that news affecting one
company should have on other economically related companies.
This slow information diffusion can result in predictable lead-lag
effects between multiple firm’s returns [7]. By acting as conduits for
investor attention, ‘analyst coverage networks’ have been used to
explain uneven patterns of investor attention between firms in the
market [14, 15]. Analyst coverage networks refer to networks where
nodes are firms and the weighted edges between two firms denote
the number of analysts covering both firms in a certain time frame
such as the last year or the last quarter [1]. For instance, if Analyst
A covers both Google and Apple, a link with weight 1 is established
between these two firms in the network. If Analyst B also covers
Google and Apple, the link between the two companies will have
a weight 2. These networks are interesting to financial research
beyond just directing investor attention. Analyst coverage networks
are shown to also identify fundamental economic linkages between
firms, as analysts tend to cover related firms [1]. High analyst
coverage offers strong predictive power for financial linkages [10] as
well as changes in firms’ fundamental information [3, 11, 17]. This
motivates our interest in leveraging the analyst coverage network
to build a profitable momentum-spillover strategy.

This increased co-movement between stocks linked to analyst
coverage has led to initial interest [24] in creating a ‘model-free’
strategy to profit from this effect. This approach is easy to interpret
and implement as it involves simple weighted averages of neighbour
returns as indicators of future profitability. The trading signal then
takes the form of averagingmomentum of a firms’ 1-hop neighbours
in the network as an indicator for future performance. However,
the neighbourhood momentum indicator - as we investigate in this
work - may be too weak on its own and fail to take full advantage
of the nonlinear and multi-hop relationships between a firm and
its wider neighbourhood. Moreover, existing approaches mainly
focus on the pre-defined network structure, and hence lack the
flexibility of adapting the strength of the relationships between
firms, especially given node-level information coming from the
stock price evolution of firms in the portfolio.

Lead-lag models developed in research and industry meanwhile
have begun including machine learning in uncovering firm-level
momentum to build trading indicators [2]. Inspired by this, we pro-
pose to leverage the additional flexibility allowed by graph machine
learning models to 1) include both firm level and network level data
and 2) adjust and adapt in real-time the strength of relationships
from the initial analyst coverage network, in order to build a trad-
ing signals for out-of-sample returns. This allows us to profit from
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the rich information incorporated in the analyst network which
uncovers relationships between stocks not traditionally captured by
industry or correlation-based linkages. In addition, we demonstrate
the potential of a multi-layer graph attention network (GAT) [5] in
capturing the non-linear and multi-hop relationships in the analyst
network in order to build an improved trading strategy in real time.

Our research contributes to the existing literature in several ways.
First, to the best of our knowledge, our work represents one of the
first attempts in using graph machine learning techniques to model
the analyst coverage network and predict stock returns.Second,
we demonstrate the superiority of our GAT-based approach over
traditional aggregation methods, highlighting the importance of
capturing complex, non-linear relationships between firms in the
analyst coverage network. Third, we show the benefits of incorpo-
rating higher-frequency firm-level data into the model, enabling it
to adapt more effectively to changing market conditions, thereby
generating more robust trading strategies.

The outline of this paper is as follows. We first discuss the rel-
evant literature which led to the different components of our ap-
proach. Subsequently, we formulate the trading-strategy problem
as a graph machine learning question and present the model it-
self as well as the methodology we built for evaluating the model
against a suite of industry benchmarks and ablation studies. Lastly,
we present and discuss the experimental results before concluding
and presenting the potential avenues for future research.

2 Literature review
The concept of analyst coverage networks and their potential to
explain various momentum spillover effects in the stock market
has captured significant attention in recent literature.

Several studies have investigated the economic and fundamental
linkages between companies to better understand and capitalize
on the lead-lag effect in investment strategies. The effect is evident
among companies within the same industry [13, 23], firms offer-
ing similar products [8, 12], entities connected through supplier-
customer chains [7, 22], firms sharing common technological inno-
vations [3, 18], those located in the same geographic region [6, 26],
companies with overlapping institutional ownership [9], and those
with the same strategic alliances [4].

In addition to the relationships above, Ali and Hirshleifer [1]
introduce shared analyst coverage as an additional overarching
approach to determine firm relatedness. They specifically highlight
its potential to explain various previously established cross-asset
momentum effects such as industry momentum, geographic mo-
mentum or customer momentum. They argue that analyst linkages
are particularly adept at uncovering fundamental relationships be-
tween companies, more so than other methods for identifying firm
linkages such as industry networks and correlations. Investors that
overlook the analyst coverage network may be underestimating
fundamental channels of shock transmission between firms thus ex-
plaining the observed momentum spillover effect between strongly
connected neighbours on the analyst coverage network [14, 24]. Ali
and Hirshleifer [1] also argue that shared analyst coverage could
quantify the strength of company relationships more accurately
than simple binary variables or sector groupings, and address the

challenges faced by other methods such as difficulty in accessing
complete supplier information for a given company [7].

Recent papers on shared analyst coverage have further explored
its potential to unify momentum spillover effects and predict re-
turns. Key studies include Gomes et al. [10], who investigated the
role of analyst coverage networks in corporate financial policies. Yi
and Guo [28] provided evidence from China on how common ana-
lyst links predict returns, while Jiang et al. [15] explored connected-
firm momentum spillover in China. Oyeniyi et al. [24] discussed
profiting from sell-side analysts’ coverage networks, Israelsen [14]
suggested that investors make correlated information processing
errors which can be tracked using the analyst coverage network
and help explain the link between it and excess comovement, and
Martens and Sextroh [20] examined interfirm information spillovers
due to overlapping analyst coverage.

While the existing literature has made significant progress in
understanding the role of analyst coverage networks in explaining
momentum spillover effects, there remain several gaps that our
research aims to address. Previous studies have primarily focused
on using simple aggregation methods, such as weighted averages of
a firm’s direct neighbours’ momentum, to create lead-lag portfolios
[1]. However, these approaches may not fully capture the complex
and non-linear relationships between firms in the analyst coverage
network, limiting their ability to predict future stock returns accu-
rately. Moreover, existing methods lack the flexibility to adapt the
strength of the aggregation coefficients based on higher-frequency
information from the firms in the portfolio, hindering the strate-
gies’ ability to respond to rapidly changing market conditions and
firm-specific events.

Our research aims to address these gaps by leveraging the power
of graph machine learning techniques, specifically graph attention
networks (GATs) [5], to develop a more sophisticated and adaptive
approach to modeling the analyst coverage network and predict-
ing stock returns. The GAT’s attention based architecture allows
our model to assign different importance weights to each firm’s
neighbors in the analyst coverage network, thus making its’ repre-
sentation of firm to firm interactions more flexible than the static
weights used in model-free approaches to building portfolios from
the original analyst coverage network [24].

3 Methods
3.1 Data
3.1.1 Data sources. We investigate a dataset of stock prices ex-
tracted from the CRSPR/COMPUSTAT datasource hosted byWRDS
covering the 2006-2022 period1. The dataset is composed of 495
firms of the SNP500 accross a diverse array of industries. We com-
bine this dataset with information from Institutional Brokers’ Es-
timate System (IBES) analyst estimates from 2006 to 20222. These
estimates are recorded as they are produced by each analyst cover-
ing firms in our sample over the 2006-2022 period. These forward
looking predictions are made at yearly quarterly or monthly hori-
zons.
1Compustat prices are available at : https://wrds-www.wharton.upenn.edu/pages/get-
data/center-research-security-prices-crsp/annual-update/crspcompustat-
merged/security-daily/
2IBES coverages are available at : https://wrds-
www.wharton.upenn.edu/pages/about/data-vendors/vendor-partner-ibes/
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3.1.2 Momentum indicators from stock prices. We calculate 𝑟𝑖,𝑡−Δ𝑡 ,
the log-return over Δ time periods of firm 𝑖 as described in Equa-
tion 1. We select 5 Δ to represent several return horizons Δ ∈
[1, 21, 63, 126, 252] corresponding to the returns 𝑟𝑖,𝑡−Δ𝑡 over the
past 1, 21, 63, 126 and 252 days respectively:

𝑟𝑖,𝑡−Δ𝑡 = log(
𝑝𝑖,𝑡

𝑝𝑖,𝑡−Δ
) (1)

With 𝑝𝑖,𝑡 and 𝑝𝑖,𝑡−Δ the price of security 𝑖 at times 𝑡 and 𝑡−Δ respec-
tively. Those 5 return horizons serve as 5 common measurements
for firm information as described in [2].

We define 3 additional firm-level indicators following [2] 𝑠𝑖,𝑡 (𝑆, 𝐿)
in Equation 2 based on varying short (S) and long (L) time scales
belonging to (𝑆, 𝐿) ∈ (8, 24), (16, 48), (32, 96).

𝑠𝑖,𝑡 (𝑆, 𝐿) =
𝑚 (𝑖,𝑡,𝑆 )−𝑚 (𝑖,𝑡,𝐿)

𝑠𝑡𝑑 (𝑟𝑖,𝑡−63𝑡 )

𝑠𝑡𝑑 (𝑚 (𝑖,𝑡,𝑆 )−𝑚 (𝑖,𝑡,𝐿)
𝑠𝑡𝑑 (𝑟𝑖,𝑡−63 ) )

(2)

Here𝑚(𝑖, 𝑡, 𝑆) = 𝛾 ∗ 𝑝𝑖,𝑡 + (1 − 𝛾) ∗𝑚(𝑖, 𝑡 − 1, 𝑆) is the exponential
weighted moving average of the price of asset i at time t with a scal-
ing factor 𝛾 = 1

𝑆
and 𝑠𝑡𝑑 (𝑟𝑖,𝑡−63𝑡 ) is the standard deviation of prices

over the past 63 days. We group these 8 indicators for each firm 𝑖

into a vector ®𝑥𝑖,𝑡 ∈ (1, 8). With ®𝑥𝑖,𝑡 = [𝑟𝑖,𝑡−1𝑡 , 𝑟𝑖,𝑡−5𝑡 , ..., 𝑠𝑖,𝑡 (32, 96)]
of length 8. Combining each ®𝑥𝑖,𝑡 into a matrix with all firms, we
obtain the feature matrix X𝑡 ∈ (𝑁, 8).

3.1.3 Network extraction from IBES ratings. We represent the over-
lapping coverage portfolios of the analysts in our sample as an
undirected network. Each trading day in our sample, we record the
IBES estimates made by each analyst for all the 495 firms in our
sample over the past 252 days. This creates an evolving bipartite
analyst-firm coverage record which we transform into an evolv-
ing firm-to-firm network by counting the number of analysts that
cover every pair of firms as described in Figure 1. The nodes of

Figure 1: Building the analyst network

the proposed analyst coverage network represent all the firms in
our sample. Meanwhile an edge between two nodes represents the
number of analysts that cover both firms within a given look back
window of 252 days. This approach to defining analyst coverage
is common in the literature studying the statistical properties of
analysts’ choices [1]. This allows us to create at each time step
an adjacency matrix A𝑡 that captures the topological information
contained in the analyst coverage network on day 𝑡 .

3.2 Problem formulation
We propose to frame the task of constructing a portfolio of stocks as
a classification task. We define the categorical target variable𝑦𝑖,𝑡+21
for each firm as the out-of-sample excessive returns compared to
the average return of all firms in the market which takes as value

either 1 (overperformance) or 0 (underperformance) as defined in
Equation 3:

𝑦𝑖,𝑡+21 =

{
1 if 𝑟𝑖,𝑡+21−𝑡 >

∑𝑁
𝑖 𝑟𝑖,𝑡+21−𝑡

𝑁

0 otherwise
(3)

Following [24], we select a monthly target as the statistical in-
quiries into the analyst matrix as we assume the monthly frequency
is a reasonable timeframe for the effect of analyst coverage on in-
vestors to manifest itself.

We stack each of the target variables 𝑦𝑖,𝑡+21 into a target vector
Y𝑡+21. We are aiming to define a function that produces the best
Ŷ𝑡+21, the out-of-sample forecast of over and under-performance.
This forecast takes the form of a predicted probability of belonging
to class 1 or 0.

Following [27], we then transform Ŷ𝑡+21 into an investment strat-
egy by buying the stocks corresponding to the entries in Ŷ𝑡+21 with
the 25% highest predicted probability to over-perform. Similarly,
we sell the stocks corresponding to the entries in Ŷ𝑡+21 with the
25% highest predicted probability to under-perform.

3.3 Proposed methodology
For a given trading day 𝑡 in our sample, we have a feature matrixX𝑡 ,
an adjacency matrix A𝑡 and a target vector Y𝑡+21. We use these in
order to build the graph𝐺 = A𝑡 ,X𝑡 and train a GAT that learns the
mapping between network information and the target following
the form𝐺𝐴𝑇 (A𝑡 ,X𝑡 ) = Y𝑡+21. This tripletA𝑡 ,X𝑡 and Y𝑡+21 defines
one sample, subsection 3.4 describes howwe combine these samples
to form our training-validation-testing sets.

The GAT layer takes as input a matrix of node features X𝑡 =

[®𝑥1𝑡 , ®𝑥2,𝑡 , ..., ®𝑥𝑁𝑡 ] where 𝑁 is the number of nodes and ®𝑥1,𝑡 is a
vector of dimension 𝐷 where 𝐷 is the number of features in each
input node. In our setup, as discussed in Section 3.1.2, the number of
dimensions is 8. We describe the mechanism for transforming each
node feature vector ®𝑥1,𝑡 to their updated value ®𝑥 ′1,𝑡 after applying
each GAT layer. It uses the attention function described in Equation
4 which calculates the attention score between two vectors using a
shared attentional mechanism 𝑎 : R𝐷 × R𝐷 → R:

𝑒𝑖 𝑗,𝑡 = 𝑎(W®𝑥𝑖,𝑡W®𝑥 𝑗,𝑡 ) (4)

The GAT also normalizes the attention scores using the softmax
function to make them comparable between layers.

𝛼𝑖 𝑗,𝑡 = softmax(𝑒𝑖 𝑗,𝑡 ) =
𝑒𝑖 𝑗,𝑡∑

𝑘∈𝑁 (𝑖 ) 𝑒𝑖𝑘,𝑡
(5)

Having acquired the attention scores 𝛼 , the GAT layer applies a
parametrization using a weight matrixW and a non-linear trans-
formation with the 𝑅𝑒𝐿𝑈 function in order to obtain the updated
feature representation ®𝑥 ′

𝑖
as described in Equation 6.

®𝑥 ′𝑖,𝑡 = ReLU(
∑︁

𝑗∈𝑁 (𝑖 )
𝛼𝑖 𝑗,𝑡W®𝑥 𝑗,𝑡 ) (6)

The model we present is set up to use an arbitrary number of
GAT layers followed by a linear layer with learnable weight matrix
Wlinear as described in Equation 7.

𝑌𝑡+21 = 𝑅𝑒𝐿𝑈 (X′Wlinear) (7)
We describe the overall pipeline of our model in Figure 2.
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Figure 2: Pipeline of the proposed GAT trading model

3.4 Training strategy
We split our 17 year dataset into 204 1-month trading periods, at
the end of each period, we retrain and validate our model. In order
to obtain training, validation and testing sets we group multiple
triplets A𝑡 ,X𝑡 and Y𝑡+21 together. We group the first 10 samples
in each trading period (from t=0 to t=9) to form our training set,
we group the following 10 samples (from t=10 to t=20) to form
our validation set and lastly, we test our model on the 21st sample
corresponding to t=21.

For validation, we perform hyperparameter tuning using grid
search with the following settings: the learning rate ∈ {1e-2,1e-3,1e-
4}, the layer size ∈ {64,128}, the number of layers ∈ {1,2}, the weight
decay regularization ∈ {1e-4,1e-5,1e-6}, and Attention heads ∈ {2,8}.

3.5 Comparative baseline models
We also consider several candidate approaches against which to
compare the performance of our model. These all leverage either
the feature matrix X𝑡 or the network information A𝑡 and serve as
alternative formulations present in the literature for how to build a
trading signal. These are summarized in Table 1 :

(1) Market Long Only: buying all the stocks in the market with
equal weights

(2) MACD Momentum: averaging the momentum indicators
defined in Equation 2 to use as a trading indicator.

(3) Analyst Matrix: following [24], averaging the momentum
of the 1-hop neighbours on the analyst coverage matrix.

(4) Neural Network (NN): Using a 2-layer feed-forward neural
network to predict 𝑌𝑡+21

Table 1: Comparison of features between our proposedmodel
and benchmarks

Model Name uses X𝑡 uses A𝑡 Learning

Long Only ✘ ✘ ✘

MACD Momentum Averaging ✔ ✘ ✘

Analyst Matrix ✔ ✘ ✔

Neural Network ✘ ✔ ✘

Ours (GATanalysts) ✔ ✔ ✔

3.6 Ablation studies
We also perform a series of ablation studies on the performance of
our graph attention based model in different setups to understand
what drives its performance and better grasp what features add
value. To do this we take the basic setup described in 3.3 and replace
different components of the basic GATanalysts model:

• 𝐺𝐶𝑁 : A graph convolutional Network [16] learning model
that does not use attention for propagating information.

• GAT1_layer : A GAT model with only 1-layer instead of the
2 of our initial setup.

• GATcorr : A GAT model which uses as neighbourhood in-
formation a correlation matrix which we transform into
an adjacency matrix by eliminating edges with correlation
inferior to the 90-th percentile.

• GATindustries : A GAT model which uses as neighbourhood
information a the GICS industrial classifications with firms
being connected if and only if they are in the same industry

• GATdel_edge : A GAT model which uses the original analyst
network from which 60% were randomly removed.

3.7 Evalutation metrics
We evaluate these strategies by calculating several features dis-
played by the returns of their corresponding portfolios. Those are:

• Returns: the annualized average gross percent returns of
strategy

• Volatility: their annualized average standard deviation of
percent returns over the time period denoted as Vol.

• Sharpe Ratio: the ratio of the average annualized returns
minus the risk-free interest rate divided by the standard de-
viation, a measure of risk-adjusted returns of the portfolio.

• Maximum Drawdown (MD): the maximum peak-to-trough
span reached by the portfolio

• Maximum Drawdown duration (MDD): the maximum num-
ber of consecutive periods the portfolio was in drawdown
expressed as a percentage of the entire number of periods

Moreover, we also calculate the cumulative log returns of each
strategy by adding up the log returns at each trading period. This
gives us a final measure of how well the strategy performed in gross
returns.

4 Results
This result section will first present the main predictive compar-
isons in Section 4.1, then discuss the ablation studies in Section 4.2.
We analyse the correlation between the returns and the market in
Section 4.3. We perform a turnover analysis of the different strate-
gies in Section 4.4. Lastly, we present discuss the behaviour of the
attention weights in the model in Section 4.5.

4.1 Comparison of predictive performances
Table 2 presents the results of the different strategies against the
financial tests we use to evaluate performance. The market long
only shows a Sharpe ratio of 0.411 and returns of 6.89% displaying
relatively worse performances. It also displays the longest maxi-
mum drawdownwith -39.4% of value lost at the trough. The Analyst
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Table 2: Performance metrics of different portfolios

Returns
(%)

Vol.
(%) Sharpe MD

(%)
MDD
(%)

Market 6.89 11.88 0.411 -39.4 21.0
Analyst Matrix 1.83 8.58 0.069 -22.8 51.0

MACD 9.56 11.46 0.672 -35.3 19.0
NN 15.44 8.32 1.753 -6.4 4.0

GAT analysts 29.44 7.07 4.069 -6.0 1.0

Matrix strategy consisting of a weighted average of neighbour mo-
mentum is the worst performing strategy in both returns (1.83%)
and risk adjusted returns (annualized Sharpe ratio of 0.069). It also
performs the worst in terms of maximum drawdown duration with
51% of the trading backtest period (corresponding to 103 months).
The MACD strategy performs better than the Analyst Matrix and
the market long-only strategy with a Sharpe ratio of 0.672, and it
shows a maximum drawdown of -35% and a maximum drawdown
duration of 39 trading periods (21%). The Neural Network outper-
forms all the previously introduced strategies with a Sharpe ratio
of 1.753 (more than double that of the next best MACD) and a much
lower maximum drawdown of -6.42%. The Neural network strategy
displays a shorter MDD than the MACD with 4.0% compared to
19%. Lastly, the GATanalysts method we introduce displays higher
log-returns (at 29.44% annualized returns) and a Sharpe ratio of
4.069, more than double the previous best Sharpe ratio of 1.753 for
the NN strategy. The GATanalysts also features lower drawdowns
(-6%) and shorter MDD than any other competing strategy with 1%
of the trading periods corresponding to 2 months of trading time
being spent in continuous drawdown. The GATanalysts portfolio,
moreover, displays lower volatility than every other strategy with
7% against 8.32% for the NN, the next lowest volatility strategy.

Figure 3: Cumulative returns

The superiority of the GATanalysts model compared to its com-
petitors can also be observed in Figure 3 which presents the cu-
mulative log-returns. The GATanalysts strategy performs the best
amongst all the presented approaches with a cumulative log-return
of 5 over the 18 year period. The Neural network is the second best
performing strategy throughout the evaluation period. It lags the

market at the start of the period and quickly outperforms it and
all the other approaches. This temporal evolution of the returns
also serves to highlight the relative superiority of the GATanalysts
after the 2008 financial crisis, suggesting that it was able to iden-
tify promising lead-lag clusters despite the prevailing financial
perturbation. Moreover, it also shows that the node and network
information combined in the GATanalysts strongly outperforms the
simple network aggregation strategy based on the Analyst matrix,
which confirms our starting hypotesis that analyst coverage net-
work topology and firm momentum features can be learnt jointly
to extract alpha.

4.2 Ablation studies

Table 3: Ablation study

Returns
(%)

Vol.
(%) Sharpe MD

(%)
MDD
(%)

GAT analysts 29.44 7.07 4.069 -6.0 1.0
GAT corr 33.81 9.10 3.757 -4.1 2.4

GAT industries 19.21 8.26 2.250 -8.1 2.9
GAT del_edge 19.57 8.26 2.265 -10.3 5.3
GAT 1_layer 28.54 8.02 3.417 -3.6 1.5

GCN 17.67 7.73 2.205 -3.9 2.4

Table 3 presents the performance of the basic GAT framework
exposed to different sources of network information instead of the
analyst matrix We can observe that the GATanalysts outperforms
all the alternative representations of firm to firm relationships with
a Sharpe ratio of 4.069 compared with 3.757 for the GATcorr and
less than 2.25 and 2.26 for the industry and edge_delete versions.
The GATanalysts displays slightly lower returns than the GATcorr
(29.44% vs 33.81%), however the basic approach also displays lower
volatility than any of the other ablations. The GATanalysts model
which only uses the analyst matrix also displays a lower Maxi-
mum Drawdown duration (MDD) with only 1.0% of the trading
period being spent in drawdown, which is 50% less than the next
longest at 1.5% of the GAT1_layer. However, we can observe that
the peak-to-trough maximum drawdown of the GATcorr is less
(-4.1%) than the maximum drawdown of the GATanalysts (-6.0%).
The table above suggest that the information content of the alter-
native network formulations such as correlations, industries and
edge-deletion do not allow the GAT to generate better risk-adjusted
forecasts. The GATcorr displays slightly higher returns compared
to the GAT_analysts, however the higher volatility incurred by the
correlation suggests that the analyst matrix helps the GATanalysts
model to select firms with slightly lower return volatility, leading
to better risk-adjusted returns.

Table 4 summarizes how much improvement we obtain in terms
of cumulative returns for different message passing, adjacency in-
formation and number of layers for the models proposed in Section
3.6 as ablation studies. Cumulative returns can be interpreted as
the ability of a model to extract a trading signal from the node and
network information. We can observe that the largest improvemen-
tis achieved by introducing attention instead of graph convolutions
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Table 4: Improvements from different model setups

Model
Name

Cum.
returns

Message
Passing Adjacency # of

Layers

GATanalysts 5.9 Attention Analyst 2
GATcorr 5.4 Attention Correlation 2

GAT1_layer 4.7 Attention Analyst 1
GATindustries 4.7 Attention Industries 2
GATdel_edge 3.6 Attention Perturbed 2

GCN 3.0 Convolution Analyst 2
Market 1.2 - - -

for message passing. This significant improvement corresponds to
a near doubling of cumulative returns over the trading period (+96%
between GATanalysts and GCN). In addition to this, we observe that
the going from a one layer model (GAT1_layer) to a two layer model
(GATanalysts) led to an a 25% increase in returnsMeanwhile having
the complete analyst matrix instead of the randomly perturbed one
leads to 63% more returns. Replacing the industrial-GICS network
of firms with the analyst matrix leads to a 25% improvement in
cumulative log returns. Lastly, replacing the correlation-based adja-
cency matrix with the analyst matrix nets a comparatively smaller
but still meaningful 9% increase in cumulative returns. These re-
sults comfort the initial hypothesis that the analyst matrix contains
useful information for the building of a portfolio. This improvement
can be attributed to the structural information present in the adja-
cency as removing edges from the analyst matrix and replacing the
matrix with other firm-to-firm networks leads to strongly degraded
results. Another useful observation can be drawn from the single
vs multi-hop setup which suggests that it is not only the single-hop
neighbourhood aggregation that brings value as suggested in [1, 24].
Rather, the proper leveraging of the complex and informative re-
lationships present in the analyst matrix requires more complex
models able to aggregate information from wider neighbourhoods.
Combining information from 2-hop neighbours would allow the
GAT model to update firm representations to include This could
be the result of the analyst matrix helping to uncover latent rela-
tionships which are hard to detect otherwise, such as alignment of
economic and actuarial practices amongst covered firms and the
higher probability for an analyst to follow firms that use similar
technological tools [20].

Table 5: Topology comparisons between different networks

Name Jaccard Diameter Transitivity

Industry 1.0 1.0 1.0
Correlation 0.34 5.4 0.66
Analyst 0.98 11.29 0.67

Table 5 presents a comparison between the three network topolo-
gies considered in the ablation study. The Jaccard similarity (per-
centage of edges in common), Diameter (longest path between two
nodes) and Transitivity (fraction of all possible triangles in the
graph) are calculated at each time t for each graph. They are then

averaged to produce on measure for each graph type and metric.
The transitivity comparison shows that the correlation and ana-
lyst networks are less clustered than the industry network. That is
expected as the industry network is a set of fully connected compo-
nents. Moreover, the analyst and correlation networks both display
similar levels of transitivity at 0.67 and 0.66 respectively, which
signifies that over 60% of open triangles are connected. A high
transitivity suggests both the analyst and correlation networks are
strongly clustered.The network diameter in the Diameter column
describes the maximum distance between two nodes in the graph.
Both the analyst and correlation matrices have a higher diameter
(11 on average for the analyst network and 6 on average for the
correlation network) compared to the industry network. A network
with a higher diameter can help in reducing the likelihood of over
smoothing in GAT models which may explain the better perfor-
mance of the GATanalysts. Moreover, a higher diameter suggests
that the analyst coverage connects firms along ‘longer’ chains. As
discussed in [1, 15, 24], these longer chains closely represent fun-
damental real-life links between firms which tend to be missed by
the correlation matrix. This helps explains the added value of the
analyst network : it captures different fundamental relationships
[7]. The jaccard index of the different networks presented the Jac-
card column show that the analyst matrix remains consistently
self-similar (over 90%) as compared to the correlation matrix. The
structural properties of the industry network will not evolve as the
structure of the industry classifications which explains the high
jaccard similarity of 1.0 (meaning the industry network stays on av-
erage constant through time). Meanwhile the correlation network
displays a much lower jaccard index of 34% implying it evolves
faster period-to-period than the analyst matrix. A more stable net-
work period to period can help with training a graph machine
learning model and contributes to the better performance of the
GATanalysts strategy. Existing literature [25] performs quantitative
comparisons between industry and correlation based models as
these are more commonly used to build graph-based trading strate-
gies. However, few compare these networks with the analyst matrix
as it is less often used as a building block of trading strategies. We
show that these differences are profound and can serve to explain
the different performance of a graph machine learning tool on each
of these firm to firm networks.

4.3 Return correlation analysis
Figure 4a displays the correlations of returns between the different
evaluated trading strategies. A high correlation coefficient in red
indicates that the two models’ returns follow similar movements.
Low correlations are generally sought by investors as it allows for
diversification. All else being equal investors can limit the concen-
tration of their portfolio and increase their returns by investing
in the least correlated signals. The GAT model appears most anti-
correlated with the market with a -0.21 coefficient. The different
models’ returns appear uncorrelated with each other aside from
a slightly higher return correlation between the GATanalysts and
the NN of 0.32. These plots suggest that the returns of GATanalysts
follow a pattern that responds to different market signals compared
to the other competing models. This supports the hypothesis that
the analyst network is a useful and informative prior with which
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(a) Benchmark methods (b) Ablation study

Figure 4: Correlation matrices of studied signals

to diversify a trading strategy as the signal it produces is different
from the other existing ones. Figure 4b represents the correlation
of the returns for strategies based on GATanalysts and all of the
different ablations under investigation. The correlation of all of
these approaches with the market are also presented. The original
GATanalysts displays the lowest correlation with the market at -0.21
with the second lowest being the GATindustries with -0.11. Moreover,
the original GAT’s returns and signal is most strongly correlated
with the GATcorr’s returns and signal at 0.65 and 0.28 respectively
compared with 0.52 and 0.28 for the GATdel_edge. This suggests
the signal of the GATanalysts is reasonably different to other setups.
The addition of attention has a significant effect on the signal as
evidenced by the comparatively low correlations signal between
the GCN and all of the other models which use the analyst matrix
and especially the GATanalysts. This can be interpreted as an ex-
ample of the differing effect of network information contained in
each of the different networks upon the final trading signal: the
analyst network helps the GATanalysts learn links between firms
that are similar to lagged correlations and to a lesser extent industry
linkages and yet distinct from both.

4.4 Turnover and cost analysis
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Figure 5: Effect of trading cost on different strategies given
turnovers

We investigate how the strategy performs when exposed to
transaction costs in Figure 5a. This figure describes the annualized

Sharpe ratio of the different strategies under increasing trading
costs from 0 basis points increasing to 1, 2 and 5 basis points. This
penalises strategies with larger turnovers in portfolio content as de-
picted in Figure 5b. We observe that the returns of all of the models
under consideration a sizeable decay in performance as the trad-
ing costs increase. All of the strategies yield negative Sharpe ratios
when exposed to 5 basis points of trading costs. The GATanalysts and
GATcorr display similar turnover than other strategies with compa-
rable Sharpe ratios such as GAT1_layer. Only GATanalysts, GATcorr
and GAT1_layer maintain positive Sharpe ratios when exposed to 2
basis points of trading costs: every other strategy exhibits a null or
negative Sharpe ratio. This suggests that the analyst and correla-
tion based strategies are more robust to trading frictions despite
the drop in performance but it is the initial strong-risk adjusted
performance that ensures they do well under tthese frictions. The
GATdel_edge, GATindustries and GCN display comparable turnover
ratios. The analyst matrix’s Sharpe ratio decays quickly from 0.069
to -2, however since it displays relatively less turnover, it outper-
forms certain more complex strategies such as GCN or GATindustries
under the highest cost regime. Lastly, we note that the Sharpe ratio
of the MACD strategy fares the best out of all of the when exposed
to the highest level of transaction costs, it experiences the least
sharp drop going from 0.66 to -1.27. However, we also note that the
GATanalysts approach still displays a better Sharpe ratio at a 2 basis
point cost than the 0 transaction cost MACD portfolio and still out-
performs it at the 5 basis points trading scenario. This suggests that
the model-free approach, though interesting in terms of turnover-
limitation, can be substituted under most cost scenarios with the
proposed solution of this paper. Model-based approaches such as
the NN, the GATanalysts and the ablated GAT models have on aver-
age a slightly higher average turnover (77$) than the model-free
approaches (40$) such as the MACD and the analyst-matrix con-
firming findings in the literature [19]. Consequently, this explains
why these model-free strategies are less affected by the increase in
trading costs.

4.5 Attention analysis

Figure 6: Firm links with strongest attention
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Figure 6 represents the subset of the analyst matrix where the
edges had the strongest attention coefficient in the GATanalysts
model for one trading period in December 2016. The GATanalysts
model learns to place high weight on the relationship between those
firms when determining how to best forecast future value. The firm
nodes are coloured by industry. This figure reinforces the idea that
the attention function is helpful in allowing the model to learn
informative and interpretable links between firms . For instance,
the KO (Coca-cola) - STT (State Street Corp) link in the middle cor-
responds to a link between an investment firm (STT) with a very
high stake in Coca-Cola. Similarly, the WMB cluster on the bottom
right corresponds to an energy provider (WMB) connected to sev-
eral firms who require energy provision, from the agro-industrial
company GIS, to healthcare firms like HSIC. These links support the
hypothesis that the GATmodel identifies links between firms which
correspond to fundamental economic linkages likely to lead to mo-
mentum spillover effects from investor under-reaction [1, 3, 17].
Moreover, this graph shows the strongest attention weights being
quite spread out by industry, i.e., the frequency of connection be-
tween industries is higher than within industries, suggesting that
the model is able to flexibly learn inter and intra-industry patterns
in a richer way than just focusing on the industry matrix as sug-
gested by [20]. Lastly, one important point to note is that none of
these entries with highest attention are present in the correlation
matrix as the strength of these correlations is lower than the 90-th
percentile of correlation used in defining the correlation matrix.
This implies that the attention mechanism applied to the analyst
matrix is flexible enough to allow the model to reveal meaningful
‘economic relations’ between firms [7]. These links go beyond sim-
ple correlation based measures which have been criticized in the
literature for an inability to capture non-linear relationships [21].

5 Conclusion
In this paper, we have explored the ability of a graph attention net-
work to systematically learn a novel trading signal from a metric of
firm to firm momentum spillovers: the analyst coverage network.
We have shown that the information contained in the analyst net-
work can be efficiently extracted by the graph attention network
in order to produce positive and persistent out-of-sample trading
returns. Our method outperforms existing benchmarks in terms
of average returns and drawdowns. Furthermore, we have shown
the strategy’s robustness through ablation studies and turnover
analysis. Moreover, we have shown the link between topological
information contained in the analyst network and the performance
of our strategy by comparing the performance of the model trained
on the analyst network to that of the same model trained with
industry and correlation based networks. This work represents the
first step in incorporating analyst coverage networks into financial
graph machine learning. We demonstrate the profitability of the
strategy and the wealth of insights which can be leveraged from
this setup. We outline several pathways for future work. The first
is extending the proposed model to incorporate richer temporal in-
formation, for instance by making the edge information into a time
series whose features could be modelled explicitly by a dedicated
temporal learning block. Moreover, given the link between analyst
estimation error and volatility, the GAT model could be used to

model volatility spillover effects between firms across edges of the
analyst network.
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