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Abstract. In explainable artificial intelligence (XAI) research, the predominant fo-
cus has been on interpreting models for experts and practitioners. Model agnostic and
local explanation approaches are deemed interpretable and sufficient in many applica-
tions. However, in domains like healthcare, where end users are patients without AI
or domain expertise, there is an urgent need for model explanations that are more
comprehensible and instil trust in the model’s operations. We hypothesise that gener-
ating model explanations that are narrative, patient-specific and global(holistic of the
model) would enable better understandability and enable decision-making. We test this
using a decision tree model to generate both local and global explanations for patients
identified as having a high risk of coronary heart disease. These explanations are pre-
sented to non-expert users. We find a strong individual preference for a specific type of
explanation. The majority of participants prefer global explanations, while a smaller
group prefers local explanations. A task based evaluation of mental models of these
participants provide valuable feedback to enhance narrative global explanations. This,
in turn, guides the design of health informatics systems that are both trustworthy and
actionable.

Keywords: Global Explanation · End-user Understandability · Health Informatics

1 Introduction

The field of explainable artificial intelligence (XAI) has witnessed significant advancements,
primarily focusing on the interpretability of models. However, the interpretability of an AI
model for developers does not seamlessly translate into end-user interpretability [3]. Even in-
herently interpretable models like decision trees(DT) and decision lists are challenging to use
in applications due to the complexity and scale of data. Hence popular explanation techniques
interpret black box models by considering an individual input and corresponding prediction
- local explanations. Model-agnostic explanations such as Shapley values and Local Inter-
pretable Model-Agnostic Explanations (LIME) offer insights into the features contributing
to an individual prediction, revealing the importance of specific characteristics in decision-
making. Nevertheless, they do not capture the complete model functioning, comprehensive
utilization of data, and, most importantly, the interactions among features. They lack the
ability to facilitate generalization or provide a complete mental model of the system’s work-
ings.

In critical domains such as healthcare and financial predictions, the interpretability of AI
models by end-users holds significant importance. The understandability of the underlying
AI model and the trust in its predictions can have life-altering implications for stakehold-
ers. Enabling user intervention and action to modify predicted outcomes require explanations
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Fig. 1: A comparison of Local SHAP, Local and Global tree explanation of CHD risk prediction
using decision tree model. Different evaluation parameters are computed based on end-user
feedback of the explanation.

that address the How and Why questions, as well as convey causal relationships [18,21].
Achieving this necessitates an overall comprehension of the model. Further, the explanation
should not only align the user’s mental model with the AI system’s model but also be per-
ceived as understandable and trustworthy. We propose that a global model explanation hold
greater potential for providing understandability and building trust compared to local model
explanations. This study is a preliminary step towards testing this.

What qualifies as a global explanation and what methodologies would provide an overall
understandability is relatively less researched. The comparison between global model expla-
nations and local explanations for end users, along with various presentation aspects such as
narrative and visualization, bears significance when building explanation-centric applications.
This study delves into the understandability of local and global explanations, specifically in
the context of a coronary heart prediction model. We address the following research question:

1. For non-expert users, do global explanations provide a better understanding of the AI’s
reasoning in comparison to (only) local explanations?

2. As the complexity of the explanation increases is there a difference in understandability
and user preference for local and global explanations?

We use decision tree (DT) models which are interpretable by design, and construct local
and global explanations with varying levels of complexity. We gauge the perceived under-
standability of these models and evaluate their effectiveness based on predefined tasks. We
also measure the changes in users’ mental models following exposure to the explanations.
Figure 1 shows different evaluation parameters. The experiment identifies preferences in ex-
planation types among different participant groups. It is found that while complexity does
not have a significant effect on perceived understandability and completeness of explanation,
errors in understanding increase with complexity. The obtained results offer valuable insights
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for designing narrative explanations for end-users and highlight the majority of participant
preference for global explanations in healthcare risk models.

2 Related Work

In healthcare, a risk score is a quantifiable measure to predict aspects of a patient’s care such
as morbidity, the chance of response to treatment, cost of hospitalisation etc. Risk scoring
is utilised for its predictive capabilities and in managing healthcare at scale. A predicted
risk score is representative of the probability of an adverse outcome and the magnitude of its
consequence. Article 22 of the General Data Protection Regulation (GDPR) mandates human
involvement in automated decision-making and in turn understandability of a risk prediction
model. Hence the use of risk scores requires the effective communication of these scores to all
stakeholders - doctors, patients, hospital management, health regulators, insurance providers
etc. With statistical and black-box AI models used in risk score computations, this is an
added responsibility of the AI model developer to ensure the interpretability of these systems
to all stakeholders.

Current regulations such as model fact tables [25] are useful for clinicians and approaches
of local model interpretation [15,24] to model developers. For a non-expert end-user who has
limited domain knowledge and who is not trained to understand a fact table, these approaches
will not explain a recommendation given to them. Further, explaining a risk prediction model
to the end user should address the perceived risk from numeric values and previous knowledge
of the user, any preferences and biases. In other words, the explanation presentation should
address socio-linguistic aspects [18] involved.

Researchers have recognized that a good explanation should aim to align the user’s mental
model with the mental model of the system, promoting faithful comprehension and reducing
cognitive dissonance [18]. Achieving such effectiveness is very context-dependent [1]. How-
ever, aspects of explanation presentation generalise across a broad spectrum of applications.
The significance of narrative-style explanations is emphasised by [23] while [26], highlights
the effectiveness of a combined visual and narrative explanation. Recent studies have evalu-
ated existing systems in use [6,16] and calls for focus on the design choices for explanation
presentation in health informatics. Further, with tools available in the public domain such
as QRisk3 from National Health Service (NHS), evaluating the impact and actionability of
explanation approaches in use would enable improving them and ensure their safe usage.

Before looking into evaluating black-box models, it would be worthwhile to explore what
constitutes a good explanation in interpretable models such as DTs, decision lists [13] etc.
DT algorithms are methods of approximating a discrete-valued target by recursively splitting
the data into smaller subsets based on the features that are most informative for predicting
the target. DTs can be interpreted as a tree or as a set of if-else rules which is a useful
representation for human understanding. The most successful DT models like Classification
and Regression Trees (CART) [5] and C4.5 [22] are greedy search algorithms. Finding DTs
by optimising for say a fixed size, is NP-hard, with no polynomial-time approximation [9].
Modern algorithms have attempted this by enforcing constraints such as the independence of
variables [10] or using all-purpose optimization toolboxes [2,4,27].

In [12] authors attempt the optimisation of the algorithm for model interpretability to
derive decision lists. The reduced size of the rules opens up the option of interpreting the
decisions in their entirety and not in the context of a specific input/output alone - a global
explanation. The authors highlight the influence of complexity on the understandability of

3 https://qrisk.org/index.php

https://qrisk.org/index.php
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end-users. However, decision list algorithms still do not scale well for larger datasets. Optimal
Sparse Decision Trees (OSDT) [8] and later improved with Generalized and Scalable Optimal
Sparse Decision Trees (GOSDT) [14] algorithms produce optimal decision trees over a variety
of objectives including F-score, AUC, and partial area under the ROC convex hull. GOSDT
generates trees with a smaller number of nodes while maintaining accuracy on par with state-
of-art models.

On explaining DTs for end-users, current studies have investigated local explanations us-
ing approaches such as counterfactuals [28], the integration of contextual information and
identified narrative style textual explanations[17]. All these attempts to answer the why ques-
tions based on a few input features and specific to a particular input. Extending these insights
to global explanations should help better understanding of the model by end-users and allow
generalisation of the interpretations, driving actionability.

3 Experiment Design

Our main research question is to determine what type of explanation are most relevant for
non-expert end-users to be able to understand underlying risk model. We evaluate a local and
global explanation by measuring user’s perceived understanding and completeness. We also
measure whether the user’s mental model had changed after reading an explanation.

3.1 Dataset and Modeling

For the experiment, we used the Busselton dataset [11], which consists of 2874 patient records
and information about whether they developed coronary heart disease (CHD) within ten years
of the initial data collection. This study is similar to the data collected by NHS to develop
QRISK3 [7]. Computing a risk score demands that we also explain the risk score, data used,
probability measures of the scoring algorithm in addition to model prediction. We limit the
scope of this study to only explaining the model prediction and use the CHD observation
from the dataset as target variable for prediction. Using GOSDT [14] algorithm, we fit the
data to obtain decision tress. GOSDT handles both categorical and continuous variables.
While the optimum model may have multiple closeby splits for numeric values, such splits
can reduce the readability of the tree. Hence we preprocess the data by converting most of the
features into categorical variables. We follow the categories as mandated by National Health
Service(NHS). The data is pre-processed as described in Appendix A, with 2669 records and
11 features.

The GOSDT algorithm generated a comprehensive decision tree for the dataset, compris-
ing 19 leaf nodes at a depth of 5, achieving an accuracy of 90.9% (Figure 4 in Appendix A).
For the purpose of human evaluation and comparison of local and global explanations, it was
necessary to have multiple DTs with comparable structures. Hence, we created subsets of the
data by varying the ranges and combinations of Age and Gender. By working with reduced
data points, the size of the constructed trees was significantly reduced. To ensure larger trees
for evaluation purposes, we enforced a consistent depth of 4. Ultimately, we selected four trees
for the evaluation task as shown in Table 1.

As mentioned in [20], a higher complexity of explanation rules in clinical setting leads
to longer response times and decreased satisfaction with the explanations for end-user. The
authors refer to unique variables within the rules as cognitive chunks, which contribute to
complexity in understanding. In our experiment, global explanations naturally contain more
cognitive chunks. To prevent bias in the results, we incorporated two levels of difficulty for
each explanation type. The easy level consisted of trees with similar structures, both local
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and global, featuring 5 nodes and decision paths of equal length with an identical number of
cognitive chunks. For ease of understanding, we henceforth refer to a particular combination
of explanation type and difficulty level as a specific scenario, namely - local-easy, global-easy,
local-hard, and global-hard. A local-SHAP explanation was generated utilizing the same tree
as the local-easy scenario. We use kernel SHAP [15] to obtain feature importance for the
local-easy tree for specific patient input. The SHAP explanation is treated as a baseline for
evaluation.

The hard scenario for both explanation types, consist of larger trees of similar structures.
The tree had 8 nodes for local-hard scenario and 9 nodes in case of global-hard scenario. For
global explanations, the explanation presentation involves more cognitive chunks, potentially
introducing bias by making the global-hard scenario challenging to comprehend. Nevertheless,
we proceeded with evaluating this scenario in our experiment.

Another factor to consider when generating explanation is the possible contradiction be-
tween model explanation and general assumptions. For instance, a node BMI = Normal
appearing in decision rules for low CHD risk is expected but not in those for high risk. Com-
municating this contradiction in explanation would be important in its understandability.
We also include this in our experiment. Explanation scenarios categorized as hard involved
contradictory explanations, which could prove more challenging for comprehension. We ad-
dressed these cases using semifactual [19] explanations, employing phrase even-if. We assess
the impact of such risk narrations on understandability. Table 1 provides a summary of the
four trees used for explanation generation.

Table 1: Description of DTs and type of explanation generated.

Age Gender Leaf count Accuracy Explanation Type

70 - 79 Female 6 78.4 Local Easy

60 - 84 Female 6 82.5 Global Easy

60 - 70 Male 9 77.3 Local Hard

65 - 70 male 10 85.4 Global Hard

3.2 Generation of Explanation

For a given CHD prediction model and a corresponding patient input, the local explanation
is a set of necessary conditions and predicted decisions of high/low risk. For the decision tree
model in Figure 2a, given particular patient info as input, the decision rule that is triggered to
predict high risk is highlighted in blue. The path followed for the decision can be represented
textually as shown in Figure 2b. This is one possible representation. A more natural language
expression of the rule is treated as a local explanation for the experiment. The language
generation is rule-based. Details of the generation algorithm and an example of the evaluated
explanation are given in Appendix B.

The global tree explanation is a list of all the decision rules of the tree. For a particular
patient, a combination of the global explanation and the specific rule triggered corresponding
to the given patient input is treated as the global prediction explanation. Once again, this is a
choice we make for this experiment. A list of all decision nodes similar to feature importance
in SHAP could also be a possible global tree explanation. For the patient in Figure 2a, the
corresponding global explanation is shown in Figure 2c. As the tree size becomes large, the
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Cholesterol  ≠ High

BMI  ≠ Healthy

HDL cholesterol  ≠ High Alcohol amount ≤ 124.5

High
Risk

True

True

TrueFalse

High
Risk

High
Risk

False

False

High
Risk

False

Low 
Risk

True

Low 
Risk

True

Smoker  ≠ Heavy Smoker

FalseMr.Bender

Smoker categories: Non-
smoker, light

smoker, moderate smoker,
heavy smoker

Cholesterol categories:
Normal, High

BMI categories:
Underweight, Healthy,

Overweight, Obese

HDL Cholesterol
categories: Normal,

High

(a) The decision path followed along a given DT for a particular patient Mr Bender. The tree is
learned from different categorical features of a patient dataset and the black square boxes represent
decision nodes learned by the model. On the right, all the possible values of each feature are listed
(except Alchohol amount which is numeric). This tree has 6 leaf nodes each a possible decision of high
or low risk. For a given input corresponding to Mr Bender, the model predicts high risk following the
decision path highlighted in Blue.

Mr.Bender has High risk of CHD since (BMI is not Healthy) and (daily alcohol consumption is
greater than 124.5ml) even if is (not Heavy Smoker)  and (Cholesterol is not High).

(b) A local explanation of the decision in 2a.

A patient has High risk of CHD if:

1. (Is Heavy Smoker).
2. (Cholesterol is High) even if (not Heavy Smoker).
3. (HDL cholesterol is High) even if is (not Heavy Smoker) and (Cholesterol is not High) and

(BMI is Healthy). 
4. (BMI is not Healthy) and (daily alcohol consumption is greater. than 124.5ml) even if

(not Heavy Smoker) and (Cholesterol is not High).

Mr.Bender has High risk of CHD since he follows Rule 4. 

(c) A global explanation of the DT and the decision in 2a.

Fig. 2: An example of local and global narrative explanation of a DT. Note that this is one
way of generating a global tree explanation (AppendixB). Listing all the nodes or stating all
possible categorical values of features are design choices that will affect understandability.
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number of rules and the number of features in each rule increase. This means the explanation
size and the cognitive chunks in the explanation increase. The best way to frame natural
language explanations, for these different cases, is a separate research problem that we do not
address here. Further, we restrict the rules in global explanation to those corresponding to
a single risk category - high risk. Since the particular case involves only two categories, this
still provides coverage to possible predictions while keeping the explanation less verbose. The
narration generation involves the same algorithm as in the case of local explanation.

In addition to the model accuracy, note that each leaf node has a probability and confidence
associated with that particular decision. For a particular node, the probability is the ratio
of training data points that fits the criteria of that node to the number of data points in its
previous node. A low probability node denotes that, the particular decision was rare based
on the training data. The statistical significance of this prediction denotes its confidence.
Both these measures are used for generating decision narration. Appendix B shows examples
of the usage. To express the probabilities, we use verbal mapping proposed by [26]. An
additional usage of possibly is introduced to accommodate cases involving low confidence and
high probability.

The SHAP explanation does not have associated confidence. We filter features with SHAP
score greater that 0 and present them as bulleted points in descending order of importance.

3.3 Evaluation

For evaluation, a within-subject survey is conducted with participants recruited on Prolific
platform. We conducted a pilot study among peers and the feedback was used to improve the
readability of the explanations and assess the time taken for the tasks.

The survey involves 5 patient scenarios namely local-SHAP, local-easy, local-hard, global-
easy and global-hard. Each scenario consists of 2 pages. On the first page, the participant is
provided with information about a patient. This consists of their features: age, gender, height,
weight, BMI, blood pressure, different cholesterol values, smoking, and drinking habit. They
are asked to enter the assumptions on what patient features may contribute to the AI model’s
prediction. This captures the mental model of the participant regarding CHD. Appendix C
shows examples of the pages used in the survey.

On the next page, participants are presented with the same patient, the risk of CHD
(high or low) as predicted by the AI system along with an explanation. They are asked to
enter feature importance once again based on their understanding of the explanation. They
are also asked to rate the explanation on three parameters: completeness, understandability,
and verboseness, using a 5-level Likert scale. Text feedback on each explanation and overall
feedback at the end of the survey is collected.

The evaluation of each explanation has 3 parameters from a Likert rating based on partic-
ipant perceptions. In addition, based on the task of choosing feature importance we compute
two additional parameters: change in mental model and correctness of understanding. Change
in mental model is defined as the updation of perceived feature importance before and after
explanation. Let U = (u1, u2, ..., uN ) where ui ∈ {0, 1}, 1 ≤ i ≤ N be the selected feature im-
portance before explanation where N is the total number of features. Let V = (v1, v2, ..., vN )
where vi ∈ {0, 1}, 1 ≤ i ≤ N be the selected feature importance after explanation. Change in
mental model is computed as

Dm =
d(U, V )

N

where d is the Hamming distance between U and V.
For each explanation, based on the features that are shown in the narration, we also know

the correct feature importance. In the case of SHAP, these are the features with a SHAP
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Table 2: Evaluation criteria for comparison of different explanation types.

Measure Definition

Completeness rating (CR) User rating for the prompt: This explanation helps me com-
pletely understand why the AI system made the prediction

Understandability rating (UR) User rating for the prompt: Based on the explanation I under-
stand how the model would behave for another patient

Verboseness rating (VR) User rating for the prompt: This explanation is long and uses
more words than required

Change in mental model (CMM) Difference in perceived feature importance before and after view-
ing model explanation

Error in Understanding (EU) Difference between model feature importance and perceived fea-
ture importance after viewing explanation

score greater than 0. For local explanations, these are the features in the decision path, and
for global explanations, it is all the features in the tree. If the correct feature importance
C = (c1, c2, ..., cN ) where ci ∈ {0, 1}, 1 ≤ i ≤ N , we compute the error in understanding w.r.t
to the system mental model as

Dc =
d(V,C)

N

. Since for each feature, the participant selects a yes/no for importance, these measures do
not capture the relative importance among features. Table 2 summarises all the evaluation
parameters.

4 Results and Discussion

Fifty participants were recruited from the Prolific platform for the experiment, ensuring a
balanced gender profile. All participants were presented with five patient-explanation scenar-
ios and were requested to evaluate each of them. The survey took an average of 26 minutes
to complete, and participants received a compensation of £6 each, as per the minimum pay
requirement. However, one participant was excluded from the analysis due to indications of
low-effort responses, spending less than 1 minute on multiple scenarios. The demographic
details of the selected participants are summarized in Table 3. Based on the responses, we

Table 3: Demographic distribution of survey participants.

Feature Category: Proportion

Age 18-30 : 81.63%, 30-40 : 16.33%, 40-65 : 2.04%

Gender Male : 51.02% , Female : 48.98%

First language English:38.8%, Others:61.2%

computed the evaluation parameters mentioned in the previous section. The Likert scale rat-
ings for Completeness, Understandability, and Verboseness are assigned values from 0 to 1,
0 corresponding to ’Strongly Disagree’ and 1 to ’Strongly Agree’. We also calculate, Change
in the mental model and Error in understanding from the selection of feature importance.
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The calculated scores are also normalised to range from 0 to 1. The mean values across all
participants are presented in Table 4.

Table 4: Evaluation parameters across all the scenarios. Maximum is highlighted in bold
and minimum in italics. CR - Completeness rating, UR - Understandability rating, VR -
Verboseness rating, CMM - Change in mental model, EU - Error in Understanding.

Local SHAP Local Easy Local Hard Global Easy Global Hard

CR 0.64 0.69 0.63 0.68 0.69

UR 0.66 0.71 0.67 0.72 0.74

VR 0.16 0.26 0.23 0.56 0.52

CMM 0.42 0.28 0.38 0.34 0.35

EU 0.12 0.07 0.13 0.19 0.30

While local-easy scenario has the lowest error in understandability(EU), participants rated
all the models comparably in terms of Understandability (UR) and Completeness (CR). The
Change in the Mental Model (CMM) exhibited uniformity across all types of explanations,
except for local-SHAP and local-easy. To assess the significance of these results, we performed
the Wilcoxon test, for all combinations of explanation types. Since multiple comparisons are
performed, we apply Bonferroni Correction on p-value and a threshold of 0.01 is chosen.
In comparing local and global explanations, local-SHAP is excluded and the ratings for both
levels of difficulty in each case are averaged. The results are shown in Table 5. The observations
that hold for a stricter threshold of 0.001 are highlighted with ∗.

Table 5: Significance of difference between types of explanation. CR - Completeness rating,
UR - Understandability rating, VR - Verboseness rating, CMM - Change in mental model,
EU - Error in Understanding. The values which are significant (Bonferroni Corrected p-value
threshold of 0.01) are highlighted in bold. P-value ≤ 0.001 are highlighted with *.

CR UR VR CMM EU

Local vs Global 0.42 0.44 0.00∗ 0.53 0.00∗

Local Easy vs Global Easy 0.84 0.85 0.00∗ 0.05 0.00∗

Local Hard vs Global Hard 0.35 0.42 0.00∗ 0.36 0.00∗

Local Easy vs Local Hard 0.38 0.24 0.76 0.00∗ 0.00∗

Global Easy vs Global Hard 0.50 0.53 0.56 0.43 0.00∗

Local SHAP vs Local Hard 0.63 0.76 0.10 0.23 0.42

Local SHAP vs Local Easy 0.18 0.28 0.03 0.00∗ 0.11

Local SHAP vs Global Hard 0.02 0.30 0.00∗ 0.09 0.00∗

Local SHAP vs Global Easy 0.16 0.28 0.00∗ 0.01 0.02

Global explanations resulted in a lower average understandability based on the feature
selection(EU) and it was observed that harder scenarios resulted in higher errors for both local
and global explanations. For each type of explanation, the patient features wrongly selected



10 A. Sivaprasad et al.

was investigated (Table 11, 12). Incorrect feature selection related to cholesterol caused the
majority of errors. Participants chose the wrong cholesterol-related feature, possibly due to a
lack of attention or limited understanding of medical terminology. Improving the presentation
of explanations and providing more contextual information could potentially address this
issue. Importantly, when presented with semifactual explanations of hard scenarios both local
and global explanations led to almost half or more participants excluding the corresponding
feature. This clearly points to the ambiguity of such narration.

The error analysis does not explain the contradiction between the understandability rat-
ings and the correctness of feature selection. Interestingly, a considerable number of par-
ticipants expressed a preference for longer, global explanations, even if they did not fully
comprehend them. Significant rating of global explanations as more verbose adds to this
contradiction. To delve deeper into this phenomenon, participant clustering was performed
based on the ratings and computed scores. Using the k-means algorithm, three distinct groups
of participants were identified and manually validated. Figure 3 displays the average rating
across different parameters for each group.

UR

CR

VRCMM

EU

Group 1 UR

CR

VRCMM

EU

UR

CR

VRCMM

EU

Group 2 Group 3

Local SHAP Local easy Local hard Global easy Global hard 

Fig. 3: Average rating for different explanation type across the participant groups

– Group 1: Strongly prefer and understand local explanations. The cluster consists of 11
participants who rate patient-specific local tree explanations highest on completeness and
understandability.

– Group 2: Majority group that rates global explanation as most understandable: This
cluster consist of 22 people who has the least significance in preference between global,
local explanation or difference based on the difficulty level. They rate Global explanation
highest on completeness and understandability

– Group 3: This cluster consist of 16 people who strongly prefer global explanations but
critical about the narration. This cluster is more detail oriented and rates global explana-
tions as more understandable and complete.This group was critical on the narration and
presentation of explanation in the feedback form. The average error in feature selection
for global explanation for this group, is lower than Group 2.

It is evident that within the clusters, the ratings on each parameters has significant preferential
pattern between each type of explanation. Group 1, 3 has strong polarity on the preferences
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and their rating tend to Strongly agree or Strongly disagree. Both these Groups identify
Global explanations as verbose. This shows that, in healthcare setting, the effectiveness of an
explanation to an end-user, is very dependent on their individual preference.

4.1 Local vs. Global

While there is no significant difference between local and global explanations overall, strong
differences emerge at the Group level. Group 1 rates the local explanation as complete, while
both Groups 2, and 3 favour the global explanation for completeness. Similar preferences are
observed in participants’ perception of understandability within each group. When a stricter
p-value threshold of 0.001 is applied, the significance of the difference in user rating for
understandability and correctness holds only in Group 1. The results of the Wilcoxon test for
combinations of explanation types within Groups are given in Appendix D.

– The results indicate that certain people strongly prefer specific type of explanation. This
preference does not necessarily translate to understandability.

– In all groups, a higher error in feature selection is observed for global explanations, mainly
due to the semifactual explanation and wrongly interpreting features related to Cholesterol

Among participants belonging to Group 2, the factors driving their preference for global
explanations remain unclear. Demographics data examination (Table 6) offers no apparent
patterns, leading us to propose the influence of unique cognitive styles within the groups.
Further investigations are warranted to unveil the underlying reasons for these preferences
and errors. While users may perceive explanations as understandable, it is vital to recognize
that this perception may not necessarily translate into accurate decision-making. The lack
of significant changes in mental models substantiate this, indicating the need for continued
exploration to optimize explanation presentations for healthcare AI models.

Table 6: Demographic distribution of participants within each group. All the features are not
available for all participants. Missing data are excluded in the counts.

Group1 Group2 Group3

Number of participants 11 22 16

Male to female ratio 4:7 9:13 12:4

Count of full time employed 2 8 5

Student to non-student ratio 8:2 10:9 8:7

Number of native english speakers 4 11 4

Ethnicity, white to black ratio 9:2 11:10 11:3

4.2 Tree Explanation vs. SHAP

The overall ratings of SHAP explanations are comparable to those of local-hard explanations
but lower than those of local-easy explanations generated from the same underlying decision
tree. This suggests that the comprehensibility and interpretability of SHAP explanations are
slightly lower than those of the local-easy explanations. However, this may be attributed to
the presentation bias, as all participants were exposed to the SHAP explanation first. It is
noted that the presentation style of SHAP explanations, using bulleted points, is generally
considered less verbose even though it does not impact the error in understandability or
perceived understandability and completeness. Hence the simpler readability of the SHAP
explanation is not seen to have impacted its overall understandability.
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4.3 Easy vs. Hard

The ratings provided by the participants on the Likert scale did not reveal any significant
distinction between the explanation scenarios characterized as easy and hard. However, an
examination of the impact of difficulty levels on the error in feature selection uncovered
significant results. Hard scenarios, whether global or local explanations, exhibited significantly
higher error rates, even within participant groups.

– The explanation understanding is strongly dependent on the complexity of the feature
interaction being explained.

When participants encountered explanations that deviated from their preexisting notions
of feature dependence, it introduced confusion, becoming a major contributor to error in hard
scenarios. We observed that harder scenarios, on average, caused larger changes in the mental
model of participants. However, this alone was insufficient to mitigate the observed errors.
Furthermore, the consistent error patterns across different participant groups present an op-
portunity to enhance the current framework of narration and presentation of explanations,
benefiting all participants.

5 Limitations and Future Work

The experiment provides evidence for the usefulness of global explanations in health infor-
matics. Identifying cognitive styles that lead to particular explanation preferences and errors
in comprehension, is pivotal to applying global explanations in real-life applications. The
current experiment has been carried out on a small dataset. Evaluating these findings on a
larger data set with more data points and larger features will be undertaken in future studies.
We recognise that regression models are commonly used in risk prediction. Expanding the
scope of the narrative global explanation within the context of regression and assessing its
comparative utility against the local explanation will enable the integration of our findings
into established risk predictive tools.

Further, the evaluation in this study was crowdsourced and hence the participants are not
representative of real-life patients. Most of the participants fall in the age category that does
not have a risk of heart disease as predicted by the model. This may have biased their rating.
We aim to rectify this by conducting the evaluation on a representative patient population,
which would also require addressing ethical concerns.

The current study has not focussed on generating effective global explanations. The use
of semifactuals has not addressed the mismatch with the user’s mental models. Further, the
presentation of Explanation features is seen to have introduced errors. Effective communica-
tion and presentation techniques would be vital in reducing errors. Though we have used a
linguistic representation of probability and confidence, the evaluations in this regard remain
undone. For risk communication at scale, this is a crucial component. Further research is
warranted to delve deeper into these aspects and refine the design and implementation of
explanation systems.
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Fig. 4: Depth 5 Decision tree generated on 2134 datapoints. Training accuracy = 90.9% , test
accuracy on 534 records = 85%.

(a) (b)

(c) (d)

Fig. 5: DTs for different scenarios. (a) Local easy scenario: Decision tree generated on 116 data
points. Training accuracy = 78.4%, (b) Local Hard scenario: Decision tree generated on 163
data points. Training accuracy = 77.3%, (c) Global easy scenario: Decision tree generated on
382 data points. Training accuracy = 82.5% (d) Global Hard scenario: Decision tree generated
on 108 data points. Training accuracy = 85.4%.
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B Generating Explanation Narration

Steps in generating narration:

1. Filter the rules corresponding to high risk leaves.
2. Sort the decision rules in order of their leaf node confidence and insert verbal mapping of

relative probability.
3. Reorder the features and place contradictory features at the end preceded by even-if.
4. combine the features with and
5. Add header with age, gender

Fig. 6: Verbal mapping of relative probabilities.

Patient Information Sheet

Patient ID :    1232
Age:    68.2
Gender:    Female                     
Weight:    68.5 kg
Height:    159 cm
BMI:    Overweight
Diabetic:    No
Smoker:    Light smoker
Systolic blood pressure:   Elevated
Triglyceride:    High
Cholesterol:    High
HDL Cholesterol:    Normal
Total cholesterol to HDL cholesterol ratio:  High
Daily alcohol amount:    144 ml

 

The AI model has learned that women in the
age range of 60 to 84 years, are possibly at high
risk of CHD in next 10 years if any of the following
is true:

(fasting triglyceride is Not normal) and (BMI
is Not Underweight) and (is Not a moderate
Smoker) and (daily alcohol consumption is
more than 125.5ml)
(fasting triglyceride is Not normal) and
(BMI is Underweight)
(fasting triglyceride is Not normal) and
(BMI is not Underweight) and (is a Moderate
Smoker) and (HDL cholesterol is Low)

Patient 1232 is possibly at high risk of CHD since
she is (woman in the age range of 60 to 84 years)
and (fasting triglyceride is Not normal) and
(BMI is Not Underweight) and (is Not a moderate
Smoker) and (daily alcohol consumption is more
than 125.5ml)

AI system

Fig. 7: An example for generated global explanation. This model corresponds to Global-easy
scenario.
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C User Survey on Prolific

For each scenario, a participant first see the patient information as shown in Figure 8. The
participant is asked to pick all the features they think might be influential in predicting the
patient’s risk of CHD. This captures the participants mental model regarding CHD prediction
before viewing any explanation.

Fig. 8: First page of a scenario shown to participants with a patient info. They question
captures the participant’s mental model of CHD prediction before viewing explanation.

In the next page, a participant is shown the explanation followed by questions to rate
the explanation. The are asked to redo the task of picking all the features they think were
influential in predicting the patient’s risk of CHD as shown in Figure 9. This captures the
participant’s understanding of AI’s mental model. This is followed by questions to get the
users rating based on a 5 point Likert scale. The questions correspond to 3 parameters being
measured:

1. Completeness : This explanation helps me completely understand why the AI system
made the prediction

2. Understandability : Based on the explanation, I understand how the model would behave
for another patient

3. Verboseness : This explanation is long and uses more words than require
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Fig. 9: The first question evaluates participant’s understanding of the explanation. The Re-
maining questions capturing their feedback on explanation.

D Comparison of Local and Global Explanation Ratings

Results of Wilcoxon test, for combinations of explanation types within participant Groups.
After Bonferroni Correction, p-values less than 0.01 are chosen as significant.

Table 8: Significance of difference between different types of explanation for Group 1 rounded
to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are highlighted with *.

CR UR VR CMM EU

Local vs Global 0.00∗ 0.00∗ 0.00∗ 0.81 0.00

Local easy vs Global easy 0.00 0.01 0.00 0.93 0.00

Local Hard vs Global Hard 0.05 0.05 0.03 0.62 0.07

Local easy vs Local Hard 0.20 0.21 0.50 0.04 0.19

Global easy vs Global Hard 0.34 0.65 0.16 0.56 0.66

Local SHAP vs Local Hard 0.53 0.79 0.04 0.29 0.79

Local SHAP vs Local easy 0.04 0.34 0.01 0.01 0.18

Local SHAP vs Global Hard 0.21 0.03 0.01 0.21 0.10

Local SHAP vs Global easy 0.03 0.07 0.00 0.02 0.35
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Table 9: Significance of difference between different types of explanation for Group 2 rounded
to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are highlighted with *.

CR UR VR CMM EU

Local vs Global 0.02 0.01 0.13 0.89 0.00∗

Local easy vs Global easy 0.22 0.08 0.10 0.38 0.00∗

Local Hard vs Global Hard 0.06 0.08 0.65 0.29 0.00∗

Local easy vs Local Hard 0.40 0.60 0.92 0.02 0.19

Global easy vs Global Hard 0.53 0.24 0.21 0.42 0.35

Local SHAP vs Local Hard 0.84 0.99 0.51 0.81 0.92

Local SHAP vs Local easy 0.27 0.71 0.97 0.05 0.58

Local SHAP vs Global Hard 0.00 0.02 0.80 0.71 0.01

Local SHAP vs Global easy 0.03 0.07 0.10 0.20 0.02

Table 10: Significance of difference between different types of explanation for Group 3 rounded
to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are highlighted with *.

CR UR VR CMM EU

Local vs Global 0.01 0.05 0.00∗ 0.17 0.00∗

Local easy vs Global Hard 0.02 0.10 0.00 0.03 0.00∗

Local Hard vs Global Hard 0.27 0.27 0.00∗ 0.94 0.01

Local easy vs Local Hard 0.60 0.62 0.77 0.14 0.00

Global easy vs Global Hard 0.66 0.26 0.14 0.96 0.40

Local SHAP vs Local Hard 0.56 0.62 0.13 0.25 0.06

Local SHAP vs Local easy 0.60 0.60 0.07 0.01 0.29

Local SHAP vs Global Hard 0.05 0.23 0.00∗ 0.15 0.00∗

Local SHAP vs Global easy 0.03 0.05 0.00∗ 0.23 0.01

Table 11: Error in selecting patient feature after explanation. Type I error (False Positive) -
Wrong selection overall.

Local
SHAP

Local easy Local hard Global
easy

Global
hard

Age

Gender 3

BMI 2

Diabetics 5 2 1

Cholesterol 5 2 2 8

HDL cholesterol 15

Triglyceride cholesterol 1

Total cholesterol to HDL cholesterol ratio 2 1 1 6

Systolic blood pressure 5 1 2 5

Smoking/ Smoking amount 2

Dinker/ Drinking amount 2
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Table 12: Error in selecting patient feature after explanation. Type II error (False Negative)
- Missing correct feature.

Local
SHAP

Local easy Local hard Global
easy

Global
hard

Age 6 6 1 8 9

Gender 8 13 22 23

BMI 14 1 1 3

Diabetics

Cholesterol 31

HDL cholesterol 10 23 37

Triglyceride cholesterol 20 4 35

Total cholesterol to HDL cholesterol ratio 11

Systolic blood pressure

Smoking/ Smoking amount 4 17 10 27

Dinker/ Drinking amount 12 9 3
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