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Abstract

Electronic healthcare records (EHR) contain a
huge wealth of data that can support the pre-
diction of clinical outcomes. EHR data is of-
ten stored and analysed using clinical codes
(ICD10, SNOMED), however these can differ
across registries and healthcare providers. Inte-
grating data across systems involves mapping
between different clinical ontologies requiring
domain expertise, and at times resulting in data
loss. To overcome this, code-agnostic models
have been proposed. We assess the effective-
ness of a code-agnostic representation approach
on the task of long-term microvascular com-
plication prediction for individuals living with
Type 2 Diabetes. Our method encodes individ-
ual EHRs as text using fine-tuned, pretrained
clinical language models. Leveraging large-scale
EHR data from the UK, we employ a multi-
label approach to simultaneously predict the
risk of microvascular complications across 1-,
5-, and 10-year windows. We demonstrate that
a code-agnostic approach outperforms a code-
based model and illustrate that performance is
better with longer prediction windows but is bi-
ased to the first occurring complication. Over-
all, we highlight that context length is vitally
important for model performance. This study
highlights the possibility of including data from
across different clinical ontologies and is a start-
ing point for generalisable clinical models.

Keywords: Clinical language models, elec-
tronic healthcare records, multi-label classifi-
cation, disease prediction, pretrained models,
type 2 diabetes, time series

Data and Code Availability This study uses the
Clinical Practice Research Datalink (CPRD), real-
world anonymised patient data from primary care

across the UK and linked to other health related reg-
istries. CPRD AURUM includes routinely collected
data on 19 million patients including demograph-
ics, diagnoses, symptoms, prescriptions, referrals,
lifestyle factors and tests (Wolf et al., 2019). Data
access is subject to approval from an Independent Sci-
entific Advisory Committee (ISAC). Code is available
github.com/LizRem/diabetes-complications

Institutional Review Board (IRB) The appli-
cation was reviewed by an (ISAC) and the data were
used under license for the current study.

1. Introduction

Type 2 Diabetes (T2DM) is a long-term car-
diometabolic condition associated with increased risk
of microvascular complications; diabetic retinopathy,
nephropathy and neuropathy. These complications
can result in severe outcomes, such as vision loss,
end stage renal disease and amputations, respec-
tively (Brownrigg et al., 2016; Khanam et al., 2017).
Approximately one-third of individuals living with
T2DM develop at least one of these complications
(Arnold et al., 2022), which in turn increases the
risk of developing others (Deshpande et al., 2008).
As various risk factors for microvascular complica-
tions are modifiable, timely identification of individ-
uals at high risk of developing these diseases can help
to inform treatment pathways and healthcare inter-
ventions (Khalil, 2017; Lu et al., 2023).

Recent research has demonstrated the utility of
deep learning models for disease prediction tasks due
to their ability to handle messy electronic health-
care record (EHR) data which is temporal, sparse
and high-dimensional (Hassaine et al., 2020; Wornow
et al., 2023). Deep learning approaches for such tasks
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typically represent diseases as clinical codes, which
requires mapping between heterogeneous clinical on-
tologies and manual curation or reduction of codes.
Moreover, code-based representations also make such
approaches less likely to generalize to unseen diseases
and complications as well as across different health-
care settings.
To address these caveats with code-based repre-

sentations, our study explores a code-agnostic design
taking inspiration from Munoz-Farre et al. (2022);
Hur et al. (2022). This approach leverages exist-
ing clinical knowledge embedded in pre-trained lan-
guage models and integrates a wider range of data
from across different health registries. We combine
this with a multi-label approach which enables us to
construct shared representations of T2DM complica-
tions, which is beneficial as complications are closely
related and often share various risk factors. We ex-
plore disease prediction over short-, mid- and long-
term time windows.

2. Related Work

There are a plethora of pre-trained clinical language
models, however, due to data privacy very few are
publicly available and those that are, come with limi-
tations due to the heterogeneity of code ontology used
in the training data (Wornow et al., 2023).
To navigate this challenge of detaching models

from the specific ontologies, research has started to
utilise the natural language descriptions of the clin-
ical codes. Munoz-Farre et al. (2022) utilised tex-
tual descriptors fed into an encoder only model pre-
trained on clinical literature and then fine-tuned to
predict various diseases. They reported improved
performance compared to a model trained using tra-
ditional code embeddings. Hur et al. (2022) com-
pared various model set ups; trained from scratch,
continual pre-training and fine-tuning, on textual de-
scriptors from MIMIC-III and eICU and found that
BERT performed similarly to the models trained on
clinical literature, even under different training ap-
proaches.
Our work builds on previous studies by including

a broader range of clinical data at a granular level
without aggregating codes in clinical hierarchies. We
include all textual descriptors within the EHR, which
includes diagnoses, prescriptions, symptoms, referrals
and procedures. We particularly focus on the predic-
tion of T2DM microvascular complications over dif-
ferent and longer time intervals.

3. Methods

3.1. Cohort

We analysed EHRs from CPRD AURUM and in-
cluded all individuals ≥ 18, permanently registered to
any General Practice in London between 01/01/2010
and 01/01/2020, see Data and Code Availability for
more details.

Our dataset included 133,784 patient records, with
44,820 experiencing at least one microvascular com-
plication Table 1. A diagnosis of T2DM, retinopathy,
neuropathy or nephropathy were identified using val-
idated phenotype definitions and we used the first
occurring diagnosis date (Eto, 2023). Patients with
micro-vascular complications prior to a diagnosis of
T2DM were excluded.

Study entry was defined as the first EHR event un-
til the visit prior to the first recorded complication,
or the last recorded event for those without complica-
tions. We evaluated 1-, 5- and 10- years risk predic-
tion windows post first complication. Only patients
with at least 3 unique events were included.

Table 1: Cohort Characteristics

Characteristic

Number of patients 133,784
Total number of complications
0 88,964
1 33,161
2 9,282
3 2,377

Number with each complication
Retinopathy 31,396
Nephropathy 19,595
Neuropathy 7,865

Sex
Male 72,012
Female 61,772

Age at first complication (SD) 63.06 (14.73)

3.2. EHR pre-processing

Every clinical code is associated with a textual de-
scriptor, for example the ICD10 code E11.9 is as-
sociated with type 2 diabetes mellitus without com-
plications. For our text-based approach we take the
textual descriptor for every event in a patient’s EHR
(diagnosis, procedure, symptoms, prescription, etc.).
All textual terms are then concatenated chronologi-
cally to generate text sentences for each patient. For
our code-based approach, we take the clinical code
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Table 2: Performance Comparison of Text- and Code-based Models

Text-based Code-based

Micro-F1 Micro-AUPRC Micro-F1 Micro-AUPRC

1 year 0.45 (0.44-0.46) 0.44 (0.43-0.46) 0.43 (0.42- 0.44) 0.40 (0.38-0.41)

5 year 0.50 (0.49-0.51) 0.51 (0.50-0.52) 0.43 (0.42-0.44) 0.43 (0.41-0.44)
10 year 0.49 (0.48-0.50) 0.50 (0.49-0.51) 0.47 (0.46-0.49) 0.47 (0.45-0.48)

Note: Values in brackets represent 95% confidence intervals, bold indicates statistical significance

and concatenate them chronologically producing a se-
quence of codes Appendix A.

3.3. Model architecture

We utilised a pretrained clinical language model,
GatorTron-base (Yang et al., 2022), to encode the
tokenized EHR sequences. All sequences were trun-
cated or padded to 512 tokens, the maximum length
for GatorTron. We then fine-tuned the pretrained
model, one for each risk prediction window. The
models consisted of a fine-tuned encoder with a sin-
gle linear output layer with 3 output nodes. We split
our data 80/10/10 into training, test and validation
using stratified sampling to ensure the imbalance re-
mained the same. We used weighted cross entropy
due to label imbalance and report on micro F1, mi-
cro recall and micro area under the precision recall
curve (AUPRC). All results are presented calculated
on the held out test set. For more information on
pre-processing and architecture see Appendix A.
We assess the variation in model performance and

calculate a 95% confidence interval (CI), by employ-
ing a bootstrap resampling technique. Using our test
set of 13,314 patients we performed 1000 bootstrap it-
erations. Pairwise comparisons between models were
conducted using a z-test approach, where the stan-
dard error of the difference was derived from the boot-
strapped CIs. To account for multiple comparisons,
we applied the Bonferroni correction adjusting our
significance threshold.

4. Results

Code-agnostic models outperform code-based
models: Models trained on textual descriptors per-
formed significantly better than models trained on
clinical codes although not at all time windows (Ta-
ble 2). This suggests that there is utility in using
the textual terms which may allow the model to take
advantage of existing clinical knowledge.

Models perform better over longer predic-
tion timeframes: the 5-year risk prediction window
achieved a micro-AUPRC of 0.51 (Table 2). This is
likely due to the number of additional labels provid-
ing a more balanced dataset, as the longer prediction
windows increases the likelihood of observing a com-
plication.

The multi-label design is biased towards
first-occurring T2DM complication: Across all
time frames, retinopathy is the highest achieving class
(Table 3), this is likely due to being the most com-
monly occurring first condition (in 60.19% of cases)
and the largest class. Nephropathy is the first compli-
cation in only 30.15% of cases and neuropathy 9.67%.
As the model is only exposed to data up until the visit
prior to the first complication and complications can
occur at different timepoints across the life course this
early data may not contain sufficient information for
the model to make an accurate prediction about sub-
sequent complications.

Restrictions on context length affects per-
formance: we explored the average number of to-
kens in each individual’s EHR (median: 2272), which
falls substantially over the capability of GatorTron at
512 maximum token length. This results in the trun-
cation of 85.37% of sequences leading to data loss,
see Appendix A for further exploration. In order to
mimic clinicians behaviour, where they typically look
at recent events first in an EHR, we mirror this by
truncating from the left, removing the earliest data
and preserving the most recent events Table 4.

Truncating from left led to improved performance
across all prediction windows, suggesting that the
EHR events recorded closer in time to a diagnosis of a
complication are more important that events happen-
ing earlier. We also present the performance of pre-
trained models with longer context length (4096 to-
ken length) in Appendix A, and indicate that shorter
context lengths negatively impact performance.
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Table 3: F1 and Recall Scores for Microvascular Complications at 1, 5, and 10 years

Nephropathy Retinopathy Neuropathy

Time F1 Recall F1 Recall F1 Recall

1 year 0.39 0.44 0.51 0.54 0.22 0.18
5 year 0.42 0.45 0.55 0.57 0.29 0.29
10 year 0.44 0.51 0.55 0.55 0.30 0.30

Table 4: F1 and Recall Scores for Microvascular Complications and Micro-F1/AUPRC at 1, 5, and 10 years
for Models Truncated Left

Nephropathy Retinopathy Neuropathy Micro-F1 Micro-AUPRC

Time F1 Recall F1 Recall F1 Recall

1 year 0.53 0.54 0.70 0.75 0.34 0.35 0.61 0.64
5 year 0.53 0.59 0.73 0.73 0.38 0.35 0.62 0.66
10 year 0.57 0.61 0.74 0.75 0.39 0.40 0.64 0.69

5. Discussion and future work

We present a code-agnostic method for long-term mi-
crovascular complication prediction in Type 2 Dia-
betes that utilises textual descriptors associated with
clinical codes, unifying data across different health
registries and taking advantage of pretrained lan-
guage models.

Real-world assessment of reusability of pre-
trained models: Our study found that pre-trained
models yielded relatively low performance on T2DM
complication prediction over various time-frames de-
spite being heralded as reusable and capable of saving
time and resources. Other previous studies (Munoz-
Farre et al., 2022; Hur et al., 2022) have also yielded
varying performances depending on model design, in-
dicating that we should more thoroughly investigate
reusability of pretrained models for real-world pre-
diction tasks. Some work has tried extract more util-
ity out of pretrained models via continual pretrain-
ing. Munoz-Farre et al. (2022) conducted continual
pretraining using a MLM task and then fine-tuned a
pretrained model which demonstrated better perfor-
mance with an average AUPRC 0.61 across 4 diseases.
In the future, we plan to investigate continual pre-
training with span-based MLM that masks out mul-
tiple tokens representing a medical concept or phrase
(Joshi et al., 2020) as in our setting multiple tokens
may represent a single concept (e.g. Type 2 Dia-
betes).

Incorporating data beyond text: In our ap-
proach we limited ourselves to text descriptions, how-
ever there are additional sources of data such as nu-
merical test results that could improve performance.
For instance, Hur et al. (2022) combined both tex-
tual descriptors and numerical embeddings in a fine-
tuned BERT model and achieved a 0.59 AUPRC on
a multi-label disease classification task. We leave in-
vestigation of this to future work.

Addressing context length limitations: As we
include more records from across different registries,
creating a richer picture of a patient, this limits model
performance as models are unable to handle longer
sequences and capture long term dependencies. We
plan to assess models with longer context lengths
(Beltagy et al., 2020), as well as hierarchical mod-
els to further improve this (Li et al., 2023).

Intrinsic task difficulty: Finally, some diseases
may be clinically harder to predict using language
models. Li et al. (2020) with a model trained on codes
from scratch achieved AUPRC of 0.53 in a multi-label
classification task across 301 diseases (classes). The
performance varied, from 0.07 AUPRC for hearing
loss, to 0.65 AUPRC for epilepsy although both dis-
eases had roughly the same occurrence ratio of 0.02.

We believe that this work will prompt discussion
around generalisable multi-purpose language models
not tied to one specific healthcare setting or ontology
and promote research comparing performance across
different datasets.
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A.1. Pre-processing
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events (dates of events that occur before birth or after
deregistration), events with missing dates, or missing
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and 2020 were included (Wolf et al., 2019).
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Figure 1: Input Format for Text and Code-based Approaches

For the code-based model we kept the clinical
codes from each of the registries, whilst for the code-
agnostic models we kept the textual descriptions (Fig-
ure 1). For data in primary care including diag-
noses, symptoms, demographics etc, this follows Sys-
tematized Nomenclature of Medicine Clinical Terms
(SNOMED CT), prescriptions within primary care
follow the British National Formulary (BNF), within
secondary care, diagnoses utilise the International
Classification of Diseases, Tenth Revision (ICD10)
and procedures use the OPCS Classification of In-
terventions and Procedures (OPCS 4).

A.2. Model architecture

Gatortron-base is a smaller version of the original
with 345M parameters. It was trained on scratch on
82B words of de-identified clinical notes, 6.1B words
from PubMed, 2.5B words from WikiText and 0.5B
words of de-identified clinical notes from MIMIC-III.

For all models, input was first tokenized and special
token [CLS] added. The tokenized sequences, spe-
cial tokens and positional embeddings were fed into
the pretrained encoder-only model. The final hidden
state of the [CLS] token was used as input to the fully
connected layer. A sigmoid activation function was
applied to logits to produce independent probabilities
for each label (Figure 2).

Figure 2: Multi-label Approach and Model Architec-
ture
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For each model we searched for a learning rate that
gave the lowest F1 score (1e-3, 2e-5, 3e-5, 4e-5, 5e-5)
and fine-tuned on the entire dataset for 48000 steps
with early stopping. Losses were monitored for over-
fitting. Models were fine-tuned on an NVidia A100
GPU. This research utilised Queen Mary’s Apocrita
HPC facility, supported by QMUL Research-IT (King
et al., 2017).

A.3. Comparison to other pretrained models

To assess the potential benefits gained from the ex-
isting knowledge encoded in the pre-trained clini-
cal model, GatorTron-base, we also compare to an
out of domain pre-trained model, BERT-base (De-
vlin et al., 2019) trained on Wikipedia and Google
Books and additionally to Biomedical-longformer-
base (Beltagy et al., 2020), a model trained on ab-
stracts from PubMed and PubMed Central articles.
The Biomedical-longformer is based on the Long-
former architecture, which uses an attention mecha-
nism that scales linearly enabling a max token length
of 4096. These sequences are truncated from right,
as the default.
We can see from Table 5 that all models perform

better on text-based approaches, compared to code-
based approaches. BERT performs similarly but
marginally worse than GatorTron, indicating that
large pre-trained models, even when not trained di-
rectly on clinical data still contain valuable knowl-
edge.
Biomedical-longformer was significantly better

when applying a text-based approach, over a code-
based approach and outperformed all other models
across the prediction tasks. This suggesting that
there is additional information to be gained from cap-
turing long term dependencies in the data. However,
the improvement seen on Biomedical-longformer is at
the expense of additional resources and time, taking
on average ∼20 hours compared to GatorTron at ∼3
hours.

A.4. Context length

The median number of tokens in each individual’s
EHR is 2272 tokens, greater than both the maximum
length of GatorTron at 512 tokens. We can see from
Figure 3 that many EHRs are still truncated when
using Biomedical-longformer as they fall over 4096
tokens.

Figure 3: Distribution of Token Counts
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Table 5: Performance Comparison of Text- and Code-based Models across Different Pre-traind Models and
Prediction Windows

Text-based Code-based

Micro-F1 Micro-AUPRC Micro-F1 Micro-AUPRC

BERT-base 1 year 0.44 (0.43, 0.45) 0.42 (0.40, 0.43) 0.42 (0.41, 0.43) 0.39 (0.37, 0.40)

5 year 0.47 (0.46, 0.48) 0.46 (0.44, 0.47) 0.43 (0.43, 0.45) 0.42 (0.41, 0.43)

10 year 0.48 (0.47, 0.49) 0.49 (0.47, 0.50) 0.46 (0.45, 0.47) 0.46 (0.44, 0.47)

Biomedical- 1 year 0.56 (0.55, 0.57) 0.57 (0.56, 0.59) 0.53 (0.52, 0.54) 0.54 (0.52, 0.55)

longformer-base 5 year 0.60 (0.60, 0.61) 0.63 (0.62, 0.65) 0.53 (0.52, 0.54) 0.55 (0.54, 0.57)

10 year 0.60 (0.59, 0.61) 0.64 (0.63, 0.66) 0.56 (0.55, 0.57) 0.60 (0.58, 0.61)

Gatortron-base 1 year 0.45 (0.44, 0.46) 0.44 (0.43, 0.46) 0.43 (0.42, 0.44) 0.40 (0.39, 0.41)

5 year 0.50 (0.49, 0.51) 0.51 (0.50, 0.52) 0.43 (0.42, 0.44) 0.43 (0.41, 0.44)

10 year 0.49 (0.48, 0.50) 0.50 (0.49, 0.51) 0.47 (0.46, 0.49) 0.47 (0.45, 0.48)

Note: Values in parentheses represent 95% confidence intervals, bold indicates statistical significance
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