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Abstract. This paper addresses the estimation of the systemic risk measure known as CoVaR, which quantifies the risk of a

financial portfolio conditional on another portfolio being at risk. We identify two principal challenges: conditioning on a zero-

probability event and the repricing of portfolios. To tackle these issues, we propose a decoupled approach utilizing smoothing

techniques and develop a model-independent theoretical framework grounded in a functional perspective. We demonstrate that

the rate of convergence of the decoupled estimator can achieve approximately OP(Γ
−1/2), where Γ represents the computational

budget. Additionally, we establish the smoothness of the portfolio loss functions, highlighting its crucial role in enhancing sam-

ple efficiency. Our numerical results confirm the effectiveness of the decoupled estimators and provide practical insights for the

selection of appropriate smoothing techniques.
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1. Introduction

Financial institutions and markets are interconnected through various channels, including lending, trad-

ing, and derivatives. Fluctuations in risk factors such as stock prices, commodity prices, and interest rates

can propagate through these channels, potentially leading to systemic risk. This occurs when the failure

of a significant entity triggers a chain reaction, negatively impacting the entire financial system and the

broader economy. The 2007–2009 financial crisis, for example, saw risks originating from structured invest-

ment vehicles spread across solvent institutions, ultimately sparking a global crisis. Given the potential

consequences, understanding and managing systemic risk is crucial for maintaining financial stability and

safeguarding the economy.

The first step of risk management is to timely monitor the risk through appropriate risk measures. In

this paper, we focus on the systemic risk measure CoVaR proposed by Adrian and Brunnermeier (2016),

which has been demonstrated to effectively capture the cross-sectional tail-dependence between financial

institutions and has shown predictive capabilities regarding the 2007–2009 financial crisis. CoVaR is defined

as the β-value-at-risk (VaR, also known as quantile) of a portfolio loss conditional on another portfolio loss

being at its α-VaR, where α,β ∈ (0,1) often take values such as 0.95 or 0.99 to represent the risk levels.

Let Z denote the realization of risk factors at a future time τ , where τ is often one or two weeks from

today and is the time horizon that the risk is assessed. Furthermore, let µ(z) and π(z) denote the losses of
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the two portfolios respectively at time τ when Z = z. Notice that they are dependent on the realization of

the risk factors. Then, mathematically, the CoVaR, denoted as CoVaRα,β, satisfies the following equation

Pr{π(Z)≤CoVaRα,β|µ(Z) = qα}= β, (1)

where qα denotes the α-VaR of the portfolio loss µ(Z).

When measuring systemic risks, the portfolios in consideration are typically at the institution level. They

inevitably include many financial derivatives underlying the risk factors. Many of these derivatives lack

of closed-form pricing formulas and, therefore, need to be priced by running additional simulation exper-

iments. To simplify notation, we group all financial instruments in a portfolio together, and let µ(z) =

E[X|Z = z] and π(z) = E[Y |Z = z], where X and Y denote the aggregated discounted random losses

of the two portfolios respectively at a future time T , by which all derivatives realize their payoffs, and

the expectation is taken with respect to the risk-neutral measure (Hull 2022). Then, we may rewrite the

mathematical definition of CoVaR to incorporate the repricing feature, i.e., the CoVaRα,β satisfies

Pr{E[Y |Z]≤CoVaRα,β | E[X|Z] = qα}= β. (2)

This paper aims to develop efficient Monte-Carlo estimators of CoVaR, where both µ(z) and π(z) need to

be estimated. To the best of our knowledge, this important problem has not been addressed in the literature.

Previous work by Huang et al. (2024) addressed Monte Carlo estimation of CoVaR under the assump-

tion that the closed-form expressions of µ(Z) and π(Z) were available. They identified that, compared to

single-portfolio risk measures like VaR, the key challenge in estimating CoVaR lies in handling the zero-

probability event (ZPE), {µ(Z) = qα}, which cannot be directly observed in the simulated data. To address

this, Huang et al. (2024) proposed a batching estimation method, where the data is divided into batches,

and each batch is used to generate an observation from the conditional distribution where the ZPE approxi-

mately holds. Their work shows that the convergence rate of this batching estimator is OP(n
−1/3), where n

is the sample size of the risk factors Z . This rate is slower than the typical convergence rate of OP(n
−1/2)

for single-portfolio risk measure estimators, highlighting the added difficulty imposed by the ZPE in CoVaR

estimation.

When closed-form expressions of µ(z) and π(z) are unavailable, they must be repriced using two-level

simulations. In this setting, the outer-level simulation generates observations of the risk factors Z , while

the inner-level simulation generates observations of the portfolio lossesX and Y , conditioned on the outer-

level Z observations. This two-level process adds considerable complexity to CoVaR estimation, as the

generation of inner-level observations is far more computationally burdensome than generating outer-level

scenarios.1 Thus, the challenge posed by CoVaR estimation becomes much greater than the problem tackled

1 We denote the time point at which we need the risk measure as t= 0. Suppose that we are interested in the risk measure associated

with a portfolio at a future time τ , wherein the portfolio contains instruments with the longest maturity being T . We define τ as the

risk horizon and typically we have T ≫ τ . The outer-level simulation entails advancing the risk factors from time 0 to τ . The inner-

level simulation not only requires advancing the risk factors from τ to T—a significantly extended duration—but also necessitates

the evaluation of payoffs across numerous derivatives.
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by Huang et al. (2024), where closed-form expressions were assumed. In this paper, we evaluate the sam-

pling efficiency of a CoVaR estimator in terms of its convergence rate with respect to Γ, which represents the

total number of inner-level observations used to compute the estimator. Since generating outer-level scenar-

ios is relatively simple, especially for large-scale portfolios common in CoVaR estimation, we overlook the

sampling effort required for the outer-level simulation and focus primarily on the inner-level computational

burden.

The repricing issue has also been addressed in the context of single-portfolio risk measurement, where

the problem is often framed as estimating E[g(E[X|Z])] for some nonlinear function g(·). A brief literature

review of this topic sheds light on the available approaches and potential challenges. The main focus of

the literature has been on a crucial question: How many inner-level observations should be allocated to

each outer-level scenario? There are two primary approaches to addressing this question. The first is nested

simulation, introduced by Gordy and Juneja (2010), which estimates µ(z) = E[X|Z = z] by averaging

inner-level observations conditional on Z = z. They demonstrate that for n outer-level scenarios of Z , the

optimal allocation is to assign an order of
√
n inner-level observations to each outer-level scenario. Under

this allocation strategy, the estimator achieves a convergence rate of O(Γ−1/3), where Γ denotes the total

number of inner-level observations. Importantly, this convergence rate is independent of the dimensionality

of the risk factors, making the method robust against the curse of dimensionality.

The second approach is smoothing, developed by Liu and Staum (2010), Broadie et al. (2015),

Hong et al. (2017), and Wang et al. (2024), among others. The central idea behind this method is to incor-

porate information from neighboring outer-level scenarios to improve the accuracy of the point estimate

E[X|Z = z], allowing each outer-level scenario to require only one inner-level observation.2 The conver-

gence rate of the estimator depends on the smoothing technique employed, the dimensionality of the risk

factors, and the smoothness of the underlying function µ(z). For instance, Broadie et al. (2015) applied

linear regression, achieving a convergence rate of OP(Γ
−1/2). However, this method relies on the careful

selection of appropriate basis functions, and if the basis functions are not well-chosen, it may introduce an

irreducible bias. On the other hand, Hong et al. (2017) used kernel smoothing, which achieves a conver-

gence rate of O(Γ−min{1/2,2/(d+2)}) in terms of RMSE, where d is the dimensionality of the risk factors.

Kernel smoothing suffers from the curse of dimensionality and performs poorly when d is large. More

recently, Wang et al. (2024) adopted kernel ridge regression (KRR), which can achieve a convergence rate

of approximately OP(Γ
− 2ν−d

4ν+2d ), where ν represents the smoothness of the function µ(z). If µ(z) is suffi-

ciently smooth, the convergence rate can approach approximately OP(Γ
−1/2), making KRR more robust in

higher-dimensional settings than other smoothing methods.

2 In practice, a constant number of inner-level observations, rather than just one, are often used, but this does not affect the conver-

gence rate.
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In the CoVaR estimation, as considered in this paper, we face two simultaneous challenges: ZPE handling

and repricing. For handling the ZPE, the batching estimator with n outer-level scenarios has a convergence

rate of n−1/3. Regardless of whether the nested simulation or smoothing approach is applied for repricing,

this results in the CoVaR estimator exhibiting low sampling efficiency. When using the nested simulation

approach for repricing, we show that the optimal allocation strategy is to assign an order of n1/3 inner-level

observations to each of the n outer-level scenarios. This configuration achieves an optimal convergence rate

of OP(Γ
−1/4). On the other hand, when using the smoothing approach for repricing, each outer-level sce-

nario is assigned only a single inner-level observation. In this case, the best possible convergence rate for

the CoVaR estimator is OP(Γ
−1/3). Both approaches reveal low sampling efficiency, requiring significant

computational effort to reach a desired level of precision. Therefore, a natural question arises: “Is it possible

for a CoVaR estimator to achieve a convergence rate of OP(Γ
−1/2)?” Notice that, under the batching esti-

mation scheme, the only possible sample allocation strategy to achieve a positive answer to this question is

to allocate, on average, fewer than one inner-level observation to each outer-level scenario.

It turns out that achieving this is indeed possible! Before presenting our approach, let us begin with a

thought experiment. Suppose we have approximated closed-form expressions for µ(z) = E[X|Z = z] and

π(z) = E[Y |Z = z] available in advance. In this case, we revert to the CoVaR estimation with closed-form

expressions as described by Huang et al. (2024), eliminating the need for inner-level simulations to reprice

the portfolios. Therefore, the key is to construct approximated closed-form expressions for µ(z) and π(z)

in the first stage, which can then be utilized to estimate CoVaR in the second stage. This approach allows

the inner-level observations (along with their outer-level counterparts) to be used solely for constructing

the surfaces in the first stage, while additional outer-level scenarios are employed to estimate CoVaR in the

second stage, thereby allowing fewer inner-level observations than outer-level scenarios.

We call this two-stage approach “the decoupled approach” to emphasize its critical characteristics of

separating surface fitting from CoVaR estimation. While smoothing techniques, such as linear regression,

kernel smoothing or KRR, are also used to fit the surfaces in the first stage, it is important to notice that the

objective is different. In the original smoothing approach, the goal is to obtain accurate point estimates of

µ(z) and π(z) only for the z values observed at the outer level. In contrast, the decoupled approach aims to

construct functional approximations of µ(z) and π(z) for all z values in its domain.

The decoupled approach not only enables the development of efficient CoVaR estimators but also simpli-

fies the asymptotic analysis of these estimators. In alignment with the two stages of the decoupled approach,

the error of the CoVaR estimator can be split into two components: the functional-approximation-related

error and the batching-estimation-related error. While the latter is relatively straightforward to handle and

has minimal impact (as it only involves outer-level scenarios), managing the former requires innovative

methods. We develop a functional approach to analyze this error, demonstrating that the convergence rate of
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the decoupled CoVaR estimator is the same as the convergence rate of approximating µ(z) and π(z), mea-

sured by their L∞ norms over the entire domain. The reason for focusing on L∞ norms, rather than more

commonly used L2 norms, is due to the ZPE, as L2 convergence does not guarantee convergence at ZPEs.

Notice that this finding is independent of the specific smoothing technique employed for functional approx-

imations. Therefore, it can be seen as a general plug-and-play framework that works with any smoothing

technique, as long as the L∞ convergence rates can be derived.

The convergence rate result indicates that for the decoupled CoVaR estimator to achieve good sampling

efficiency, we must employ smoothing techniques with fast L∞ convergence rates when approximating

µ(z) and π(z). First, because CoVaR addresses institutional-level portfolios, the dimensionality of the risk

factors is usually high. Thus, we need smoothing techniques that can handle high-dimensional data without

succumbing to the curse of dimensionality. While most smoothing techniques are evaluated in terms of L2

convergence rates, we specifically require L∞ convergence. Interestingly, both issues are ultimately related

to the smoothness of the portfolio loss functions µ(z) and π(z). In the literature, Wang et al. (2024) have

already demonstrated that KRR achieves excellent L2 convergence rates when the portfolio loss functions

are sufficiently smooth. We find that neural networks exhibit similar performance. Moreover, by leveraging

the Gagliardo-Nirenberg interpolation inequality (Nirenberg 1959), we show that L∞ and L2 convergence

rates are approximately equivalent, provided that the loss functions are smooth enough. This brings us to

another key question: “Are the portfolio loss functions µ(z) and π(z) sufficiently smooth?” It is important

to note that Wang et al. (2024) made this assumption without offering formal theoretical justification. In

this paper, we provide proof that under very general conditions, these loss functions are indeed infinitely

differentiable. With this key finding, we demonstrate that the decoupled CoVaR estimator can achieve a con-

vergence rate of approximately OP(Γ
−1/2), provided that smoothing techniques like linear regression (with

appropriate basis functions), KRR (with appropriate kernel functions), or neural networks (with appropriate

activation functions) are employed.

The rest of the paper is organized as follows: Section 2 introduces the batching estimator from

Huang et al. (2024) and presents two naı̈ve estimators. Section 3 provides a detailed explanation of the

decoupled approach and its convergence rate analysis. In Section 4, we discuss the smoothness of the loss

functions and the corresponding smoothing techniques. Numerical results are presented in Section 5, with

conclusions offered in Section 6. The proofs and relevant technical conditions are provided in the Appendix.

2. Batching Estimator and Two Naı̈ve Nested Estimators

In this section, we first briefly review the batching estimator of CoVaR, proposed by Huang et al. (2024)

where the closed-form expressions of the loss functions µ(z) and π(z) are available. This estimator serves

as the foundation of the estimators proposed in this paper, which are designed to handle the repricing

issue that is ubiquitous in practice but not considered by Huang et al. (2024). We then present two naı̈ve
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estimators of CoVaR that directly incorporate the nested simulation approach and the smoothing approach,

two commonly used repricing approaches for single-portfolio risk measurement, into the batching estimator.

We analyze the convergence rates of these two estimators, and explain why they are inefficient in solving

the CoVaR estimation problem.

2.1. The Batching Estimator

When the closed-form expressions of µ(z) and π(z) are available, the critical issue of CoVaR estimation

is the handling of the ZPE {µ(Z) = qα}, where qα is the α-VaR of µ(Z). Huang et al. (2024) proposed a

batching estimation method to address this issue, see Algorithm 1 for the detailed estimation algorithm.

Algorithm 1 Batching Estimation of CoVaR

Step 1. Generate n scenarios of risk factors {Zi}ni=1 and compute the corresponding observations of two

portfolio losses {(µ(Zi), π(Zi))}ni=1. For convenience, denote them as {(µi, πi)}ni=1.

Step 2. Divide the data {(µi, πi)}ni=1 into k batches and each batch has h observations with n= k×h, and

denote the observations in the i-th batch as {(µi,j , πi,j)}hj=1, i=1,2, . . . , k.

Step 3. For each batch (say i-th batch), sort µi,1, . . . , µi,h from lowest to highest, denoted by µi,(1) ≤
µi,(2) ≤ · · · ≤ µi,(h), where µi,(j) denotes the j-th smallest value. Let π̌i = πi,(⌈αh⌉), where πi,(⌈αh⌉) is the

concomitant of µi,(⌈αh⌉), i.e., πi,(⌈αh⌉) shares the same realization of risk factors with µi,(⌈αh⌉).

Step 4. Sort π̌1, . . . , π̌k from lowest to highest, denoted by π̌(1) ≤ π̌(2) ≤ · · · ≤ π̌(k). Then, π̌(⌈βk⌉) is the

batching estimator of CoVaRα,β .

The batching estimation method first divides the simulation observations {(µi, πi)}ni=1 into k batches and

each batch has h observations. Let {(µi,j , πi,j)}hj=1 denote the observations of the i-th batch, i= 1,2, . . . , k.

Then, for each batch (say i), it uses µi,1, . . . , µi,h to find the ⌈hα⌉-th order statistic µi,(⌈hα⌉), which is a

strongly consistent estimator of qα as h→∞ (Serfling 2009). Then, its corresponding concomitant πi,(⌈hα⌉),

denoted by π̌i, is an observation of π(Z) that approximately satisfies the ZPE {µ(Z) = qα}. Since each

batch generates one such observation, k batches give an independent and identically distributed sample,

denoted as π̌1, . . . , π̌k, which may then be used to estimate its β-VaR, which is the batching estimator of

CoVaRα,β .

Huang et al. (2024) proved that the batching estimator is strongly consistent as n→∞. It can achieve

the best rate of convergence rate OP(n
−1/3) by letting

√
k/h→ c, for some constant c > 0. Notice that

a standard VaR estimator has a rate of convergence of OP(n
−1/2) (Serfling 2009). Therefore, estimating

CoVaR is significantly more difficult and may require a substantially larger sample size to achieve the

desirable level of precision than estimating VaR.
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2.2. Two Naı̈ve Nested Estimators

Now we consider the nested CoVaR estimation problem where the closed-form expressions of µ(z) and

π(z) are not available, and one has to use inner-level observations of X and Y conditioned on Z = z to

estimate them. Furthermore, we keep the framework of the batching estimation to handle the ZPE, as it is

convenient and easy to understand.

Suppose that we generate l inner-level observations (Xij , Yij)
l
j=1 for each outer-level scenario Zi, i =

1, . . . , n. Depending on whether the nested simulation approach or the smoothing approach is used l may be

increasing in n or may be a constant integer (such as one). Let X̄i =
1
l

∑l

j=1Xij and Ȳi =
1
l

∑l

j=1 Yij for

all i= 1, . . . , n. The nested simulation approach uses X̄i and Ȳi as estimates of µ(Zi) and π(Zi), while the

smoothing approach uses a smoothing technique on {(X̄i, Ȳi)}ni=1 to obtain estimates of µ(Zi) and π(Zi).

In both cases, we denote the estimates as {(µ̂i, π̂i)}ni=1. Then, we may plug them into Algorithm 1 to obtain

two naı̈ve nested estimators of CoVaR (see Algorithm 2).

Algorithm 2 Naı̈ve Nested Estimation of CoVaR

Step 1. Generate n scenarios of risk factors {Zi}ni=1. For each Zi i = 1, . . . , n, generated l observa-

tions of (X,Y )|Z = Zi, denoted by (Xij , Yij)
l
j=1, and calculate X̄i and Ȳi. Use either the nested sim-

ulation approach or the smoothing approach with a chosen smoothing technique to obtain estimates of

{µ(Zi), π(Zi)}ni=1, denoted by {(µ̂i, π̂i)}ni=1.

Step 2. Divide the data {(µ̂i, π̂i)}ni=1 into k batches and each batch has h observations with n= k×h, and

denote the observations in the i-th batch as {(µ̂i,j , π̂i,j)}hj=1, i=1,2, . . . , k.

Step 3. For each batch (say i-th batch), sort µ̂i,1, . . . , µ̂i,h from lowest to highest, denoted by µ̂i,(1) ≤
µ̂i,(2) ≤ · · · ≤ µ̂i,(h), where µ̂i,(j) denotes the j-th smallest value. Let ˇ̂πi = π̂i,(⌈αh⌉), where π̂i,(⌈αh⌉) is the

concomitant of µ̂i,(⌈αh⌉), i.e., π̂i,(⌈αh⌉) shares the same realization of risk factors with µ̂i,(⌈αh⌉).

Step 4. Sort ˇ̂π1, . . . , ˇ̂πk from lowest to highest, denoted by ˇ̂π(1) ≤ ˇ̂π(2) ≤ · · · ≤ ˇ̂π(k). Then, ˇ̂π(⌈βk⌉) is the

nested estimator of CoVaRα,β .

Algorithm 2 is almost identical to Algorithm 1, except that we altered Step 1 to generate {(µ̂i, π̂i)}ni=1 to

approximate {(µi, πi)}ni=1 in Algorithm 1. While Algorithm 2 is straight-forward and easy to understand,

their estimators are not necessarily efficient. In the rest of this section, we analyze the convergence rates of

the two estimators of Algorithm 2, one using the nested simulation approach to obtain {(µ̂i, π̂i)}ni=1, while

the other use a smoothing technique.

To compare the efficiency of different estimators, we need a common yardstick. In this paper, we fol-

low the tradition of the literature and consider the convergence rate with respect to the total sampling

effort (Gordy and Juneja 2010, Hong et al. 2017, Wang et al. 2024). As the sample includes both inner-level
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observations and outer-level scenarios, we let the cost of generating an inner-level observation be 1 and the

cost of generating an outer-level scenario be γ. As the inner-level observation involves much longer time

horizon and a large number of derivatives, its generation is significantly more difficult than the outer-level

scenario. Therefore, γ is typically much smaller than 1 and is often negligible (i.e., γ may be treated as 0).

In this paper, we use the total number of inner-level observations, denoted by Γ, to measure the sampling

effort, and compare the convergence rates of different estimators by letting Γ→∞.3

First, we consider the estimator with the nested simulation approach for repricing, where only the sample

means X̄i and Ȳi are used to estimate µ(Zi) and π(Zi). We have the following proposition on the conver-

gence rate of the root mean squared error (RMSE), where k is the number of batches, h is the batch size and

l is the number of inner-level observations for each outer-level scenario. Notice that k×h= n, which is the

total number of outer-level scenarios. The proof sketch of this proposition can be found in Appendix C.

PROPOSITION 1. The RMSE of the CoVaR estimator based on the nested simulation approach is of order

OP(k
−1/2 + h−1 + l−1), which implies that the optimal rate of convergence is OP(Γ

−1/4) when l= c1Γ
1/4,

h= c2Γ
1/4 and k= 1

c1c2
Γ1/2 for some constants c1, c2 > 0.

Notice the nested estimation of CoVaR is in general more difficult than the estimation of CoVaR without

repricing or the estimation of VaR with repricing. From the literature, we know that the convergence rates of

the latter two are both OP(Γ
−1/3) (Huang et al. 2024, Gordy and Juneja 2010). Therefore, it is not surprising

that the convergence rate of the nested-simulation based CoVaR estimator demonstrated in Proposition 1 is

worse than OP(Γ
−1/3). This convergence rate is certainly not desirable. It implies that a very large amount

of sampling effort may be necessary to achieve an acceptable level of precision. Given that the inner-level

observations are very costly to generate, this estimator is in general not recommended.

Second, we consider the estimator that uses the smoothing approach for repricing, where all sample

means (X̄i, Ȳi)
n
i=1 are used to estimate µ(Zi) and π(Zi) through a smoothing technique. Analyzing the

precise convergence rate of this estimator is more challenging because the smoothing approach introduces

dependence across all (µ̂i, π̂i)
n
i=1, linking the sample means and complicating the analysis. However, we

can provide a heuristic argument that the convergence rate is unlikely to exceed OP(Γ
−1/3). Note that l≥ 1

in the estimator, meaning that even if the approximation error of (µ̂i, π̂i)
n
i=1 is negligible, i.e., we treat it as

(µi, πi)
n
i=1, the estimator cannot converge faster than the batching estimator with closed-form expressions

for µ(z) and π(z). Therefore, the convergence rate is upper bounded by OP(Γ
−1/3).

Even if this OP(Γ
−1/3) convergence rate is achievable, it is not particularly efficient. The high computa-

tional cost of generating inner-level observations motivates us to explore whether the convergence rate can

3 We want to emphasize that, even though the comparison based on sampling cost is widely used in the literature of nested estima-

tion, it overlooks the computational overhead that may be quite significant, especially for some smoothing techniques that require

tuning when fitting the surfaces (e.g., the kernel method, KRR and neural networks) and need significant computation to evaluate

(e.g., the kernel method, kriging and KRR).
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be further improved. To achieve this, the key is to reduce the sample size of the inner-level observations

relative to the outer-level scenarios, i.e., allocating, on average, fewer than one inner-level observation per

outer-level scenario. This represents a clear departure from traditional sample allocation strategies and is

not feasible within the naı̈ve estimation framework presented in Algorithm 2. In the next section, we will

introduce the decoupled approach, which makes this possible.

3. The Decoupled Approach

Recall that there are two main challenges in estimating CoVaR: the ZPE and repricing. These two challenges

are closely intertwined: the repriced portfolio losses are necessary to identify the outer-level scenarios where

the ZPE holds approximately. The naı̈ve estimators introduced in Section 2 couple these challenges together

by repricing portfolio losses for every outer-level scenario. Because a large number of outer-level scenar-

ios are needed to identify those where the ZPE holds approximately, the naı̈ve estimators also require a

correspondingly large number of inner-level observations for repricing through either the nested simulation

approach or the smoothing approach.

In this section, we introduce a flexible algorithmic framework that decouples these two challenges,

addressing them one at a time. This framework allows for the use of different smoothing techniques in the

repricing stage. We then show that the convergence rate of the new decoupled estimator may be derived

through a decoupled mindset as well, and the convergence rate ultimately depends on the convergence

property of the chosen smoothing technique, which will be further discussed in Section 4.

3.1. The Algorithm

The decoupled approach operates in two distinct stages. In the first stage, it simulates m outer-level sce-

narios and l inner-level observations conditioned on each outer-level scenario (where l can be as small as

1), and uses these observations to construct function approximations to the portfolio loss functions µ(z)

and π(z) using a smoothing technique. In the second stage, it generates n new outer-level scenarios and

employs the function approximations from the first stage as to execute the batching estimation algorithm to

obtain the CoVaR estimator. We summarize it in Algorithm 3.

In the decoupled approach, the repricing and ZPE challenges are addressed separately in the first and

second stages, respectively. Through this decoupling, the large number of outer-level scenarios necessary

for the second stage no longer demand corresponding inner-level observations, which allows for far more

outer-level scenarios than inner-level ones.

Another way to understand the decoupled approach is by revisiting the original batching estimation in

Algorithm 1, where closed-form expressions of the portfolio loss functions µ(z) and π(z) are known. Since

these expressions are unknown in our context, Algorithm 3 introduces a separate first stage to approximate

them. Although this interpretation may seem straightforward, it obscures the crucial reasoning behind the
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Algorithm 3 The Decoupled Approach of CoVaR Estimation

The First Stage: Two-level Simulation and Function Approximation

− Generate m independent outer-level scenarios {Z̃i}mi=1.

− For each scenario Z̃i, i = 1, · · · ,m, generate l independent outcomes of X and Y , denoted by

{X̃ij}lj=1 and {Ỹij}lj=1. Compute X̃i =
1
l

∑l

j=1 X̃ij and Ỹi =
1
l

∑l

j=1 Ỹij .

− Fit the functions of portfolio losses µ(·) and π(·) using {(Z̃i, X̃i)}mi=1 and {(Z̃i, Ỹi)}mi=1 by a

selected smoothing technique. Let µ̃m(·) and π̃m(·) denote the approximated functions of the portfolio

losses.

The Second Stage: Batching Estimation

− Generate n independent outer-level scenarios {Zi}ni=1.

− Compute the corresponding µ̃m(Zi) and π̃m(Zi) and denote them as µ̂i and π̂i for i= 1, . . . , n.

− Divide the data into k batches with h samples in each batch and denote the observations in the s-th

batch as {µ̂s,t}ht=1, s= 1, . . . , k.

− For each batch (say s-th batch), sort {µ̂s,t}ht=1 from lowest to highest, denoted by µ̂s,(1) ≤ . . . ≤
µ̂s,(h).

− Select the µ̂s,(⌈hα⌉), s= 1, . . . , k as the estimator of α-th quantile of µ̂(Z). Let π̌s = π̂s,(⌈hα⌉).

− Sort π̌s from smallest to largest and estimate CoVaR by θ̂NB
m,n = π̌(⌈kβ⌉).

decoupled strategy described earlier. It is worth noting that the decoupled approach can also apply to single-

portfolio risk measure estimation, though it wasn’t explicitly used by Hong et al. (2017) or Wang et al.

(2024). It only becomes evident in CoVaR estimation that decoupled approach can offer substantial benefits.

3.2. Analysis of the Convergence Rate

Unlike the analysis in the literature on single-portfolio risk measurement, which is often intertwined with

the specific smoothing techniques used, the goal of this subsection is to establish a general result on the

convergence rate of the decoupled CoVaR estimator that accommodates different smoothing techniques. The

key ingredient for achieving this is the decoupled structure, which allows us to separate the total estimation

error into two parts: the function-approximation-related error (FA error) and the batching-estimation-related

error (BE error), corresponding to the two stages of the approach. The BE error analysis follows directly

from the results of Huang et al. (2024) and is relatively straightforward. However, the FA error analysis is

more complex and requires significant innovation. In this subsection, we adopt a functional perspective and

connect the FA error to the L∞ norm of the functional approximation error.

3.2.1. Notation and Preliminary Results. Let q denote the α-VaR of µ(Z) and θ denote the (α,β)-

CoVaR of (µ(Z), π(Z)) for simplicity. Then, q and θ satisfy Pr{µ(Z)≤ q}=α and Pr{π(Z)≤ θ|µ(Z) =
q}= β, respectively. Notice that θ is the CoVaR that we want to estimate. Conditioned on the fitted portfolio
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loss functions µ̃m(·) and π̃m(·), we let q̃m denote the α-VaR of µ̃m(Z) and θ̃m denote the (α,β)-CoVaR of

(µ̃m(Z), π̃m(Z)). Then, q̃m and θ̃m satisfy Prm{µ̃m(Z)≤ q̃m}=α and Prm{π̃m(Z)≤ θ̃m|µ̃m(Z) = q̃m}=
β, respectively, where Prm denotes the probability conditioned on µ̃m(·) and π̃m(·). Therefore, q̃m and θ̃m

are both random variables whose values depend on the first-stage inner-level and outer-level scenarios that

are used to construct µ̃m and π̃m. Let θ̃m,n denote the CoVaR estimator produced by Algorithm 3. In this

section we are interested in finding the convergence rate of θ̃m,n to θ.

Let functions Fµ and fµ denote the distribution function and density function of µ(Z), i.e., Fµ(x) =

Pr{µ(Z) ≤ x} and fµ(x) = F ′
µ(x), and let functions Fµ̃m and fµ̃m denote the conditional distribution

function and conditional density function of µ̃m(Z) conditioned on µ̃m(·), i.e., Fµ̃m(x) = Prm{µ̃m(Z)≤
x} and fµ̃m(x) =

d
dx
Fµ̃m(x). In the similar manner, we let Gµ,π(x, y) = Pr{π(Z) ≤ y|µ(Z) = x} and

Gµ̃m,π̃m(x, y) = Prm{π̃m(Z)≤ y|µ̃m(Z) = x}.

We may also treat Fµ(x), fµ(x) and Gµ,π(x, y) as functionals of µ and π. For fixed values of x, y, we

can define functionals of µ and π by Fx[µ] = Fµ(x) and Gx,y[µ,π] =Gµ,π(x, y). Then, we have Fx[µ̃m] =

Fµ̃m(x) and Gx,y[µ̃m, π̃m] =Gµ̃m,π̃m(x, y). Taking the viewpoint of functionals is an important innovation

of our approach. It allows us to link the estimation error of CoVaR directly to the estimation errors of the

functions µ(·) and π(·), and it is more inline with the decoupled algorithm.

Besides, the Lp norm will be used frequently through this paper, which is defined as

‖f‖Lp =
(∫

Ω
|f(z)|pdP (z)

)1/p
if p<+∞,

‖f‖L∞ = ess supz∈Ω |f(z)| if p=+∞,

where Ω is the domain of z and P is the distribution of z. If ‖f‖Lp <∞, then we say f ∈ Lp. For conve-

nience, we abbreviate ‖ · ‖Lp by ‖ · ‖p in this paper.

To analyze the convergence rate of the CoVaR estimator, we need the following assumption on the con-

vergence rate of the fitted surfaces µ̃m(·) and π̃m(·).

ASSUMPTION 1. For sufficiently largem, ‖µ̃m−µ‖∞ =OP(am) and ‖π̃m−π‖∞ =OP(am), where {am}
is a deterministic sequence with limm→∞ am =0.

Notice that Assumption 1 is a general assumption that allows many different types of smoothing techniques.

Our goal is to establish a general theoretical framework for the decoupled algorithm and consider the choice

of particular smoothing technique as a separate issue.

With the assumption, we can establish some preliminary results that are used later. These results all need

additional assumptions on the smoothness of various involved functions. These conditions are tedious and

difficult to verify. But they are generally satisfied and are used widely in the literature (Gordy and Juneja

2010, Broadie et al. 2015, Hong et al. 2017). To maintain readability, we use “regularity conditions” to refer

them and state them in detail in the Appendix.



12 Lin, Song and Hong: Efficient Nested Estimation of CoVaR

LEMMA 1. Under Assumption 1 and certain regularity conditions, for any sequence {xm} such that xm →
x as m→∞, we have fµ̃m(xm)→ fµ(x) and f ′

µ̃m
(xm)→ f ′

µ(x) almost surely as m→∞.

We provide a proof sketch of Lemma 1. The more rigorous proof along with the regularity conditions are

provided in Appendix B.

Proof sketch. Let ηm(Z) = a−1
m [µ̃m(Z)− µ(Z)]. Assumption 1 suggests that ηm(Z) has a non-trivial

limiting distribution as m→ ∞. Let bm(u, v) denote the joint density of (µ(Z), ηm(Z)) conditioned on

µ̃m(·). Then,

Fµ̃m(x) = Prm {µ̃m(Z)≤ x}=Prm {µ(Z)+ amηm(Z)≤ x}=
∫

R

∫ x−amv

−∞
bm(u, v)dudv,

Fµ(x) = Pr{µ(Z)≤ x}=Prm {µ(Z)≤ x}=
∫

R

∫ x

−∞
bm(u, v)dudv.

Differentiating with respect to x, we have fµ̃m(x) =
∫

R
bm(x−amv, v)dv and fµ(x) =

∫

R
bm(x, v)dv. Then,

applying the mean value theorem, we have

fµ̃m(xm)− fµ(x) =

∫

R

[bm(xm − amv, v)− bm(x, v)]dv

=

∫

R

∂

∂x
bm(x

∗, v)(xm − amv−x)dv for some x∗ ∈ [xm − amv,x]

= (xm −x)

∫

R

∂

∂x
bm(x

∗, v)dv+ am

∫

R

∂

∂x
bm(x

∗, v)vdv.

As both xm − x and am converge to zero as m→∞, we have fµ̃m(xm)→ fµ(x) almost surely as long as

bm(u, v) satisfies certain regularity conditions almost surely. Similarly, we can show that f ′
µ̃m

(xm)→ f ′
µ(x).

�

LEMMA 2. Under Assumption 1 and certain regularity conditions,

Fq[µ̃m]−Fq[µ] =OP(am).

The conclusion of Lemma 2 appears to be a direct consequence of a first-order Taylor expansion of Fq[µ]

at µ as ‖µ̃m −µ‖∞ =OP(am). However, there are two difficulties. First, there are different ways to define

a functional derivative. Second, it is not clear why it focuses on the L∞-norm of µ̃m − µ instead of other

types of norms. We provide a proof sketch of the lemma to address these two difficulties. The more rigorous

proof along with the regularity conditions are provided in Appendix B.

Proof sketch. Inspired by the definition of Gateaux derivative for functionals (Serfling 2009,

Engel and Dreizler 2011), we consider d
dw

Fq[µ + wηm] where ηm = a−1
m (µ̃m − µ) may be viewed as a

direction in the functional space. Notice that Fq[µ + wηm] = Prm{µ(Z) + wηm(Z) ≤ q}. Its derivative
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with respect to w may be computed using the probability sensitivity formula (Theorem 1 of Hong 2009).

Therefore, we have

d

dw
Fq[µ+wηm] =−φµ+wηm(q) ·Em[ηm(Z)|µ(Z)+wηm(Z) = q],

where φµ+wηm(·) is the density of µ(Z)+wηm(Z) conditioned on µ̃m.

Now we can apply the first-order Taylor expansion,

∣
∣
∣Fq[µ̃m]−Fq[µ]

∣
∣
∣ =

∣
∣
∣Fq[µ+ amηm]−Fq[µ]

∣
∣
∣=
∣
∣
∣φµ(q) ·Em[ηm(Z)|µ(Z) = q] · am

∣
∣
∣+ o(am)

=
∣
∣
∣φµ(q) ·Em [µ̃m(Z)−µ(Z)|µ(Z) = q]

∣
∣
∣+ o(am)

≤ φµ(q) · ‖µ̃m −µ‖∞ + o(am).

The last step shows why the L∞-norm of µ̃m − µ is needed. This is because the {µ(Z) = q} may be

a ZPE and other types of norms, e.g., L2-norm, cannot bound µ̃m − µ conditioned on µ(Z) = q. As

‖µ̃m −µ‖∞ =OP(am), we have Fq[µ̃m]−Fq[µ] =OP(am) as well. �

LEMMA 3. Under Assumption 1 and certain regularity conditions, for any sequence {(xm, ym)} such that

(xm, ym)→ (x, y) as m→∞, we have

∂

∂x
Gµ̃m,π̃m(xm, ym)→

∂

∂x
Gµ,π(x, y) and

∂

∂y
Gµ̃m,π̃m(xm, ym)→

∂

∂y
Gµ,π(x, y)

almost surely as m→∞.

LEMMA 4. Under Assumption 1 and certain regularity conditions,

Gq,θ[µ̃m, π̃m]−Gq,θ[µ,π] =OP(am).

Lemmas 3 and 4 are extensions of Lemmas 1 and 2, extending from uni-variate functions Fµ(·) and

Fq(·) to bi-variate functions Gµ,π(·, ·) and Gq,θ[·, ·]. The proofs of these two lemmas are similar to those of

Lemmas 1 and 2. We include them in Appendix B along with the required regularity conditions.

3.2.2. Convergence Rate of the CoVaR Estimator. Notice that the estimation error of the CoVaR

estimator θ̃m,n may be decomposed into two parts, i.e., θ̃m,n − θ = (θ̃m − θ) + (θ̃m,n − θ̃m). The first part

(θ̃m− θ) is the error caused by function approximations of µ and π in the first stage of Algorithm 3; and the

second part (θ̃m,n− θ̃m) is the error caused by the batching estimation in the second stage of the algorithm.

To analyze the rate of convergence of θ̃m,n, we analyze separately these two errors, which we call the FA

error and BE error respectively.

We first study the convergence rates of q̃m and θ̃m, which are the true VaR and CoVaR values once the

surface approximations µ̃m and π̃m are obtained in the first stage of Algorithm 3. Their errors q̃m − q and

θ̃m−θ are completely determined by the first stage sample, and θ̃m−θ is the FA error that we are interested

in.
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PROPOSITION 2. Under Assumption 1 and the regularity conditions of Lemmas 1 and 2, q̃m − q =

OP(am).

Proof. By the mean value theorem, it can be shown that (see Lemma B.4 in Appendix B), as m→∞,

Fµ̃m(q̃m) =Fµ̃m(q)+ fµ̃m(q)(q̃m − q)+ o(q̃m − q). Furthermore, notice that Fµ̃m(q̃m) = Fµ(q) =α. Then,

we have

q̃m − q=
1

fµ̃m(q)
(Fµ(q)−Fµ̃m(q)+ o(q̃m − q)) =

1

fµ̃m(q)
(Fq[µ]−Fq[µ̃m] + o(q̃m − q)) .

Notice that fµ̃m(q)→ fµ(q) as m→∞ by Lemma 1 and Fq[µ]−Fq[µ̃m] =OP(am) by Lemma 2. Then,

q̃m − q=OP(am). �

PROPOSITION 3. Under Assumption 1 and the regularity conditions of Lemmas 1 to 4, θ̃m−θ=OP(am).

Proof. By the mean value theorem, it can be shown that (see Lemma B.4 in Appendix B), as m→∞,

Gµ̃m,π̃m(q̃m, θ̃m)−Gµ̃m,π̃m(q, θ) =
∂

∂x
Gµ̃m,π̃m(q

∗, θ)(q̃m − q)+
∂

∂y
Gµ̃m,π̃m(q, θ)(θ̃m − θ)+ o(θ̃m − θ),

where q∗ is some number between q̃m and q, and hence q∗ → q asm→∞ due to Proposition 2. Furthermore,

notice that Gµ̃m,π̃m(q̃m, θ̃m) =Gµ,π(q, θ) = β. Then, we have

θ̃m − θ =

[
∂

∂y
Gµ̃m,π̃m(q, θ)

]−1

·
{

(Gµ,π(q, θ)−Gµ̃m,π̃m(q, θ))−
∂

∂x
Gµ̃m,π̃m(q

∗, θ)(q̃m − q)+ o(θ̃m − θ)

}

=

[
∂

∂y
Gµ̃m,π̃m(q, θ)

]−1

·
{

(Gq,θ[µ,π]−Gq,θ[µ̃m, π̃m])−
∂

∂x
Gµ̃m,π̃m(q

∗, θ)(q̃m− q)+ o(θ̃m − θ)

}

,

Notice that ∂
∂x
Gµ̃m,π̃m(q

∗, θ)→ ∂
∂x
Gµ,π(q, θ) and ∂

∂y
Gµ̃m,π̃m(q, θ)→ ∂

∂y
Gµ,π(q, θ) as m→∞ by Lemma

3, Gq,θ[µ,π] − Gq,θ[µ̃m, π̃m] = OP(am) by Lemma 4, and q̃m − q = OP(am) by Proposition 2. Then,

θ̃m − θ=OP(am). �

Propositions 2 and 3 show that the FA error of the CoVaR estimator, i.e., θ̃m − θ, converges in the same

rate as the function-approximation errors of the surfaces, i.e., µ̃m − µ and π̃m − π. In particular, we show

that it is determined by the convergence rate of the L∞-norms of µ̃m −µ and π̃m −π.

Next, we analyze the convergence rate of the BE-related error, i.e., θ̃m,n − θ̃m. We summarize the result

in next proposition, which is built upon Theorem 3 of Huang et al. (2024).

PROPOSITION 4. Under Assumption 1 and the regularity conditions of Lemmas 1 to 4, when
√
k/h→ c

as n→∞ for some constant c > 0, θ̃m,n − θ̃m =OP(n
−1/3).

Proof. Fixing µ̃m and π̃m, by Theorem 3 of Huang et al. (2024), we know that when
√
k/h→ c for

some c > 0 as n→∞, √
k · ∂

∂y
Gµ̃m,π̃m(q̃m, θ̃m)
√

β(1−β)
(θ̃m,n − θ̃m) =OP(1).
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By Lemma 3, ∂
∂y
Gµ̃m,π̃m(q̃m, θ̃m) → ∂

∂y
Gµ,π(q, θ) as m→ ∞. Therefore, by Slutsky’s theorem (Serfling

2009), θ̃m,n− θ̃m =OP(k
−1/2) =OP(n

−1/3). �

Let Γ denote the number of inner-level observations used by Algorithm 3. Notice that θ̃m,n − θ= (θ̃m −
θ)+ (θ̃m,n − θ̃m). Then, by Proposition 3 and 4, we can directly obtain the following theorem that charac-

terize the convergence rate of the CoVaR estimator θ̃m,n.

THEOREM 1. Let m = Γ/l where l ≥ 1 is a constant. Furthermore, let k and h be positive integers that

satisfy kh = n and
√
k/h → c as n→ ∞ for some constant c > 0. Then, under Assumption 1 and the

regularity conditions of Lemmas 1 to 4, θ̃m,n − θ =OP(max{am, n−1/3}). If n satisfies n−1/3 ≤ am, then

θ̃m,n − θ=OP(am).

There are several important comments that we want to make regarding Theorem 1. First, the conclu-

sion of the theorem is a general result. It may be applied to any smoothing technique as long as it satisfies

Assumption 1. This is in sharp contrast with the current literature on single-portfolio risk measurement,

where estimators are developed for specific smoothing techniques and their generalization to other smooth-

ing techniques are often not straight-forward (Liu and Staum 2010, Broadie et al. 2015, Hong et al. 2017,

Wang et al. 2024).

Second, the theorem demonstrates that as long as the condition n−1/3 ≤ am is satisfied, the convergence

rate of the CoVaR estimator is determined by the first stage. Here, n represents the number of second-stage

outer-level scenarios, andm is of the same order as Γ, which is the total number of inner-level observations.

Given that outer-level scenarios are much easier to generate than inner-level ones, one should always ensure

that this condition is met.

Third, the sampling effort is not the only part of the computational effort that is used to compute the

CoVaR estimator. The time used to construct µ̃m(·) and π̃m(·) in the first stage of Algorithm 3 and the time

used to evaluate µ̃m(Zi) and π̃m(Zi) for all i= 1, . . . , n in the second stage may also be quite significant,

especially for certain smoothing techniques. In the numerical experiments of Section 5, we compare these

times for different smoothing techniques and provide practical recommendations.

Fourth, we want to note that the decoupled algorithm may also be used to estimate the VaR of a single-

portfolio. With Proposition 2 and the central limit theorem of the standard VaR estimator of Serfling (2009),

we can easily show that the nested VaR estimator has a convergence rate of OP(min{am, n−1/2}). This

allows us to reproduce the rate-of-convergence results of most (if not all) smoothing-based nested VaR

estimators in the literature, including at least the linear regression estimator of Broadie et al. (2015), the

kernel estimator of Hong et al. (2017) and the KRR estimator of Wang et al. (2024).
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4. Smoothing Techniques

Theorem 1 shows that the convergence rate of the decoupled CoVaR estimator depends critically on the

convergence rate of the smoothing techniques through the L∞ norms, i.e., ‖µ̃m − µ‖∞ and ‖π̃m − π‖∞,

which are determined jointly by two factors, the smoothness of the target functions µ and π and the char-

acteristic of the chosen smoothing technique. In this section, we first demonstrate that the portfolio loss

functions employed in CoVaR estimations, namely µ and π, generally exhibit high-order smoothness. This

observation paves the way for the application of advanced smoothing techniques that can leverage this high-

order smoothness. We then derive the rate of convergence for several representative smoothing techniques

in terms of the L∞ norms, based on the smoothness of the portfolio value functions. These results can

be incorporated into the convergence rate of the CoVaR estimator through Theorem 1, offering valuable

insights for selecting appropriate smoothing techniques.

4.1. Smoothness of Portfolio Loss Functions

The smoothness of portfolio loss functions is crucial to the decoupled approach for two primary reasons.

First, the efficiency of smoothing techniques is inherently linked to the smoothness of the underlying func-

tions, particularly in high-dimensional settings. For instance, smoothness can mitigate the curse of dimen-

sionality when employing KRR for smoothing (Wang et al. 2024). Second, extending the convergence rate

from the L2 norm, often established for smoothing techniques, to the L∞ norm, which is necessary for

the decoupled approach, is significantly dependent on the smoothness of the functions. This point will be

further elaborated in Section 4.2.

A financial portfolio, comprising multiple derivatives, has a loss function defined as a weighted sum of

the loss functions of its individual derivatives. Consequently, the smoothness of the portfolio loss function

is contingent upon the smoothness of the price functions of the individual derivatives included in the port-

folio. In the remainder of this subsection, we demonstrate that derivative prices typically exhibit high-order

smoothness, or even infinite-order smoothness. This characteristic implies that portfolio loss functions also

possess high-order smoothness or potentially infinite-order smoothness.

First, we examine three examples in which closed-form expressions for the derivative prices are available.

These examples enable us to verify the smoothness and differentiability of the price functions, thereby

offering insights into the general case where closed-form expressions may not be attainable.

EXAMPLE 1. Consider a European call option with an underlying asset whose price St follows a geometric

Brownian motion, given by dSt = rStdt+σStdBt. The payoff function of the option at the expiration T is

(ST −K)+, whereK > 0 is the strike. The price of the option has a closed-form expression p(S0), included

in Appendix A.1 (Black and Scholes 1973). It is clear that p(S0) is infinitely differentiable with respect to

S0, i.e., p ∈C∞. Note that the payoff function is not differentiable at ST =K. This example demonstrates

that the non-differentiability does not affect the smoothness of the price function.
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EXAMPLE 2. Consider a barrier up-and-out call option with an underlying asset whose price St follows a

geometric Brownian motion. The payoff of the option at the expiration is (ST −K)+I
{
maxt∈(0,T )St <B

}
,

whereB > 0 is the barrier. The price of the option has a closed-form expression p(S0), included in Appendix

A.2 (Shreve 2004). It is clear that p(S0) is infinitely differentiable with respect to S0 ∈ (0,B), i.e., p ∈
C∞((0,B)). Note that the payoff function has an indicator function in it. This example demonstrates that

the discontinuity does not affect the smoothness of the price function.

EXAMPLE 3. Consider a European call option with an underlying asset whose price St follows the Heston

model (e.g., a stochastic volatility model): dSt = µStdt+
√
vtStdB

1
t and dvt = κ(θ− vt)dt+ σ

√
vtdB

2
t ,

where the correlation between two Brownian motions is corr(B1
t ,B

2
t ) = ρt. The price of the option has

a closed-form expression p(S0, v0), included in Appendix A.3 (Heston 1993). It can be verified that the

price function is infinitely differentiable with respect to both S0 and v0, i.e., p ∈ C∞. Note that, if the

option is included in the portfolio, both S0 and v0 are risk factors when measuring CoVaR. This example

further extends the smoothness result of Example 1 to options with multiple risk factors and under more

complicated price models.

In practice, closed-form expressions for derivative prices are typically unavailable, highlighting the

importance of nested estimation in the assessment of risk measures. In the remainder of this subsection,

we demonstrate that the three provided examples are not isolated cases. Under fairly general conditions,

portfolio loss functions are infinitely differentiable, even when closed-form expressions of these functions

are not obtainable. Rather than analyzing the prices of individual derivatives, we adopt an aggregated per-

spective, focusing on the smoothness of portfolio loss functions. It is important to note, however, that the

two approaches are equivalent.

Consider a general portfolio loss function µ(z) = E[X | Z0 = z], where X = ϕ(ZT ) is the aggregated

discounted random loss of the portfolio at a future time T , ϕ : Ω → R is the payoff function, and the

expectation is taken with respect to the risk-neutral measure. Typically, the risk factors ZT are calculated

from the prices of underlying assets up to time T discretized at 0< t1< t2 < · · ·< tn ≤ T . Suppose there are

q assets in the portfolio, and St represents their price process, then there is a functionψT :Rq×· · ·×Rq →Ω

such that ZT =ψT (S1, S2, · · · , Sn), where Si ≡ Sti . Suppose St is modeled as the solution to the stochastic

differential equation

dSt = ξ(t, St)dt+Σ(t, St)dBt, 0≤ t≤ T,

where ξ : [0, T ] × R
q → R, Σ : [0, T ] × R

q → R
q×q are the coefficient functions, Bt is a standard q-

dimensional Brownian motion, and S0 = ψ−1
0 (z). For 0 < i < j < n, let pi,j(s, s

′) denote the transition

density of Sj at s′ given that Si = s. Then, we have the following proposition showing µ(z) is infinitely

differentiable under some regularity conditions, where we let φ(s1) = E[X|S1 = s1] be the portfolio loss

once S1 = s1 is observed.
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PROPOSITION 5. Suppose the following conditions hold:

(a) E[|X| |Z0 = z]<∞;

(b) ψ−1
0 (·) is smooth;

(c) p0,1(·, s1) ∈C∞(Rq);

(d) for any k ≥ 1,
∫
|∂kp0,1(s, s1)|φ(s1)ds1 <∞ for all s and

∫
∂kp0,1(s, s1)φ(s1)ds1 is continuous

function of s, where k = (k1, k2, . . . , kq) ∈ N
q with |k| = k1 + k2 + · · ·+ kd = k, and ∂k represents the

mixed derivative with respect to the entries of s.

Then, µ(z) is infinitely differentiable with respect to z, i.e., µ ∈C∞(Ω).

Proposition 5 is proven using the Leibniz integral rule, as detailed in Appendix C. Condition (a) is a

standard assumption to ensure that the loss surface is well-defined. To illustrate the feasibility of the other

conditions in the proposition, consider the following scenario. Assume that the underlying asset prices are

included among the risk factors, making up the first q entries of the risk vector. Consequently, ψ−1
0 (z)

simply extracts these entries, ensuring that condition (b) is satisfied. In addition, assume the drift function

ξ(t, s) is affine in s, and the diffusion matrix Σ(t, s) does not depend on s. Under these assumptions, for

S0 = s, the variable S1 follows a multivariate normal distribution with a mean vector b(s) linear in s and

a constant covariance matrix A (Platen and Bruti-Liberati 2010). The transition density p0,1(s, s1) is then

given by:

p0,1(s, s1) =
1

√

(2π)d det(A)
exp

(

−1

2
(s1 − b(s))TA−1(s1 − b(s))

)

,

where its derivatives of any order can be expressed as products of polynomial functions and the normal

density. This structure satisfies condition (c). Furthermore, condition (d) holds provided the growth of φ

remains slower than exponential.

In more general contexts, particularly when the transition density is not directly tractable, verifying the

smoothness conditions explicitly may be challenging. However, it is important to note that transition den-

sities, typically modeled as normally distributed when applying the Euler approximation to discretize the

asset price process St, are well-behaved and infinitely differentiable. Thus, these densities generally meet

the conditions outlined in Proposition 5, which confirms that portfolio loss functions are infinitely differen-

tiable. For the remainder of this paper, we will assume that portfolio loss functions demonstrate high-order

smoothness, i.e., µ ∈Cν(Ω) and π ∈Cν(Ω), for some large positive integer k, if not being infinitely differ-

entiable.

4.2. Alternative Smoothing Techniques

Let Ω be a convex and compact subset of Rd, and let f : Ω→ R denote the portfolio loss function to be

approximated, where f(z) = E[X|Z = z]. From the analysis in Section 4.1, we know that f is typically suf-

ficiently smooth. Assume that f has smoothness of order of ν, i.e., f ∈Cν(Ω), meaning that the derivative
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Dkf exists and is continuous for every z ∈Ω, and ‖Dkf‖p <∞ for any |k|= k ≤ ν and p > 0, where the

k-th order derivative Dkf is defined as

Dkf =
∂|k|f

∂zk11 ∂z
k2
2 . . . ∂z

kd
d

,

with k = (k1, k2, . . . , kd) ∈ N
d and |k|= k1 + k2 + · · ·+ kd = k. We also define ‖Dkf‖p as the maximum

of the Lp norm of all k-th order derivatives of f (Nirenberg 1959). Thus, Dνf represents the mixed partial

derivatives of f up to the order ν, and the smoothness condition implies that these derivatives are well-

behaved (finite) within Ω.

Suppose that there are m observations, denoted as {(z1, x1), (z2, x2), . . . , (zm, xm)}, where xj = f(zj)+

ej , and {e1, e2, . . . , em} is a sequence of independent and identically distributed sub-Gaussian random

noises. In this subsection, we introduce four different smoothing techniques—linear regression, kernel

smoothing, KRR and neural networks—to approximate the unknown function f . Let f̃m denote the approx-

imated function. Our focus is on quantifying the convergence rate of ‖f̃m−f‖∞ as a function of the sample

size m.

To quantify the convergence rate of ‖f̃m−f‖∞ for KRR and neural networks, we first need to establish a

connection with ‖f̃m − f‖2, for which the convergence rates are well documented in the literature. For this

purpose, we introduce the Gagliardo-Nirenberg interpolation inequality (Nirenberg 1959). Although this

inequality has a more general form, we simplify it to fit within our framework.

PROPOSITION 6 (Gagliardo-Nirenberg Interpolation Inequality). Suppose that ‖f̃m − f‖2 <∞ and

its derivatives of order k satisfy ‖Dk(f̃m − f)‖r <∞ for some r ≥ 2. Then, there exists a constant c > 0

such that

‖f̃m − f‖∞ ≤ c‖Dk(f̃m − f)‖δr · ‖f̃m − f‖1−δ
2 + c‖f̃m − f‖2 (3)

when d≤ rk, where δ = rd
(r−2)d+2rk

∈ [0,1].

The inequality makes it clear that a fast convergence rate of ‖f̃m − f‖2 alone may not be sufficient to

guarantee a fast convergence rate of ‖f̃m − f‖∞. The result also critically depends on the derivatives of

order k. First, for complex smoothing techniques such as KRR and neural networks, we aim to identify k

such that ‖Dk(f̃m − f)‖r <∞. Note that ‖Dk(f̃m − f)‖r ≤ ‖Dkf‖r + ‖Dkf̃m‖r . Thus, the convergence

rate depends on the smoothness of both the target function f and the approximated function f̃m. Second,

assuming ‖Dk(f̃m − f)‖r <∞, the convergence rate is determined by ‖f̃m − f‖1−δ
2 . A larger k implies

a smaller δ, thereby leading to a faster convergence rate. As discussed in Section 4.1, portfolio loss func-

tions generally exhibit high-order smoothness, meaning that ‖Dkf‖r <∞ for large k. Consequently, the

smoothing techniques must ensure that f̃m also has high-order smoothness.

In the remainder of this subsection, we introduce four different smoothing techniques—linear regression,

kernel smoothing, KRR and neural networks—and quantify the convergence rate of their ‖f̃m − f‖∞.
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Linear Regression. Consider a set of s continuous basis functions b1(z), . . . , bs(z) in Ω, and let b(z) =

(b1(z), . . . , bs(z))
⊤. Suppose that f(z) = ω⊤b(z) + M(z), where ω ∈ R

s×1 is a vector of coefficients

and M(z) is the residual bias under the best approximation provided by the basis functions, denoted

as f †(z) = ω⊤b(z). Given the data {(z1, x1), (z2, x2), . . . , (zm, xm)}, the estimated coefficients are ω̃m =
(
B(z)⊤B(z)

)−1
B(z)⊤X, where B(z) = [b(z1), . . . , b(zm)]

⊤ and X = (x1, . . . , xm)
⊤ (James et al. 2013).

Then, the approximated function is given by f̃m(z) = ω̃⊤
mb(z).

Since ω̃m −ω is an s-dimensional vector, we have

‖f̃m − f †‖∞ ≤‖ω̃m −ω‖∞ · ‖b‖∞ ≤ c‖ω̃m −ω‖2 · ‖b‖∞,

where c > 0 is a constant. Moreover, because the basis functions are continuous in Ω, and Ω is a compact

set, we know that ‖b‖∞ <∞. By Broadie et al. (2015), ‖ω̃m − ω‖2 = OP(m
−1/2). Thus, it follows that

‖f̃m − f †‖∞ =OP(m
−1/2). Therefore, we have

‖f̃m − f‖∞ ≤ ‖f̃m − f †‖∞ + ‖f †− f‖∞ =OP(m
−1/2)+ ‖M‖∞.

Notice that m= Γ/l and l ≥ 1 is a constant. Consequently, if n is sufficiently large, by Theorem 1, θ̃ LR
m,n,

the CoVaR estimator using linear regression, satisfies

θ̃ LR
m,n − θ=OP

(
Γ−1/2 + ‖M‖∞

)
.

Therefore, unless the basis functions are chosen such that the residual bias M(z) = 0 for all z ∈ Ω, there

exists an irreducible error that cannot be eliminated by increasing the sampling effort Γ. This is consistent

with the results of Broadie et al. (2015) for estimating VaR. In practice, however, if the basis functions are

well chosen so that the bias term is small, the linear-regression estimator can exhibit excellent performance.

Kernel Smoothing. Given the data {(z1, x1), (z2, x2), . . . , (zm, xm)}, kernel smoothing estimates the

function value at z ∈Ω by averaging the xj’s corresponding to the zj’s near z, weighted by a kernel-based

distance metric. The well-known Nadaraya-Watson kernel estimator, originating from Nadaraya (1964) and

Watson (1964), is expressed as

f̃m(z) =

∑m

j=1 kh (z− zi)xj
∑m

j=1 kh (z− zj)
,

where kh(t) =
(
1/hd

)
k(t/h), k is a kernel function, typically a symmetric density function, and h > 0 is

a bandwidth parameter satisfying h→ 0 and mhd →∞ as m→∞. For instance, when Gaussian kernel is

employed, kh(t) =
1√

2πhd e
− t2

2h2 .

We decompose the estimation error in kernel smoothing into the two parts:

‖f̃m − f‖∞ ≤ ‖f̃m −E[f̃m]‖∞ + ‖E[f̃m]− f‖∞.
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By Lemma 2.1 of Hong et al. (2017), E[f̃m(z)]−f =O(h2) for every z ∈Ω. Combining this with Theorem

2 from Hansen (2008), which states that supz∈Ω |f̃m −E[f̃m]|=OP((mh
d)−1/2

√
logm), we have

‖f̃m − f‖∞ =OP

(

h2 +(mhd)−1/2
√

logm
)

.

The best rate of convergence is OP((logm)
2

4+d m− 2
4+d ), achieved by selecting the bandwidth h =

O((logm)
1

4+d m− 1
4+d ). Consequently, if n is sufficiently large, by Theorem 1, θ̃ KS

m,n, the CoVaR estimator

using kernel smoothing, satisfies

θ̃ KS
m,n − θ=OP

(

(log Γ)
2

4+d Γ− 2
4+d

)

≈OP

(

Γ− 2
4+d

)

,

where the approximation holds because we may ignore the logarithmic term as it has little impact on the

overall convergence rate.

Kernel smoothing offers a flexible, non-parametric approach for estimating f , yet it has limitations. First,

it suffers from the curse of dimensionality, as highlighted by Hong et al. (2017), making it inefficient for

high-dimensional problems like CoVaR estimation. Second, kernel smoothing is a memory-based tech-

nique, requiring the storage and computation of numerous kernel functions to calculate f̃m(z) for each z

value. In CoVaR estimation, µ̃m(z) and π̃m(z) need to be computed for many values of z in Stage 2 of

Algorithm 3, which can be computationally burdensome.

Kernel Ridge Regression. KRR, also known as regularized least-squares (Caponnetto and De Vito

2007), estimates f by solving the following regularized least-squares problem:

f̃m = argmin
f∈Hk

1

m

m∑

j=1

(f (zj)−xj)
2
+λ‖f‖2

Hk ,

where Hk denotes the reproducing kernel Hilbert space induced by the kernel function k(·, ·), and λ > 0

is a regularization parameter. The solution to this optimization problem has the following representation

(Schölkopf et al. 2001):

f̃m(z) = k⊤z (K +mλI)−1X, (4)

where kz = (k(z1, z), . . . , k(zm, z))
⊤, K is an m × m matrix with (i, j)-th entry k(zi, zj), and X =

(x1, . . . , xm)
⊤. When using the Matérn kernel with smoothness parameter ϑ, we have ‖f̃m‖2 < ∞ and

‖Dkf̃m‖2 <∞ for any 0<k≤ ϑ̃= ϑ+ d/2 (Kanagawa et al. 2018).

Given that, at the beginning of this subsection, we assumed f has smoothness of order ν, implying that

‖Dkf‖2 <∞ for any k ≤ ν, we can choose ϑ such that ϑ̃ ≥ ν. This guarantees that ‖Dν(f̃m − f)‖2 ≤
‖Dν f̃m‖2 + ‖Dνf‖2 <∞. By Proposition 6, it is clear that δ = d

2ν
, and thus:

‖f̃m − f‖∞ ≤ c‖Dν(f̃m − f)‖δ2 · ‖f̃m − f‖1−δ
2 + c‖f̃m − f‖2 =O

(

‖f̃m − f‖
2ν−d
2ν

2

)

=OP

(

m− 2ν−d
4ν+2d

)

,
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where the last equality holds because ‖f̃m − f‖2 =OP

(

m− ν
2ν+d

)

for KRR, as shown by Steinwart et al.

(2009). Consequently, if n is sufficiently large, by Theorem 1, θ̃ KRR
m,n , the CoVaR estimator using KRR,

satisfies

θ̃ KRR
m,n − θ=OP

(

Γ− 2ν−d
4ν+2d

)

≈OP

(
Γ−1/2

)
,

where the approximation holds because portfolio loss functions typically exhibit high-order smoothness

(i.e., ν tends to be large, potentially even infinite), as we discussed in Section 4.1. In such cases, the CoVaR

estimator overcomes the curse of dimensionality and achieves approximately the best possible rate for

Algorithm 3.

However, despite its favorable sample efficiency, KRR is not without limitations. Like kernel smoothing,

it is a memory-based technique, requiring the computation, storage, and manipulation of kernel matrices

to compute f̃m(z) for each z, which makes the Stage 2 of Algorithm 3 computationally expensive. Addi-

tionally, fitting f̃m requires tuning hyper-parameters, such as the regularization parameter λ and the kernel

length scale, a process that is both time-consuming and critical for the algorithm’s performance.

Neural Networks. Neural networks are universal function approximators, as established by Hornik et al.

(1989). They learn to map inputs to outputs by processing data through layers of interconnected nodes,

analogous to the interactions between neurons in the brain. when using neural networks, the first step is

to choose their architecture, which includes selecting the activation function σ(·), the number of layers L,

the number of hidden units H l for each layer l=1, . . . ,L, and the structure of connections between layers,

which defines the function class. In this paper, We focus on the popular class of neural networks, multilayer

perceptron (MLP) with the sigmoid activation function σ(x) = 1/(1+ e−x):

F(L,h,w) = {f̃MLP :H1 = · · ·=HL = h, |wl
ij | ≤w for all i, j, l},

where the MLP is represented as

f̃MLP =W
Lσ(· · ·σ(W 1σ(W 0z+ b

0)+ b
1)+ · · · )+ b

L

with weight matrices W l ∈R
Hl+1×Hl

and the bias vector bl ∈R
Hl+1×1, where wl

ij denotes the elements of

weight matrix W
l.

Given the data {(z1, x1), (z2, x2), . . . , (zm, xm)}, neural networks estimate f by solving the following

optimization problem:

f̃m = argmin
fΞ∈F(L,h,w)

1

m

m∑

j=1

(fΞ(zj)−xj)
2
,

where Ξ represents the collection of all weights and biases across the layers. Due to the smoothness of

the sigmoid activation function and the constraint |wl
ij | ≤ w for all i, j, l, we have ‖Dkf̃m‖∞ < ∞ for

any k < +∞, following the chain rule. Recalling that f is assumed to have smoothness of order ν, i.e.,



Lin, Song and Hong: Efficient Nested Estimation of CoVaR 23

‖Dkf‖∞ <∞ for any k≤ ν, it follows that ‖Dν(f̃m−f)‖∞ ≤‖Dν f̃m‖∞+‖Dνf‖∞ <∞. By Proposition

6, we have δ= d/(d+2ν) and

‖f̃m − f‖∞ ≤ c‖Dν(f̃m − f)‖δ∞ · ‖f̃m − f‖1−δ
2 + c‖f̃m − f‖2

= O

(

‖f̃m − f‖
2ν

2ν+d
2

)

=OP

(

(logm)
3ν

2(d+2ν)m
− 2ν2

(2ν+d)2

)

where the last equality holds because ‖f̃m − f‖2 =OP

(

(logm)3/2m− ν
2ν+d

)

, as demonstrated by Langer

(2021). Consequently, if n is sufficiently large, by Theorem 1, θ̃ NN
m,n , the CoVaR estimator using neural

networks, satisfies

θ̃ NN
m,n − θ=OP

(

(logΓ)
3ν

2(d+2ν)Γ
− 2ν2

(2ν+d)2

)

≈OP

(
Γ−1/2

)
,

where the approximation holds because portfolio loss functions typically exhibit high-order smoothness and

the logarithmic term is ignored. Similarly to using KRR, the CoVaR estimator using neural networks also

overcomes the curse of dimensionality and achieves approximately the best possible rate for Algorithm 3.

Compared to KRR, neural networks require even more time for tuning and training, as it needs to tune

more hyper-parameters than KRR. However, they also offer a key advantage over KRR: once trained, they

can compute f̃m(z) for any z very quickly, regardless of the size of the training data, as they are not memory-

based. This speed makes neural networks ideal for the second stage of Algorithm 3, allowing the algorithm

to effectively adapt to an offline-online setting, as we will elaborate in Remark 1 at the end of this section.

Summary. Among the four smoothing techniques considered in this section, kernel smoothing suffers

from the curse of dimensionality, making it less suitable for CoVaR estimation, which requires approximat-

ing high-dimensional portfolio loss functions. Linear regression is easy to implement and computationally

efficient, but it can suffer from bias, particularly in high-dimensional settings where selecting appropriate

basis functions may be challenging. Both KRR and neural networks can exploit the high-order smoothness

of portfolio loss functions, thereby mitigating the curse of dimensionality. However, both methods are com-

putationally intensive to fit and require extensive parameter tuning. Section 5 presents extensive numerical

studies to compare the performance of various smoothing techniques.

It is important to emphasize that Algorithm 3 and Theorem 1 provide a flexible “plug-and-play” frame-

work for estimating CoVaR. This framework allows for the use of any smoothing technique to approximate

the portfolio loss functions µ(z) and π(z), and it offers the convergence rate of the resulting CoVaR estima-

tor, provided the ‖f̃m − f‖∞ convergence rate of the smoothing technique is known. Therefore, while we

focus on four commonly used smoothing techniques in this section, any smoothing technique with a known

convergence rate can be utilized within this framework.

We conclude this section with a remark on the potential of shifting the first stage of Algorithm 3 to an

offline setting, making the heavy computational effort required for generating inner-level observations and

training and tuning functional approximations more manageable.
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REMARK 1. The decoupled approach offers another interesting potential. In the first stage of the algorithm,

full knowledge of the distribution of Z is not necessary, since the goal is simply to approximate the loss

functions µ(z) and π(z). This means the function approximations can be done prior to time 0, before the

distribution of Z is known, as long as the portfolio remains unchanged. By constructing µ̃m(z) and π̃m(z)

offline, we can employ a larger number of inner-level observations and have more time for training and

tuning, both of which will improve the accuracy of the approximations. In the online phase, only the second

stage of Algorithm 3 needs to be implemented, which only involves cheap outer-level scenarios.

Among the smoothing techniques discussed in Section 4.2, kernel smoothing and KRR are not ideal for

the online phase because they are memory-based methods, which are slow to evaluate µ̃m(z) and π̃m(z)

for newly simulated z values. However, linear regression and neural networks are highly efficient for real-

time evaluation, making them suitable candidates for the online phase. This efficiency allows for a larger

second-stage sample size n, leading to better-performing CoVaR estimators.

5. Numerical Studies

In this section, we evaluate the empirical performance of the decoupled estimators of CoVaR. Specifically,

we focus on three key questions: (i) Do decoupled estimators outperform coupled estimators? (ii) What

are the empirical sample efficiencies of decoupled estimators with different smoothing techniques? (iii)

What are the practical guidelines for selecting an appropriate smoothing technique? To ensure the practical

relevance of the example, we consider two high-dimensional portfolios, each characterized by the same

300-dimensional risk factors, and estimate the corresponding CoVaR. All experiments are implemented in

Python and run on a system equipped with two Intel Xeon Gold 6248R CPUs (each with 24 cores) and

256GB of RAM.

We firstly introduce the settings of the example. LetX and Y denote the discounted random losses of the

two portfolios at a future time T , both underlying the same risk factors. Each portfolio consists of stocks,

up-and-out barrier call options, and geometric Asian call options, whose values at time t are written on

q = 100 stocks S(t) = (S1(t), . . . , Sq(t)) ∈ R
q. We assume the stock prices follow a multi-dimensional

geometric Brownian motion, where for each dimension:

dSi(t)

Si(t)
= µidt+ σ̄idB̄i(t),∀i=1, . . . , q, (5)

with µi representing the drift, taking real-world annual return of the stock for t ∈ [0, τ ] and the risk-free

rate rf for t ∈ [τ,T ], and B̄i(t) representing a standard one-dimensional Brownian motion. The Brownian

motions B̄i(t) and B̄j(t) are correlated with correlation ρij . Let Σ∈R
q×q denotes the matrix whose element

Σij = ρij σ̄iσ̄j . Then, (σ̄1B1(t), . . . , σ̄qBq(t)) ∼ BM(0,Σ). Let A denote a matrix such that AA⊤ = Σ,
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which can be obtained via the Cholesky factorization of Σ (Glasserman 2004). In this way, we can rewrite

Equation (5) as

dSi(t)

Si(t)
= µidt+

q∑

j=1

σijdBj(t),∀i= 1, . . . , q,

where σij are the elements of A and B(t) = (B1(t), . . . ,Bq(t)) is a standard multi-dimensional Brownian

motion, BM(0, I), where I is the q-dimensional identity matrix.

Let V 1
0 and V 2

0 denote the portfolio values at at t=0, and V 1
τ and V 2

τ the portfolio values at t= τ . Notice

that V 1
0 and V 2

0 are observable at time 0. According to derivative pricing theory (Duffie 2010), the portfolio

loss function at t= τ can be expressed as µ(Z) = V 1
0 −V 1

τ and π(Z) = V 2
0 −V 2

τ , where

V j
τ = E



wj
1

q
∑

i=1

Si(τ)+wj
2

q
∑

i=1

e−rf (T−τ)







(
M∏

l=1

Si(tl)

)1/M

−Kj
i1







+

+ wj
3

q
∑

i=1

e−rf (T−τ) (Si(T )−Kj
i2)

+I

{

max
0≤t≤T

Si(t)≤Bj
i

}∣
∣
∣
∣
Z

]

, j = 1,2, (6)

and the vector of risk factors Z ∈R
3q is defined as

Z =



S1(τ), . . . , Sq(τ), max
0≤t≤τ

S1(t), . . . , max
0≤t≤τ

Sq(t),

(
Mτ∏

l=1

S1(tl)

)1/Mτ

, . . . ,

(
Mτ∏

l=1

Sq(tl)

)1/Mτ


 .

Here, Kj
i1, Kj

i2 and Bi are the strike prices and the barrier prices. The Asian options are monitored at time

0< t1 < . . . < tM = T , where M is the times of monitoring during t ∈ [0, T ]. We also assume that the risk

horizon τ = tMτ , with Mτ times of monitoring during t ∈ [0, τ ]. The positions of the two portfolios are

represented as w1 = (w1
1,w

1
2,w

1
3) and w

2 = (w2
1,w

2
2,w

2
3), respectively.

To estimate the portfolio losses at time τ , a two-level simulation is typically conducted: simulating obser-

vations of risk factor Z as the outer-level scenarios and then, based on outer-level scenario, generating the

inner-level sample paths of the risk factors from time τ to T to obtain the observations ofX and Y according

to Equation (6). To obtain a more accurate estimator of barrier option price, we apply the Brownian interpo-

lation method discussed in the Section 6.4 of Glasserman (2004). Also, considering the high-dimensional

nature of this example, we consider three smoothing techniques: linear regression, KRR and neural net-

works.

Other details of the numerical settings are summarized as follows. We set q =100 and thus the risk factor

vector Z has 300 dimensions. The risk free rate is set to rf = 0.05, and the drift vector µ and covariance

matrix Σ are generated randomly with a fixed random seed. We set T =1, divide the period into 50 intervals,

and set τ = 2/50. For simplicity, we set M = 50 as well. The strike prices Kj
i1 and Kj

i2 are all set as 105,

and the barrier prices Bj
i are all set to 120. The position vectors of the two portfolios are w

1 = [2,1,−1]
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and w
2 = [2,−1,3]. Furthermore, in this section, we are interested in estimating the (0.95,0.95)-CoVaR,

i.e., α= β =0.95.

It is important to note that, for this particularly example, the closed-form expressions of µ(z) and π(z)

may be derived, so we can accurately calculate the true value of the CoVaR and use it as the benchmark.

In particular, we find the (0.95,0.95)-CoVaR of this example is 261.66. When implementing the CoVaR

estimators considered in this paper, we do not use these closed-form expressions, and estimate µ(z) and

π(z) through either nested simulation or smoothing.

5.1. Empirical Sample Efficiency

In this subsection, we perform numerical experiments to evaluate the performance of various CoVaR esti-

mators under different budget levels of Γ. Specifically, we consider four coupled estimators: the standard

nested simulation (SNS) estimator, along with three smoothing-based coupled estimators employing linear

regression (LR), KRR, and neural networks (NN), respectively. These estimators were referred to as “naı̈ve

estimators” in Section 2.2. Additionally, we assess three decoupled estimators that utilize LR, KRR, and

NN, respectively. The experiments are conducted across three budget scenarios: Γ = 1× 104, 1× 105 and

1× 106.

The performance of the estimators is evaluated using three metrics: relative bias (r-bias), relative standard

deviation (r-SD), and relative root mean-squared error (r-RMSE). These metrics are calculated based on 40

replications of the simulation. Let m denote the outer-level sample size in the two-level simulation, and l

represent the inner-level sample size for each outer-level scenario, with Γ=ml representing the total budget

of inner-level observations. For the batching estimation, we use k and h to denote the number of batches

and the batch size, respectively. It is important to note that in the case of coupled estimators, the relationship

m= kh must be satisfied, whereas in decoupled estimators, k and h are independent of m. Therefore, for

the decoupled approach, we set k= h= 500, i.e., n=2.5× 105 , due to the lower computational cost of the

outer-level simulation. The results of the coupled estimators are reported in Tables 1 to 4, while the result

of the decoupled estimators are presented in Tables 5 to 7.

From these numerical results, we can address the first two questions posed at the beginning of this section.

First, the decoupled approach clearly outperforms the coupled approach across the board. The standard

nested simulation estimator is inefficient for estimating CoVaR, with a relative RMSE of 12.62% even when

Γ = 106. Regardless of the smoothing technique applied, decoupled estimators consistently achieve better

sample performance than coupled estimators. For instance, with Γ= 105 for KRR and neural networks, or

Γ= 106 for linear regression, decoupled estimators yield relative RMSEs below 2%, a level of accuracy that

none of the coupled estimators can match. This result underscores the significant advantage of decoupled

approach.
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Table 1 The Performance of SNS

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 50 20 0.2441 0.1356 0.2793

1× 105 1× 104 25 80 50 0.1936 0.0682 0.2052

1× 106 5× 104 50 200 100 0.1222 0.0315 0.1262

Table 2 The Performance of Coupled LR Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 50 20 0.1655 0.0806 0.1841

1× 105 1× 104 10 100 100 0.0476 0.0384 0.0612

1× 106 5× 104 20 250 200 0.0148 0.0169 0.0225

Table 3 The Performance of Coupled KRR Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 50 20 0.0229 0.0597 0.0640

1× 105 1× 104 10 100 100 0.0214 0.0368 0.0426

1× 106 5× 104 20 250 200 0.0145 0.0175 0.0227

Table 4 The Performance of Coupled NN Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 50 20 0.0589 0.0600 0.0840

1× 105 1× 104 10 100 100 0.0251 0.0275 0.0373

1× 106 5× 104 20 250 200 0.0255 0.0201 0.0325

Secondly, as the computational budget increases, nearly all performance metrics improve, aligning with

our theoretical expectations. However, several interesting observations emerge. While linear regression

under-performs KRR and neural networks with a smaller budget (Γ= 1× 104), it achieves excellent results

with a sufficiently large dataset (Γ= 1× 106), obtaining a relative RMSE of just 1.51%. Even with a small

computational budget (Γ = 104), KRR and neural networks deliver strong CoVaR estimates, with relative

RMSEs below 3.6%. However, increasing computational budget does not always yield better results, as

seen in the last line of Table 7. The empirical performance of KRR and neural networks is highly sensitive

to the selection of hyper-parameters. A larger dataset significantly slows down the hyper-parameter tuning

process, making it more difficult to identify optimal settings.

While inner-level simulation is often regarded as the primary computational bottleneck, smoothing tech-

niques that require extensive tuning and iterative training, such as KRR and neural networks, can also add

considerable computational overhead. Therefore, it is crucial to consider these trade-offs when assessing

the overall computational efficiency of different estimators. We will explore this issue in more detail in the

next subsection.
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Table 5 The Performance of Decoupled LR Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 500 500 0.2155 0.0383 0.2189

1× 105 1× 104 10 500 500 0.0338 0.0154 0.0371

1× 106 5× 104 20 500 500 0.0061 0.0138 0.0151

Table 6 The Performance of Decoupled KRR Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 500 500 -0.0151 0.0270 0.0309

1× 105 1× 104 10 500 500 0.0037 0.0132 0.0137

1× 106 5× 104 20 500 500 0.0015 0.0103 0.0104

Table 7 The Performance of Decoupled NN Approach

Γ m l k h r-bias r-SD r-RMSE

1× 104 1× 103 10 500 500 0.0168 0.0317 0.0359

1× 105 1× 104 10 500 500 0.0021 0.0121 0.0123

1× 106 5× 104 20 500 500 0.0088 0.0126 0.0154

5.2. Computational Efficiency and Selection of Smoothing Techniques

In this subsection, we focus on the computational efficiency of decoupled estimators and aim to provide

intuitive guidelines for selecting appropriate smoothing techniques. We break down the entire estimation

process of the decoupled approach into more detailed phases and carefully analyze the computation time

for each. Specifically, the first stage is split into three phases: two-level simulation, tuning, and fitting. The

second stage is divided into two phases: simulation and estimation.

It’s worth recalling that J.P. Morgan’s well-known “4:15 report” requires the company to consolidate

the risks from all trading desks within 15 minutes of the market’s closing, based on the final values of

the underlying factors. In this numerical example, we strive to keep the computation time for decoupled

approaches, using linear regression, KRR, and neural networks, within that 15-minute window. The sample

allocation, estimation error, and computation time for each phase are reported in Tables 8 to 10, which are

based on 40 replications.

To fully utilize the 15-minute time budget, the sample and computation time allocations vary depending

on the smoothing technique used. It’s essential to note that while inner-level simulations have tradition-

ally been viewed as highly time-consuming, advances in computational power—particularly through matrix

operations—have significantly accelerated these processes. In this study, the shift from loop-based calcula-

tions (such as in Wang et al. (2024)) to matrix operations has led to approximately a fifteenfold increase in

the speed of inner-level simulations.

For linear regression, the tuning process involves selecting basis functions via cross-validation. Linear

regression tends to perform best with larger sample sizes, and given the simplicity of tuning and fitting, we
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Table 8 The Computation Time of Decoupled LR

Sample Allocation Error

Γ m l k h r-bias r-SD r-RMSE

1× 106 5× 104 20 1500 1500 -0.0012 0.0074 0.0075

Computation Time

The First Stage The Second Stage

simulation tuning fitting simulation estimation total

615.20 193.04 1.61 70.03 29.20 909.08

Table 9 The Computation Time of Decoupled KRR

Sample Allocation Error

Γ m l k h r-bias r-SD r-RMSE

1.5× 105 1.5× 104 10 500 500 0.0049 0.0145 0.0153

Computation Time

The First Stage The Second Stage

simulation tuning fitting simulation estimation total

91.73 588.86 30.98 7.69 190.61 909.88

Table 10 The Computation Time of Decoupled NN

Sample Allocation Error

Γ m l k h r-bias r-SD r-RMSE

5× 104 5× 103 10 2000 2000 0.0011 0.0158 0.0158

Computation Time

The First Stage The Second Stage

simulation tuning fitting simulation estimation total

28.72 615.45 130.82 114.99 22.33 912.31

allocate most of the computation time to the first stage simulation, setting Γ = 106. With fast outer-level

simulations and rapid prediction from the fitted model, we use k = h= 1500. This leads to a low relative

RMSE of 0.75%, as shown in Table 8.

For KRR, tuning involves selecting the penalty coefficientλ and the parameters of the kernel function. We

use a Gaussian kernel and apply grid search during tuning. While KRR performs well with moderate sample

sizes (Γ), tuning, fitting, and prediction require handling large matrices, which becomes time-intensive and

memory-consuming, especially with large Γ and n= kh. Therefore, we choose Γ= 1.5× 105 and k = h=
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500, smaller than for linear regression. As shown in Table 9, most computation time is dedicated to the

tuning and estimation phases, resulting in a 1.53% relative RMSE.

For neural networks, tuning is even more complex, requiring the selection of numerous hyper-parameters-

such as network architecture, learning rate, dropout rate, and training batch size—using iterative algorithms.

Excessively large datasets can hinder performance in limited time windows. Thus, we set Γ = 5× 104 to

manage the tuning and training effectively. However, prediction is very fast, allowing us to set a larger

sample size for the second stage (k = h= 2000). Estimation with neural networks is observed to be even

faster than with linear regression. The results are presented in Table 10.

Each smoothing technique exhibits different trade-offs between computational time and sample effi-

ciency. For applications where sample generation is not a concern, linear regression is highly efficient,

particularly if structural information about the portfolios is available. However, in scenarios with limited

computational capacity for simulations, KRR and neural networks can provide more accurate estimations.

In cases where the first stage can be performed offline, linear regression and neural networks stand out due

to their fast second-stage estimation.

6. Conclusions

This paper investigates the estimation of CoVaR in scenarios where the loss functions of the financial port-

folios must be estimated from simulation samples. Our approach addresses two primary challenges in this

problem: ZPE and repricing. We propose a decoupled approach that incorporates the advanced smoothing

techniques, and develop a model-independent theoretical framework for examining the convergence behav-

ior of the proposed estimator. The analysis reveals that the decoupled estimator attains a convergence rate of

approximately OP(Γ
−1/2) when the computational budget is Γ. This good sample efficiency is achievable

provided the loss functions are sufficiently smooth and the chosen smoothing technique exhibits high L∞

convergence rates. We further discuss the smoothness of portfolio loss functions under general conditions

and the L∞ convergence rates of various smoothing techniques. Through extensive numerical experiments,

we demonstrate the performance of the decoupled estimators of CoVaR, and provide practical insights on

selecting appropriate smoothing techniques.

Appendix A: Examples of Derivatives Prices With Closed-form Expressions

A.1. Example 1: European Call Option Under Geometric Brownian Motion

The analytical pricing formula of European call option with an underlying asset whose price St

follows a geometric Brownian motion, given by

dSt = rStdt+ σStdBt
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is given by

C(St, t) = StN(d1)−Ke−r(T−t)N(d2),

where

d1 =
ln(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

d2 = d1−σ
√
T − t,

and N(·) is the standard normal cumulative distribution function.

A.2. Example 2: Barrier Up-and-Out Call Option Under Geometric Brownian Motion

The closed-form pricing expression of barrier up-and-out call option, with an underlying asset

whose price St follows a geometric Brownian motion, is given by

C(St, t) = St

[

N

(

δ+

(

T − t,
St

K

))

−N

(

δ+

(

T − t,
St

B

))]

− e−r(T−t)K

[

N

(

δ−

(

T − t,
St

K

))

−N

(

δ−

(

T − t,
St

B

))]

−B

(
St

B

)− 2r
σ2
[

N

(

δ+

(

T − t,
B2

KSt

))

−N

(

δ+

(

T − t,
B

St

))]

+ e−r(T−t)K

(
St

B

)− 2r
σ2+1 [

N

(

δ−

(

T − t,
B2

KSt

))

−N

(

δ−

(

T − t,
B

St

))]

,

0≤ t < T,0<St <B,

where

δ±(τ, s) =
1

σ
√
τ

[

ln s+ (r± 1

2
σ2)τ

]

.

A.3. Example 3: European Call Option Under Heston Model

Consider a European call option with an underlying asset whose price St follows the Heston model

as follows,

dSt = µStdt+
√
vtStdB

1
t

dvt = κ(θ− vt)dt+ σ
√
vtdB

2
t ,

where the correlation corr(B1
t ,B

2
t ) = ρt.

Then, the closed-form expression of the price of European call option is

C(St, vt, t) = StP1−Ker(T−t)P2,
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where

Pj(St, vt, T ; lnK) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ lnKfj(lnSt, vt, T ;φ)

iφ

]

dφ, j = 1,2.

Specifically,

fj(lnSt, vt, t;φ) = eC(T−t;φ)+D(T−t;φ)vt+iφ lnSt ,

where

C(τ ;φ) = rφiτ +
a

σ2

{

(bj − ρσφi+ d) τ − 2 ln

[
1− gedτ

1− g

]}

,

D(τ ;φ) =
bj − ρσφi+ d

σ2

[
1− edτ

1− gedτ

]

and

g =
bj − ρσφi+ d

bj − ρσφi− d
,

d=

√

(ρσφi− bj)
2−σ2 (2ujφi−φ2).

Other parameters are defined as

u1 = 1/2, u2 =−1/2, a= κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ.

Note that the integrand Pj(St, vt, T ; lnK) is a smooth function (Heston 1993).

Appendix B: Lemmas and Proofs

B.1. Lemma 1 and Its Proof

LEMMA 1. Suppose Assumption 1 holds. In addition, for sufficiently large m and conditioned

on fitted portfolio loss functions µ̃m(·), the joint density function bm(x,u) of (µ(Z), ηm(Z)) and

its partial derivatives ∂xbm(x,u) and ∂2xbm(x,u) exist for all x and u, and satisfies the following

regularity conditions: there exist non-negative functions b̄m,i(u), i= 0,1,2 such that

bm(x,u)≤ b̄m,0(u), |∂xbm(x,u)| ≤ b̄m,1(u),
∣
∣∂2xbm(x,u)

∣
∣≤ b̄m,2(u) (7)

for all x and u, with

Br,i ≡ sup
m

∫

R

|u|rb̄m,i(u)<∞ (8)

for r= 0,1,2,3 and i= 0,1,2. Then for any sequence {xm} such that xm → x as m→∞, we have

fµ̃m(xm)→ fµ(x) and f ′
µ̃m

(xm)→ f ′
µ(x) almost surely as m→∞.
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REMARK 2. The regularity conditions specified in Lemma 1 and subsequent lemmas within

this section align with those typically assumed in the nested simulation literature, e.g.,

Gordy and Juneja (2010). These conditions are expected to hold when the portfolio loss surfaces

and their fitted approximations exhibit sufficient smoothness, aligning with the basic assumptions

of our framework. Through our analysis, we assume that boundedness conditions are satisfied

almost surely in line with the conventional practices in the literature. However, it is possible to

modify these conditions to allow for stochastic boundedness, which would change our results from

convergence almost surely to convergence in probability. Although this modification is feasible,

it would significantly complicate the proofs without providing substantial additional insights or

benefits. Therefore, we retain the original assumptions for clarity and conciseness in our analysis.

Proof of Lemma 1. We represent fµ̃m and fµ in terms of bm. Notice that

Fµ̃m(x) = Prm{µ̃m(Z)≤ x}=Prm{µ(Z) + amηm(Z)≤ x}=
∫

R

∫ x−amu

−∞

bm(s, u)dsdu,

Fµ(x) = Pr{µ(Z)≤ x}=
∫

R

∫ x

−∞

bm(s, u)dsdu.

Notice that for any x′ 6= x, by (7),

∣
∣
∣
∣
∣

∫ x′−amu

−∞
bm(s, u)ds−

∫ x−amu

−∞
bm(s, u)ds

x′ −x

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ x′−amu

x−amu
bm(s, u)ds

x′ −x

∣
∣
∣
∣
∣
≤ b̄m,0(u),

where b̄m,0 is integrable due to (8). Therefore, by dominated convergence theorem, we can derive

fµ̃m(x) by differentiating Fµ̃m(x) and switch integration and differentiation, which yields

fµ̃m(x) =
d

dx

∫

R

∫ x−amu

−∞

bm(s, u)dsdu=

∫

R

d

dx

∫ x−amu

−∞

bm(s, u)dsdu=

∫

R

bm(x− amu,u)du.

Similarly, we have

fµ(x) =

∫

R

bm(x,u)du.

As a result,

fµ̃m(xm)− fµ(x) =

∫

R

[bm(xm − amu,u)− bm(x,u)]du

=

∫

R

∂xbm(x
∗, u) · (xm− amu−x)du

= (xm−x)

∫

R

∂xbm(x
∗, u)du− am

∫

R

u · ∂xbm(x∗, u)du.
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where x∗ lies between x− amu and x. Therefore

|fµ̃m(xm)− fµ(x)| ≤ |xm−x| ·
∫

R

|∂xbm(x∗, u)|du+ am ·
∫

R

|u · ∂xbm(x∗, u)|du

≤ |xm−x| ·
∫

R

b̄m,1(u)du+ am ·
∫

R

|u|b̄m,1(u)du

≤ |xm−x| ·B0,1+ am ·B1,1.

As m→ 0, xm − x→ 0 and am → 0. Therefore, by (8), we have fµ̃m(xm)→ fµ(x). Similarly, we

can show that f ′
µ̃m

(xm)→ f ′
µ(x). �

B.2. Lemma 2 and Its Proof

LEMMA B.1. Let Φm(x;w) and φm(x;w) be the cumulative distribution function and density of

µ(Z)+wηm(Z) for any w ∈ [0, am]. Assume Assumption 1 and regularity conditions of Lemma 1

hold. In addition, assume fµ(q)> 0. Then

(1) φm(x;w) is continuous with respect to w and x.

(2) ∂wΦm(x;w) exists and is continuous with respect to w and x.

(3) For any w ∈ (0, am), Em[ηm(Z)|µ(Z) + wηm(Z) = x] is continuous with respect to x at

x= q for sufficiently large m.

Proof of Lemma B.1. We first represent Φm(x;w) and φm(x,w) in terms of bm by

Φm(x;w) = Prm{µ(Z) +wηm(Z)≤ x}=
∫

R

∫ x−wu

−∞

bm(s, u)dudv,

φm(x;w) = ∂xΦm(x;w) =

∫

R

bm(x−wu,u)du,

where the formula for φm is derived by switching integration and differentiation under the regular-

ity conditions on bm and ∂xbm in the similarly way as in the proof of Lemma 1. Then apply mean

value theorem, and use (7) and (8), we have

|φm(x;w
′)−φm(x;w)|=

∣
∣
∣
∣

∫

R

bm(x−w′u,u)− bm(x−wu,u)du

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∂xbm(s
∗∗, u)(w′−w)(−u)du

∣
∣
∣
∣

≤ |w′−w|
∫

R

|u|b̄m,1(u)du

≤ |w′−w| ·B1,1.

|φm(x
′;w)−φm(x;w)|=

∣
∣
∣
∣

∫

R

bm(x
′ −wu,u)− bm(x−wu,u)du

∣
∣
∣
∣
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=

∣
∣
∣
∣

∫

R

∂xbm(s
∗∗∗, u)(x′ −x)du

∣
∣
∣
∣

≤ |x′ −x|
∫

R

b̄m,1(u)du

≤ |x′ −x| ·B0,1,

where s∗∗ lies between x−wu and x−w′u and s∗∗∗ lies between x−wu and x′−wu. This implies

that φm(x;w) is continuous with respect to both w and x.

Next, notice that
∣
∣
∣
∣
∣

∫ x−w′u

−∞
bm(s, u)ds−

∫ x−wu

−∞
bm(s, u)ds

w′−w

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∫ x−wu

x−w′u
bm(s, u)ds

w′−w

∣
∣
∣
∣
∣
≤ |u|b̄m,0(u),

Therefore, by dominated convergence theorem and (8), we can derive ∂wΦm(x;w) by differentiat-

ing Φm(x;w) and switch integration and differentiation, which yields

∂wΦm(x;w) = ∂w

∫

R

∫ x−wu

−∞

bm(s, u)dudv=

∫

R

∂w

∫ x−wu

−∞

bm(s, u)dudv=−
∫

R

u · bm(x−wu,u)du.

Similarly, apply mean value theorem, and use (7) and (8), we know ∂wΦm(x;w) is continuous with

respect to w and x under the regularity conditions on u2∂xbm and u∂xbm, respectively.

Last, we have

Em[ηm(Z)|µ(Z) +wηm(Z) = x] =

∫

R
u · bm(x−wu,u)du

φm(x,w)
.

We have shown that both the denominator and the numerator are continuous with respect to

x. In addition, φm(x,w) is continuous with respect to w and φm(q,0) ≡ fµ(q) > 0, and hence

φm(x,w)> 0 for x= q and w ∈ (0, am) for sufficiently large m. Therefore the conditional expec-

tation is continuous at with respect to x at x= q for sufficiently large m. �

LEMMA 2. Under Assumption 1 and regularity conditions of Lemma 1 and B.1, we have

Fq[µ̃m]−Fq[µ] =OP(am).

Proof of Lemma 2. We first show that Fq[µ+wηm] is differentiable with respect tow ∈ (0, am),

and
d

dw
Fq[µ+wηm] =−φm(q;w)Em[ηm(Z)|µ(Z) +wηm(Z) = q]. (9)

This result can be proved by applying Theorem 1 of Hong (2009), which states that for real number

q and bi-variate function h : Ω× (0, am)→R, we have

p′q(w) =−φ(q;w)E[∂wh(Z,w)|h(Z,w) = q], (10)

for any w ∈ (0, am), where pq(w) = Pr{h(Z,w)≤ q}, if the following conditions are satisfied:
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(a) The path-wise derivative ∂wh(Z,w) exists w.p.1 for any w ∈ (0, am), and there exists a

function k(Z) with E[k(Z)]<∞, such that |h(Z,w1)−h(Z,w2)| ≤ k(Z)|w2−w1| for all w1,w2.

(b) Let Φ(t;w) and φ(t;w) denote the cumulative distribution function and density of h(Z,w).

For any w ∈ (0, am), h(Z,w) has a continuous density φ(t;w) in a neighborhood of t = q, and

∂wΦ(t;w) exists and is continuous with respect to both w and t at t= q.

(c) For any w ∈ (0, am), E[∂wh(Z,w)|h(Z,w) = t] is continuous at t= q.

In order to prove (9), we set h(z,w) = µ(z) + wηm(z), and verify the validity of the above con-

ditions. On the one hand, ∂wh(Z,w) = ηm(Z), and |h(Z,w1)− h(Z,w2)| = |ηm(Z)(w2 − w1)|.
Therefore condition (a) holds with k(Z) = ηm(Z). On the other hand, condition (b) and (c)

also hold due to Lemma B.1. Therefore, we can apply (10) to pq(w) = Prm{h(Z,w) ≤ q} =

Prm{µ(Z) +wηm(Z)≤ q}=Fq[µ+wηm], which gives (9).

Now notice that

Fq[µ̃m]−Fq[µ] =Fq[µ+wηm]
∣
∣
w=am

−Fq[µ+wηm]
∣
∣
w=0

=

∫ am

0

d

dw
Fq[µ+wηm]dw

=

∫ am

0

−φµ̃m(q;w)E[ηm(Z)|µ(Z) +wηm(Z) = q]dw,

and hence

|Fq[µ̃m]−Fq[µ]| ≤
∫ am

0

φµ̃m(q;w)dw · ‖ηm‖∞.

Since

∫ am

0

φµ̃m(q;w)dw=

∫ am

0

∫

R

bm(q−wu,u)dudw

=

∫ am

0

∫

R

[bm(q, u)− ∂xbm(q
∗, u) ·wu]dudw

≤
∫ am

0

∫

R

[bm(q, u) + |∂xbm(q∗, u)| ·w|u|]dudw

=

∫ am

0

∫

R

bm(q, u)dudw+

∫ am

0

∫

R

|∂xbm(q∗, u)| ·w|u|dudw

≤ am · fµ(q) +
a2m
2

·B1,1

=O(am),

where q∗ is between q and q−wu. Therefore Fq[µ̃m]−Fq[µ] =O(am) ·‖ηm‖∞ =O(‖µ̃m−µ‖∞) =

OP(am). �
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B.3. Lemma 3 and Its Proof

LEMMA 3. Suppose Assumption 1 holds. For sufficiently large m, hm(x,u, y, v), the joint den-

sity function of (µ(Z), ηm(Z), π(Z), γm(Z)), and its derivative ∂xhm(x,u, y, v), ∂yhm(x,u, y, v)

exist for all x,u, y and v. In addition, let hYm(x,u, y, v) =
∫ y

−∞
hm(x,u, y̌, v)dy̌. Its derivatives

∂xh
Y
m(x,u, y, v) and ∂2xh

Y
m(x,u, y, v) exist for all x,u, y and v. There exist non-negative functions

h̄m,i(u, v), i= 0,1,2, and h̄Ym,i(u, v), i= 0,1,2, such that

hm(x,u, y, v)≤ h̄m,0(u, v), |∂xhm(x,u, y, v)| ≤ h̄m,1(u, v), |∂yhm(x,u, y, v)| ≤ h̄m,2(u, v),

hYm(x,u, y, v)≤ h̄Ym,0(u, v), |∂xhYm(x,u, y, v)| ≤ h̄Ym,1(u, v), |∂2xhYm(x,u, y, v)| ≤ h̄Ym,2(u, v)

for all x,u, y and v, with

Hi ≡ sup
m

∫

R

∫

R

(1+ |u|+ |v|)rh̄m,i(u, v)dudv <∞,

HY
i ≡ sup

m

∫

R

∫

R

(1+ |u|+ |v|)rh̄Ym,i(u, v)dudv <∞

for i= 0,1,2 and r= 1,2. Then if (xm, ym)→ (x, y) and fµ(x) 6= 0, we have

∂xGµ̃m,π̃m(xm, ym)→ ∂xGµ,π(x, y), ∂yGµ̃m,π̃m(xm, ym)→ ∂yGµ,π(x, y).

Proof of Lemma 3. First of all, by noticing that bm(x,u) =
∫

R

∫

R
hm(x,u, y, v)dydv, it is easy

to check that the regularity conditions of Lemma 1 hold by setting

b̄m,i(u) =

∫

R

h̄m,i(u, v)dv

for i= 0,1. Therefore both the conclusions of Lemma 1 and 2 hold.

Next, we consider the partial derivatives with respect to y. We start by representing Gµ,π and

Gµ̃m,π̃m in terms of hm by

Gµ,π(x, y) = Pr{π(Z)≤ y|µ(Z) = x}

=

∫

R

∫ y

−∞

∫

R
hm(x,u, y̌, v)dudy̌dv

∫

R

∫

R

∫

R
hm(x,u, y̌, v)dudy̌dv

=

∫

R

∫ y

−∞

∫

R
hm(x,u, y̌, v)dudy̌dv

fµ(x)
;

Gµ̃m,π̃m(x, y) = Prm{π(Z) + amγm(Z)≤ y|µ(Z) + amηm(Z) = x}

=

∫

R

∫ y

−∞

∫

R
hm(x− amu,u, y̌− amv, v)dudy̌dv

∫

R

∫

R

∫

R
hm(x− amu,u, y̌− amv, v)dudy̌dv

=

∫

R

∫ y

−∞

∫

R
hm(x− amu,u, y̌− amv, v)dudy̌dv

fµ̃m(x)
.
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Since the integrations are interchangeable due to Fubini’s theorem, we have

∂yGµ,π(x, y) =

∫

R

∫

R
hm(x,u, y, v)dudv

fµ(x)
; (11)

∂yGµ̃m,π̃m(xm, ym) =

∫

R

∫

R
hm(xm− amu,u, ym− amv, v)dudv

fµ̃m(xm)
. (12)

Notice that

∣
∣
∣
∣

∫

R

∫

R

hm(xm − amu,u, ym− amv, v)dudv−
∫

R

∫

R

hm(x,u, y, v)dudv

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∫

R

[∂xhm(x
∗, u, y∗, v)(xm − amu−x) + ∂yhm(x

∗, u, y∗, v)(ym− amv− y)]dudv

∣
∣
∣
∣

≤ |xm −x| ·
∫

R

∫

R

|∂xhm(x∗, u, y∗, v)|dudv+ |ym− y| ·
∫

R

∫

R

|∂yhm(x∗, u, y∗, v)|dudv

+ am

[∫

R

∫

R

|u| · |∂xhm(x∗, u, y∗, v)|dudv+
∫

R

∫

R

|v| · |∂yhm(x∗, u, y∗, v)|dudv
]

≤ |xm −x| ·
∫

R

∫

R

h̄m,1(u, v)dudv+ |ym− y| ·
∫

R

∫

R

h̄m,2(u, v)dudv

+ am

[∫

R

∫

R

|u| · h̄m,1(u, v)dudv+

∫

R

∫

R

|v| · h̄m,(u, v)dudv

]

≤ |xm −x| ·H1+ |ym− y| ·H2+ am · (H1+H2).

As xm−x, ym− y and am converge to 0 when m→∞, the numerator of (12) converges to that of

(11). In addition, by Lemma 1, we know that the denominator of (12) converges to that of (11). As

a result, given that fµ(x) 6= 0, we have ∂yGµ̃m,π̃m(xm, ym)→ ∂yGµ,π(x, y).

Last, we consider the partial derivatives with respect to x. We have

∂xGµ,π(x, y) =
1

fµ(x)

∫

R

∫ y

−∞

∫

R

∂xhm(x,u, y̌, v)dudy̌dv

−
f ′
µ(x)

[fµ(x)]2

∫

R

∫ y

−∞

∫

R

hm(x,u, y̌, v)dudy̌dv

≡ 1

fµ(x)
Im,1(x, y)−

f ′
µ(x)

[fµ(x)]2
Im,2(x, y);

∂xGµ̃m,π̃m(x, y) =
1

fµ̃m(x)

∫

R

∫ y

−∞

∫

R

∂xhm(x− amu,u, y̌− amv, v)dudy̌dv

−
f ′
µ̃m

(x)

[fµ̃m(x)]
2

∫

R

∫ y

−∞

∫

R

hm(x− amu,u, y̌− amv, v)dudy̌dv

≡ 1

fµ̃m(x)
Ĩm,1(x, y)−

f ′
µ̃m

(x)

[fµ̃m(x)]
2
Ĩm,2(x, y).
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By Lemma 1, we know that fµ̃m(xm)→ fµ(x) and f ′
µ̃m

(xm)→ fµ(x). Then it suffices to show that

Ĩm,i(xm, ym)→ Im,i(x, y) for i= 1,2. Actually,

|Ĩm,1(xm, ym)− Im,1(x, y)|

=

∣
∣
∣
∣

∫

R

∫

R

[∫ ym

−∞

∂xhm(xm− amu,u, y̌− amv, v)dy̌−
∫ y

−∞

∂xhm(x,u, y̌, v)dy̌

]

dudv

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∫

R

[∫ ym−amv

−∞

∂xhm(xm − amu,u, y̌, v)dy̌−
∫ y

−∞

∂xhm(x,u, y̌, v)dy̌

]

dudv

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∫

R

[
∂xh

Y
m(xm − amu,u, ym− amv, v)− ∂xh

Y
m(x,u, y, v)

]
dudv

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∫

R

[
(xm − amu−x)∂2xh

Y
m(x

∗∗, u, y∗∗, v) + (ym− amv− y)∂xhm(x
∗∗, u, y∗∗, v)

]
dudv

∣
∣
∣
∣

≤ |xm−x| ·
∫

R

∫

R

h̄Ym,2(u, v)dudv+ |ym− y| ·
∫

R

∫

R

h̄m,1(u, v)dudv

+ am

[∫

R

∫

R

|u|h̄Ym,2(u, v)dudv+

∫

R

∫

R

|v|h̄m,1(u, v)dudv

]

≤ |xm−x| ·HY
2 + |ym− y| ·H1+ am · (HY

2 +H1),

and

|Ĩm,2(xm, ym)− Im,2(x, y)|

=

∣
∣
∣
∣

∫

R

∫

R

[∫ ym

−∞

hm(xm− amu,u, y̌− amv, v)dy̌−
∫ y

−∞

hm(x,u, y̌, v)dy̌

]

dudv

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R

∫

R

[
(xm− amu−x)∂xh

Y
m(x

∗∗∗, u, y∗∗∗, v) + (ym− amv− y)hm(x
∗∗∗, u, y∗∗∗, v)

]
dudv

∣
∣
∣
∣

≤ |xm−x| ·
∫

R

∫

R

h̄Ym,1(u, v)dudv+ |ym− y| ·
∫

R

∫

R

h̄m,0(u, v)dudv

+ am

[∫

R

∫

R

|u|h̄Ym,1(u, v)dudv+

∫

R

∫

R

|v|h̄m,0(u, v)dudv

]

≤ |xm−x| ·HY
1 + |ym− y| ·H0+ am · (HY

1 +H0).

As xm − x, ym − y and am converge to 0 when m→∞, we know that Ĩm,i(xm, ym)→ Im,i(x, y)

for i= 1,2. Given that fµ(x) 6= 0, we have ∂xGµ̃m,π̃m(xm, ym)→ ∂xGµ,π(x, y). �

B.4. Lemma 4 and Its Proof

LEMMA B.2. Denote Ψm(x, y;w,s) and ψm(x, y;w,s) be the joint cumulative distribution and

density function of (µ(Z) +wηm(Z), π(Z) + sγm(Z)) for w,s ∈ [0, am], respectively. Recall that

Φm(x;w) and φm(x;w) are the marginal cumulative distribution function and density of µ(Z) +
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wηm(Z), respectively. Assume Assumption 1 and regularity conditions of Lemma 3 hold. In addi-

tion, let hXm(x,u, y, v) =
∫ x

−∞
hm(x̌, u, y, v)dx̌ and its derivatives ∂yh

X
m(x,u, y, v) exist for all x,u, y

and v. There exist non-negative functions h̄Xm,i(u, v) i= 0,1 such that

hXm(x,u, y, v)≤ h̄Xm,0(u, v), |∂yhXm(x,u, y, v)| ≤ h̄Xm,1(u, v),

for all x,u, y and v, with

HX
i ≡ sup

m

∫

R

∫

R

(1+ |u|+ |v|)h̄Xm,i(u, v)dudv <∞,

for i= 0,1,2. Then we have

(a) For all w,s∈ (0, am), ∂wΨm(x, y;w,s), ∂
2
xΨm(x, y;w,s), and ∂w∂xΨm(x, y;w,s) exist and

are continuous with respect to w ∈ (0, am), x in a neighbourhood of q, and y in a neighbourhood of

θ. Moreover, ∂wΦm(x;w), ∂xφm(x;w), ∂wφm(x;w) exist and are continuous with respect to both

w ∈ (0, am) and x in a neighbourhood of q. For all w ∈ (0, am), φm (q,w)> 0.

(b) For all w,s ∈ (0, am), ∂xΨm(x, y;w,s), ∂sΨm(x, y;w,s), and ∂s∂xΨm(x, y;w,s) exist and

are continuous with respect to s ∈ (0, am), x in a neighbourhood of q, and y in a neighbourhood of

θ.

Proof of Lemma B.2. First of all, by definition, we have

Ψm(x, y;w,s) =

∫

R

∫

R

∫ x−wu

−∞

∫ y−sv

−∞

hm(x̌, u, y̌, v)dy̌dx̌dudv,

ψm(x, y;w,s) =

∫

R

∫

R

hm(x−wu,u, y− sv, v)dudv,

Φm(x;w) = lim
y→∞

Ψm(x, y;w,s) =

∫

R

∫

R

∫

R

∫ x

−∞

hm(x̌−wu,u, y, v)dx̌dudvdy,

φm(x;w) =

∫

R

ψm(x, y;w,s)dy=

∫

R

∫

R

∫

R

hm(x−wu,u, y, v)dudvdy.

Therefore, we have

∂wΨm(x, y;w,s) =−
∫

R

∫

R

∫ y−sv

−∞

u · hm(x−wu,u, y̌, v)dy̌dudv

=−
∫

R

∫

R

u · hYm(x−wu,u, y− sv, v)dudv,

∂xΨm(x, y;w,s) =

∫

R

∫

R

∫ y−sv

−∞

hm(x−wu,u, y̌, v)dy̌dudv

=

∫

R

∫

R

hYm(x−wu,u, y− sv, v)dudv,
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∂2xΨm(x, y;w,s) =

∫

R

∫

R

∂xh
Y
m(x−wu,u, y− sv, v)dudv,

∂w∂xΨm(x, y;w,s) =−
∫

R

∫

R

u · ∂xhYm(x−wu,u, y− sv, v)dudv,

∂sΨm(x, y;w,s) =−
∫

R

∫

R

∫ x−wu

−∞

v · hm(x̌, u, y− sv, v)dx̌dudv

=−
∫

R

∫

R

v · hXm(x−wu,u, y− sv, v)dudv,

∂s∂xΨm(x, y;w,s) =−
∫

R

∫

R

v · hm(x−wu,u, y− sv, v)dudv.

∂wΦm(x;w) =−
∫

R

∫

R

u · hYm(x−wu,u,∞, v)dudv,

∂xφm(x;w) =

∫

R

∫

R

∂xh
Y
m(x−wu,u,∞, v)dudv,

∂wφm(x;w) =−
∫

R

∫

R

u · ∂xhYm(x−wu,u,∞, v)dudv.

Then the continuity of these functions follows from the regularity conditions in Lemma 3 and

Lemma B.2. �

FU ET AL. 2023 Suppose X(w) and Y (s) are two random variables with parameters w ∈Θ, s ∈
∆, where Θ and ∆ are open subset of R. Let fX,Y (x, y;w,s) and FX,Y (x, y;w,s) be the joint prob-

ability density function and cumulative distribution function of (X(w), Y (s)), respectively, and

fX(x;w) and FX(x;w) be the marginal probability density function and cumulative distribution

function of X(w), respectively. If the following conditions are satisfied:

(a) The pathwise derivative ∂wX(w), ∂sY (s) exist w.p.1 for any w ∈ Θ and s ∈ ∆, and there

exist random variables K and T with E[K],E[T ]<∞, which are not dependent on w and s, such

that |X (w1)−X (w2)| ≤ K |w1−w2| and |Y (s1)−Y (s2)| ≤ T |s1− s2| hold for all w1,w2 ∈
Θ, s1, s2 ∈∆.

(b) For allw ∈Θ, s∈∆, ∂wFX,Y (x, y;w,s),E
[
I{X(w)≤x}I{Y (s)≤y}∂wX(w)

]
, ∂2xFX,Y (x, y;w,s),

and ∂w∂xFX,Y (x, y;w,s) exist and are continuous with respect to w ∈ Θ, x in a neighbour-

hood of a, and y in a neighbourhood of b. Moreover, ∂wFX(x;w), ∂xfX(x;w), ∂wfX(x;w),

and E
[
I{X(w)≤x}∂wX(w)

]
exist and are continuous with respect to both w ∈ Θ and x in a

neighbourhood of a. For all w ∈Θ, fX (a,w)> 0.

(c) For all w ∈ Θ, s ∈ ∆, ∂xFX,Y (x, y;w,s), E
[
I{X(w)≤x}I{Y (s)≤y}∂sY (s)

]
, ∂sFX,Y (x, y;w,s),

and ∂s∂xFX,Y (x, y;w,s) exist and are continuous with respect to s ∈∆, x in a neighbourhood of

a, and y in a neighbourhood of b.
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Then for pa,b(w,s) = Pr{Y (s)≤ b|X(w) = a}, we have

∂wpa,b(w,s) =

{
−∂2x E

[
I{X(w)≤x}I{Y (s)≤b}∂wX(w)

]
+ pa,b(w,s)∂

2
xE
[
I{X(w)≤x}∂wX(w)

]}∣
∣
x=a

fX(a,w)

∂spa,b(w,s) =
− ∂x∂y E

[
I{X(w)≤x}I{Y (s)≤y}∂sY (s)

]∣
∣
x=a,y=b

fX(a,w)

LEMMA 4. Under Assumptions 1 and regularity conditions of Lemma 3 and Lemma B.2, we have

Gq,θ[µ̃m, π̃m]−Gq,θ[µ,π] =OP(am).

Proof of Lemma 4. Define pq,θ(w,s) = Pr{π(Z) + sγm(Z)≤ θ|µ(Z) +wηm(Z) = q}, then

Gq,θ[µ̃m, π̃m] = pq,θ(am, am), Gq,θ[µ,π] = pq,θ(0,0).

Under regularity conditions of Lemma 3, it is straightforward to check the conditions in

Lemma B.3 hold with X(w) = µ(Z) +wηm(Z), Y (s) = π(Z)+ sγm(Z), a= q and b= θ. Conse-

quently, we can apply the conclusions of Lemma B.3 to derive partial derivatives of pq,θ(w,s). In

particular, with ∂wX(w) = ηm(Z), ∂sY (s) = γm(Z), we have

∂wpq,θ(w,s) =

{
−∂2x E

[
I{X(w)≤x}I{Y (s)≤θ}ηm(Z)

]
+ pq,θ(w,s)∂

2
xE
[
I{X(w)≤x}ηm(Z)

]}∣
∣
x=q

φm(q;w)
,

(13)

∂spq,θ(w,s) =
− ∂x∂y E

[
I{X(w)≤x}I{Y (s)≤y}γm(Z)

]∣
∣
x=q,y=θ

φm(q;w)
. (14)

Under regularity conditions of Lemma 3, the partial derivatives and expectations are interchange-

able, and thus

∂xE
[
I{X(w)≤x}I{Y (s)≤y}ηm(Z)

]
= ∂x

∫ x

−∞

E
[
I{Y (s)≤y}ηm(Z)|X(w) = t

]
φm(t;w)dt

=E
[
I{Y (s)≤y}ηm(Z)|X(w) = x

]
φm(x;w),

and similarly

∂xE
[
I{X(w)≤x}ηm(Z)

]
=E[ηm(Z)|X(w) = x]φm(x;w),

∂xE
[
I{X(w)≤x}I{Y (s)≤y}γm(Z)

]
=E

[
I{Y (s)≤y}γm(Z)|X(w) = x

]
φm(x;w).
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Furthermore, under regularity conditions of Lemma 3, the partial derivatives ∂x and ∂y are also

interchangeable, and thus

∂x∂y E
[
I{X(w)≤x}I{Y (s)≤y}γm(Z)

]
= ∂y

{
E
[
I{Y (s)≤y}γm(Z)|X(w) = x

]
φm(x;w)

}

= φm(x;w)∂y

∫ y

−∞

E [γm(Z)|X(w) = x,Y (s) = y̌]fY |X(y̌|x)dy̌

=E[γm(Z)|X(w) = x,Y (s) = y]ψm(x, y;w,s),

which indicates

∣
∣∂x∂y E

[
I{X(w)≤x}I{Y (s)≤y}γm(Z)

]∣
∣≤ ‖γm‖∞ψm(x, y;w,s) =OP(1). (15)

We also have

∂2xE
[
I{X(w)≤x}ηm(Z)

]
= ∂x {E[ηm(Z)|X(w) = x]φm(x;w)}

= ∂x

∫

R

ubm(x−wu,u)du

=

∫

R

u∂xbm(x−wu,u)du.

Due to the regularity conditions, we have

∣
∣∂2xE

[
I{X(w)≤x}ηm(Z)

]∣
∣≤
∫

R

|u|b̄m,1(u)du≤B1,1. (16)

Similarly,

∂2xE
[
I{X(w)≤x}I{Y (s)≤y}ηm(Z)

]
= ∂x

{
E
[
I{Y (s)≤θ}ηm(Z)|X(w) = x

]
φm(x;w)

}

= ∂x

∫ y−sv

−∞

∫

R

∫

R

uhm(x−wu,u, y̌, v)dudvdy̌

=

∫

R

∫

R

u∂xh
Y
m(x−wu,u, y− sv, v)dudv.

Due to the regularity conditions, we have

∣
∣∂2x E

[
I{X(w)≤x}I{Y (s)≤θ}ηm(Z)

]∣
∣≤
∫

R

∫

R

|u|h̄m,1(u, v)dudv≤HY
1 . (17)

Substitute (15), (16) and (17) into (13) and (14), we known both ∂wpq,θ(w,s) and ∂wpq,θ(w,s)

are of order OP(1) as m→∞. Now define g(t) =Gq,θ[µ+ tηm, π+ tγm], t ∈ [0, am]. Notice that

g(t) = pq,θ(t, t). Therefore

g′(s) = ∂wpa,b(s, s) + ∂spa,b(s, s) =OP(1).
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Therefore

Gq,θ[µ̃m, π̃m]−Gq,θ[µ,π] = g(am)− g(0) =

∫ am

0

g′(s)ds=OP(am).

�

B.5. Lemma B.4 and Its Proof

LEMMA B.4. (a) Under the regularity conditions of Lemma 1, we have

Fµ̃m(q̃m) = Fµ̃m(q) + fµ̃m(q)(q̃m− q) + o(q̃m− q).

(b) Under the regularity conditions of Lemma 3, we have

Gµ̃m,π̃m(q̃m, θ̃m)−Gµ̃m,π̃m(q, θ) = ∂xGµ̃m,π̃m(q
∗, θ)(q̃m − q) + ∂yGµ̃m,π̃m(q, θ)(θ̃m − θ) + o(θ̃m− θ),

as m→∞, where q∗ is some number between q̃m and q.

Proof of Lemma B.4. (a) By the mean value theorem, we have

Fµ̃m(q̃m) = Fµ̃m(q) + fµ̃m(q)(q̃m− q) +
1

2
f ′
µ̃m

(q∗)(q̃m − q)2

for some q∗ between q and q̃m. Following the proof of Lemma 1, we can derive f ′
µ̃m

(x) by switching

integration and differentiation, which yields

f ′
µ̃m

(x) =
d

dx

∫

R

bm(x− amu,u)du=

∫

R

∂xbm(x− amu,u)du.

Hence, under the regularity conditions of Lemma 1, |f ′
µ̃m

(x)| ≤
∫

R
|∂xbm(x − amu,u)|du ≤

∫

R
b̄m,1(u)du≤B0,1. As a result,

Fµ̃m(q̃m) = Fµ̃m(q) + fµ̃m(q)(q̃m− q) + o(q̃m− q).

(b) By the mean value theorem, we have

Gµ̃m,π̃m(q̃m, θ̃m)−Gµ̃m,π̃m(q, θ̃m) = ∂xGµ̃m,π̃m(q
∗, θ̃m)(q̃m − q),

Gµ̃m,π̃m(q, θ̃m)−Gµ̃m,π̃m(q, θ) = ∂yGµ̃m,π̃m(q, θ)(θ̃m− θ) +
1

2
∂yyGµ̃m,π̃m(q, θ

∗)(θ̃m − θ)2,

∂xGµ̃m,π̃m(q
∗, θ̃m) = ∂xGµ̃m,π̃m(q

∗, θ) + ∂xyGµ̃m,π̃m(q
∗, θ∗∗)(θ̃m − θ),

where θ∗, θ∗∗ are between θ̃m and θ, and q∗ is between q̃m and q. Therefore we have

Gµ̃m,π̃m(q̃m, θ̃m)−Gµ̃m,π̃m(q, θ) = ∂xGµ̃m,π̃m(q
∗, θ)(q̃m− q) + ∂yGµ̃m,π̃m(q, θ)(θ̃m− θ) +Rm.
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where Rm = ∂xyGµ̃m,π̃m(q
∗, θ∗∗)(q̃m − q)(θ̃m − θ) + 1

2
∂yyGµ̃m,π̃m(q, θ

∗)(θ̃m − θ)2. Therefore, it

suffice to prove that Rm = o(θ̃m− θ) as m→∞.

Following equation (12) in the proof of Lemma 3,

∂yGµ̃m,π̃m(x, y) =

∫

R

∫

R
hm(x− amu,u, y− amv, v)dudv

fµ̃m(x)
.

By further taking derivative with respect to y, we have

∂2yGµ̃m,π̃m(x, y) =

∫

R

∫

R
∂yhm(x− amu,u, y− amv, v)dudv

fµ̃m(x)
,

and hence

∣
∣∂2yGµ̃m,π̃m(q, θ

∗)
∣
∣≤

∫

R

∫

R
h̄m,2(u, v)dudv

fµ̃m(q)
≤ H2

fµ̃m(q)
→ H2

fµ(q)
.

Similarly, by further taking derivative with respect to x, we have

∂2xyGµ̃m,π̃m(x, y) =
1

fµ̃m(x)

∫

R

∫

R

∂xhm(x− amu,u, y− amv, v)dudv

−
f ′
µ̃m

(x)

[fµ̃m(x)]
2

∫

R

∫

R

hm(x− amu,u, y− amv, v)dudv,

and hence

∣
∣∂2xyGµ̃m,π̃m(q

∗, θ∗∗)
∣
∣≤ 1

fµ̃m(q
∗)

∫

R

∫

R

h̄m,1(u, v)dudv+
|f ′

µ̃m
(q∗)|

[fµ̃m(q
∗)]2

∫

R

∫

R

h̄m,0(u, v)dudv

≤ 1

fµ̃m(q
∗)
H1+

|f ′
µ̃m

(q∗)|
[fµ̃m(q

∗)]2
H0

→ 1

fµ(q)
H1+

|f ′
µ(q)|

[fµ(q)]2
H0,

where for the last limit we have used Lemma 1 and Proposition 2. Combine the above results with

the definition of Rm, we can conclude that Rm = o(θ̃m− θ). �

Appendix C: Other Proofs

Proof Sketch of Proposition 1. Given that the complete proof of this proposition is both tedious

and standard, adhering closely to established methods in the literature, we provide only a sketch

of the proof to highlight the key steps and underlying logic. Let ξj(Z) and ζj(Z) denote the

portfolio pricing error for the j−th inner-level observation of µ(z) and π(z) respectively, and let

ξ̄l(Z) = 1
l

∑l
j=1 ξj(Z) and ζ̄ l(Z) = 1

l

∑l
j=1 ζj(Z) be the zero-mean average pricing errors for the

portfolios. Following the analytical scheme of Gordy and Juneja (2010), we take the surrogates
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X̂(Z) = µ(Z) + ξ̄l(Z) and Ŷ (Z) = π(Z) + ζ̄ l(Z) and analyze them instead of analyzing X̄ and

Ȳ directly. Let ξ̂l =
√
lξ̄l and ζ̂ l =

√
lζ̄ l so that they have nontrivial limit distribution as l→∞.

LetGµ,π(x, y) = Pr{π(Z)≤ y|µ(Z) = x} andGX̂,Ŷ (x, y) = Pr{Ŷ (Z)≤ y|X̂(Z) = x}. Define the

joint density of (µ,π, ξ̂l, ζ̂l) as φ(s, t, u, v). With the regularity conditions on the joint density and

its partial derivatives similar to Assumption 1 in Gordy and Juneja (2010), we have

GX̂,Ŷ (x, y)−Gµ,π(x, y) =O(1/l). (18)

Let θ̂k,h,l be the CoVaR estimator of standard nested estimator and θ be the (α,β)-CoVaR of

(µ(Z), π(Z)), which satisfies P{π(Z)≤ θ|µ(Z) = qα}=Gµ,π(qα, θ) = β, where qα is the α-VaR

of µ(Z). To derive the mean squared error (MSE) E[(θ̂k,h,l − θ)2], we introduce another two aux-

iliary variables. We define θ̂h,l such that P{Ŷ (Z)≤ θ̂h,l|X̂(Z) = X̄⌈hα⌉}=GX̂,Ŷ (X̄⌈hα⌉, θ̂h,l) = β,

where X̄⌈hα⌉ is the ⌈hα⌉-th order statistics of X̄. Besides, θ̂l is defined as the (α,β)-CoVaR of

(X̂(Z), Ŷ (Z)), which satisfies P{Ŷ (Z)≤ θ̂l|X̂(Z) = q̂}=GX̂,Ŷ (q̂, θ̂l) = β, where q̂ is the α-VaR

of X̂(Z).

The MSE, E[(θ̂k,h,l − θ)2], can be decomposed into

E[(θ̂k,h,l− θ)2] = VaR(θ̂k,h,l)
︸ ︷︷ ︸

variance

+(E[θ̂k,h,l]− θ)2
︸ ︷︷ ︸

bias2

.

It’s obvious that the order of variance term is O(1/k) since it involves estimating the quantile with

k i.i.d observations. Then, we analyze the bias term by further decompose the bias into:

E[θ̂k,h,l]− θ=E[E[θ̂k,h,l|X̄⌈hα⌉]− θ̂h,l]
︸ ︷︷ ︸

I

+E[θ̂h,l − θ̂l]
︸ ︷︷ ︸

II

+ θ̂l − θ
︸ ︷︷ ︸

III

,

and analyze them term by term.

For term I, E[θ̂k,h,l|X̄⌈hα⌉]− θ̂h,l] is intrinsically the difference between the ⌈kβ⌉-th order statis-

tics and the β-th quantile of Ŷ |X̂ = X̄⌈hα⌉. Under the regularity conditions on conditional density

of Ŷ |X̂ and the marginal density of X̂ , we can obtain that E[E[θ̂k,h,l|X̄⌈hα⌉] − θ̂h,l]] = O(1/k)

according to Equation (4.6.3) of David and Nagaraja (2004).

For term II, we apply Taylor’s expansion toGX̂,Ŷ (θ̂h,l, X̄⌈hα⌉) at (θ̂l, q̂), we obtain that θ̂h,l− θ̂l =
O(X̄⌈hα⌉ − q̂) and thus E[θ̂h,l − θ̂l] =O(E[X̄⌈hα⌉ − q̂]) =O(1/h) according to Lemma 2 of Hong

(2009).
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For term III, by applying Taylor’s expansion to GX̂,Ŷ (θ̂l, q̂) on (θ, qα) and using the fact that

GX̂,Ŷ (θ̂l, q̂) =Gµ,π(qα, θ) = β, we can derive that

θ̂l − θ=O(GX̂,Ŷ (qα, θ)−Gµ,π(qα, θ)
︸ ︷︷ ︸

(i)

) +O(q̂− q
︸︷︷︸

(ii)

),

where term (i) is of order O(1/l) by Equation (18) and term (i) is of order O(1/l) by Proposition

2 of Gordy and Juneja (2010).

Therefore, the bias term is of order O(1/k+1/h+1/l). Overall, the order of MSE is O(1/k+

1/h2 + 1/l2). Notice that the first two terms of this rate, 1/k and 1/h2, align with the results

derived in Huang et al. (2024) under the assumption that the closed form expressions of µ(Z)

and π(Z) are available, while the third therm, 1/l2, arises from the inner-level estimation with l

sample observations. Since Γ= khl, we have the best convergence rate of RMSE is O(Γ−1/4), with

l= c1Γ
1/4, h= c2Γ

1/4 and k= 1
c1c2

Γ1/2, for some constants c1, c2 > 0. �

Proof of Proposition 5. We can rewrite µ(z) by

µ(z) = E[ϕ(Z)|Z0 = z]

= E[ϕ(ψT (S1, S2, · · · , Sn))|ψ0(S0) = z]

=

∫∫

· · ·
∫

ϕ(ψT (s1, s2 · · · , sn))p0,1(ψ−1
0 (z), s1)

n∏

k=2

pk−1,k(sk−1, sk)ds1ds2 · · ·dsn.

Let ν(s) = µ(ψ0(s)), then µ(z) = ν(ψ−1
0 (z)). Since ψ−1

0 is smooth, we only need to prove the

smoothness of ν(·). Actually, under condition (a) we can apply Fubini’s theorem, and

ν(s) =

∫∫

· · ·
∫

ϕ(ψT (s1, s2 · · · , sn))p0,1(s, s1)
n∏

k=2

pk−1,k(sk−1, sk)ds1ds2 · · ·dsn

=

∫

p0,1(s, s1)

[
∫

· · ·
∫

ϕ(ψT (s1, s2 · · · , sn))
n∏

k=2

pk−1,k(sk−1, sk)ds2 · · ·dsn
]

ds1

=

∫

p0,1(s, s1)φ(s1)ds1.

For given s and j ∈ {1, · · · , d}, define a mapping ζs,j : R→R
q, such that ζj(t) has the j-th entry

equal to t ∈ R while all the other entries identical to the corresponding entries of s. Denote ej to

be a q-dimensional vector with the jth entry being 1 and all the other entries being 0, and s(j) to

be the j-th entry of s, then by applying Leibniz integral rule,

p0,1(s, s1) = p0,1(ζs,j(s(j)), s1) = p0,1(ζs,j(t0), s1) +

∫ s(j)

t0

∂ejp0,1(ζs,j(t), s1)dt.
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Therefore

ν(s) =

∫

p0,1(ζs,j(t0), s1)φ(s1)ds1+

∫ ∫ s(j)

t0

∂ejp0,1(ζs,j(t), s1)φ(s1)dtds1

=

∫

p0,1(ζs,j(t0), s1)φ(s1)ds1+

∫ s(j)

t0

∫

∂ejp0,1(ζs,j(t), s1)φ(s1)ds1dt

where the changing the order of integration is validate by Fubini’s theorem under condition (d).

This condition also indicates the inner integral is a continuous function of t, and hence Dejν(s)

exists and

Dejν(s) =

∫

∂ejp0,1(ζs,j(s(j)), s1)φ(s1)ds1 =

∫

∂ejp0,1(s, s1)φ(s1)ds1.

Because ∂ejp0,1(s, s1) is continuous and has integrable derivatives with respect to s due to condi-

tion (d), the partial derivative ∂ejν(s) is also continuous for all j = 1, · · · , d. This indicates ν(s) is

differentiable. Similarly, we can establish the higher order differentiability of ν(s) through induc-

tion on the order. �
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