arXiv:2504.11601v1 [cs.LG] 15 Apr 2025

Dueling Deep Reinforcement Learning for Financial Time Series

Bruno Giorgio
Independent Researcher
London, United Kingdom

Abstract

Reinforcement learning (RL) has emerged as a pow-
erful paradigm for solving decision-making problems
in dynamic environments. In this research, we ex-
plore the application of Double DQN (DDQN) and
Dueling Network Architectures, to financial trading
tasks using historical SP500 index data. Our fo-
cus is training agents capable of optimizing trading
strategies while accounting for practical constraints
such as transaction costs. The study evaluates the
model performance across scenarios with and with-
out commissions, highlighting the impact of cost-
sensitive environments on reward dynamics. Despite
computational limitations and the inherent complex-
ity of financial time series data, the agent success-
fully learned meaningful trading policies. The find-
ings confirm that RL agents, even when trained on
limited datasets, can outperform random strategies
by leveraging advanced architectures such as DDQN
and Dueling Networks. However, significant chal-
lenges persist, particularly with a sub-optimal policy
due to the complexity of data source.

Introduction

Deep Reinforcement Learning (DRL) for financial
trading has evolved significantly over the past few
years, showcasing a diverse array of methodologies
and applications. The rapid change of the increas-
ing amount of data available have revolutionize the
finance industry. Classical financial theory has been

based on stochastic control for decades as the foun-
dations of finance. These models sometimes oversim-
plify the mechanism and behaviour of financial mar-
kets. On the other hand, models that capture the
complexity of market are mathematically and compu-
tationally not feasible using the classical tool (Ham-
bly et al., 2022).

The complexities of financial markets such as non-
linearity, volatility, and high-frequency trading,
makes Reinforcement Learning (RL) particularly ap-
pealing in this context. Agent acting with an environ-
ment might learn to make optimal decision (policy)
through repeated experiences in the system applying
RL algorithms in areas like order execution, market
making and portfolio optimization.

Solving a reinforcement learning task means, roughly,
finding a policy that achieves the most reward over
the long run. There are various reinforcement learn-
ing (RL) algorithms, and in this project, we focus on
the Double DQN. Traditional Q-learning is known
to overestimate Q-values due to the maximization
step during value updates. This overestimation is-
sue persists even when using function approximation.
Double DQN addresses this problem by decoupling
the action selection and action evaluation steps dur-
ing the target value computation (Van Hasselt et al,
2015). The max operator in the DQN utilizes the
same values both to select and evaluate the action
maxy Q(s',a’;60"). To avoid this situation and over-
estimation, we need to decouple the selection from
evaluation according to an idea that comes from Van
Hasselt about the Double Q-Learning (Van Hasselt,
2010). In this process, the performed action is based

on a network with weights 6, while the action is eval-
uated with a second network (target) with weights
0" considering the next state which can be formally
denoted as follows,

YPPON — R, 1 +4Q (S’, argmax Q (s, a'; 0;) ;92)
(1//

The DDQN algorithm can be seen as an extension
of the DQN, with the key feature that it additionally
uses the target network to separate the execution and
evaluation process of action.

Model

The model focuses on a Dueling DDQN architec-
ture for financial time series trading using two archi-
tectures: Feedforward (FFDQN) and Convolutional
Neural Network (CNN). Both models are trained
on complex financial data, aiming to identify pat-
terns and optimize trading strategies. The study in-
volves testing various hyperparameters, particularly
the batch size, to understand its impact on perfor-
mance. Smaller batch sizes (32-bit) are expected to
capture short-term nuances but may introduce nois-
ier gradients, while larger batch sizes (128-bit) are
hypothesized to improve stability and generalization,
especially in environments with transaction costs.
We employ the StockEnv API—a custom Gymna-
sium environment for stock trading. Our RL sys-
tem is implemented using the open-source PTAN li-
brary, which simplifies code by abstracting actions,
experience replay, and environment interaction, as
introduced by Maxim Lapan (2018). To formulate
an RL problem, we need the Environment’s observa-
tion, possible Actions, and a Reward system. The
raw data consists of nearly 1 million rows of SP500
index data from 2018 to 2019, with five elements per
minute: Open, High, Low, Close prices (as percent-
ages of the Open price), and Volume. The observa-
tion spans multiple data points, allowing the agent
to analyze N consecutive data points to detect pat-
terns and trends over time, aiding informed decision-
making.

About the reward, the typical method for exam-
ining the changes in stock market prices is to look

at the so-called returns rather than the actual prices.
The reward function is designed based on the agent’s
actions and trading status at each time step. If the
agent chooses to take no action (i.e., no position
is opened), the reward at time step t is considered
null. When the agent opens a position (buy action),
a trading commission is deducted, and a reward is
computed based on the market’s immediate response.
Similarly, when the agent closes a position (sell ac-
tion), a commission is applied, and the corresponding
reward is calculated at time t. Unlike traditional ap-
proaches that compute rewards only at the end of an
episode, this design evaluates rewards at every time
step with an open position. This allows for more fre-
quent feedback, which accelerates convergence and
supports more effective learning in dynamic financial
environments.

While reinforcement learning (RL) theory does
not provide universal convergence guarantees (Sut-
ton & Barto, 2018), the stability and performance
of learning algorithms can be significantly improved
through the integration of deep learning techniques,
as demonstrated by Mnih et al. (2015). The al-
gorithm implemented in this work is inspired by
their Deep Q-Network (DQN) framework. Specif-
ically, the environment—built using OpenAl Gym-
nasium—generates market states that are fed into
the Q-network to determine action-value estimates.
The resulting transitions, comprising state, action,
reward, and next state, are stored in the replay buffer
(see Fig. 4). During training, a mini-batch of tran-
sitions is sampled from the replay buffer to com-
pute the target Q-values Q(s, a), using the maxi-
mum estimated Q-value of the next state maxQ(s’,
a’). These target values are then used to calculate
the loss, which guides the backpropagation process
for updating the Q-network. The agent follows an e-
greedy policy, starting fully random (e=1) and grad-
ually shifting to exploitation (e=0.1).

Dueling Architecture
The Dueling Architecture (Wang et al., 2016) is di-

vided into two separate parts: Value Function Stream
and Advantage Function Stream.

Q-Network / Target Network

Dueling Architecture
|

State
_
Action
T f— f—
Data
Input

V(s)

Q(s.a)

/

Als,a)

I
CNN layers or FFNN layers

I
I

]

i

I

I

i

]

I

1

I

I

I

I

!

Output :

I

I

I

I

I

I

I

I

I

I

I

|

Dense Layers :
i

Figure 1: Implementation of Dueling Architecture into the Q-Network/Target Network

- Value Function V(s): This stream estimates the
state value V(s), which represents the intrinsic value
of being in a particular state, irrespective of the ac-
tion taken.

- Advantage Function A(s,a): This stream esti-
mates the advantage function A(s,a), which mea-
sures the relative importance of taking a specific ac-
tion in a given state.

During the process, the input—a batch of
states—is passed through the network to initiate
both the Value V (s) computation and the Advantage
A(s,a) computation streams. The resulting Q-values
are calculated using the formula derived from Wang
et al. (2016), combining these components as follows:

Q(s,a) = V(s) + (A(s, a) — ﬁ > A, a/))

Q(s,a) is the state-action value function. V(s) is
the value of being in state. A(s,a) is the advantage
of taking action a in state s. |A] is the cardinality of
the action space. The term ﬁ Y area A(s,a’) is the
mean advantage. In fig.1 there is a schema about
how has been implemented into Q/Target networks.

This separation enhances generalization across
actions, improves policy evaluation, and accelerates
learning by reducing overestimation bias, especially
when combined with techniques like Double DQN.

Training

The model processes observations over N time steps.
Volume data is a challenge due to its inconsistent
correlation with price movements. While MACD is a
popular momentum indicator, it wasn’t used in RL
training since its time-dependence conflicts with the
random sampling in experience replay. We trained
with batch sizes between 32-128 and included a 1%
commission per trade on the SP 500 Futures.

During training, we monitored Reward performance
across steps while experimenting with different batch
sizes (32 and 128) for FFDQN and CNN models. The
training spanned 8 million steps (200K episodes on
the 1-minute SP500 data). The reward curves be-
low compare performance across batch sizes, showing
slight upward trends for FFDQN (batch 128, blue)

and CNN (batch 128, yellow), despite typical RL re-
ward oscillations.

Figure 2: Reward % (y-axis) over Training Episodes
(x-axis). FFDQN model with Batch size 32 bit (black
line) and Batch size 128 (light blue line).

_'.P"\"‘vl-. Ir"'"“
| \ FL‘[\-J\J‘ﬁ -JJ L"‘;\I rfvj.h,, N

o]V el Ly N

Figure 3: Reward % (y-axis) over Training Episodes
(x-axis). CNN model with Batch size 32 bit (purple
line) and Batch size 128 (yellow line)).

Financial markets are inherently stochastic and
non-stationary, making it difficult for the agent to
learn stable policies. This aligns with observations in
the literature, such as those by Jiang et al. (2017)
and Zejnullahu et al. (2022), which emphasize the
difficulty of applying RL in financial markets due to
their unpredictable and dynamic nature.

Testing

Testing the FFDQN, the smaller batch size (32) led
to noisier gradients and less stable performance, es-
pecially with commissions. This suggests potential
overfitting or declining rewards due to transaction
costs. Below, we compare 32-batch model with and
without commissions. Only the no-commission sce-
nario ends with nearly 10% annual cumulative reward
(Fig. 5 & 6).

Changing the hyperparameter to 128-bit Batch size,
positive rewards in both cases generate profits. A
batch size of 128 shows slightly better performance,
suggesting it benefits model learning with 11% and
8% of annual cumulative rewards in no-commission
and commission scenarios (Fig. 7 & 8).

The second model we implemented incorporates
convolutional layers to extract meaningful features
from the input data. Convolutional Neural Networks
(CNNs) are particularly effective at capturing tem-
poral dependencies and local patterns in sequential
data. While the training procedure closely resem-
bles that of the FFDQN model, the CNN-based
architecture provides an enhanced ability to learn
both spatial and temporal representations from
financial time series. In the 32-bit batch model we
have a positive annual reward of 20% under the
no-commission scenario, while incurring a loss when
trading costs are included (Fig. 9 & 10).

This observation reinforces the inherently noisy
behavior associated with the 32-sample batch size.
As noted by Keskar et al. (2017), smaller batch sizes
often struggle to generalize effectively, especially in
complex environments that incorporate transaction
costs or penalty mechanisms. In contrast, larger
batch sizes (128-bit) are more stable and accurate
gradient estimates due to their ability to average
over a greater number of data points.

This is evident in the case of the 128-bit batch size,
which consistently achieves reward levels exceeding
15% across both scenarios (Fig. 11 & 12).

About the commission behaviour, where negative
rewards dominate in scenarios with commission
costs is well-documented in finance RL. Our re-
sults are consistent with the observation. Agents

‘inancial Data

Environment

Prices *| StockEnv » setting-up environment
This is a RL Environment Trading Simulation
state Agent
I I
1 Backpropagation - Gradient Loss 1
Data Collection - . :
Q Network \ I :
s i Qs.a) [
| |
I I
I I
: Update Params Loss Function [*] I
I I
I I
| e |
state E * Target Network I
action 1 |
1 |
I |
-
state state+1 rewara
action Mini-Batch
reward
state+ 1 *
Replay Memory

Figure 4: Logic schema of Training of DDQN architecture.

Testing Stage - FFDQN architecture - Batch size 32 - No-Commission Testing Stage - FFDQN architecture - Batch size 128 - No-Commission

10
10
54 G
6 -
2, it
T 2 47
o
2 =
o« &£ o4
_5 -
0 -
-10 A 5
_4 -
151 ; . ; . ; . i ; ; .
4] 50000 100000 150000 200000 250000 0 50000 100000 150000 200000

Figure 5: Testing Cumulative Reward over Training Figure 7: Testing Cumulative Reward over Training
Episodes on FFDQN model batch size 32-bit without Episodes on FFDQN model batch size 128-bit with-

commission costs. out commission costs.
Testing Stage - FFDQN architecture - Batch size 32 - With Commissions Testing Stage - FFDQN architecture - Batch size 128 - With Commissions
8
0 .
6 -
-10 A
2 -
® 20 £
3 b =]
5 g 07
= =
3 .| &
e =30 il
-40 —4 -
_6 -
—50 4
_8 -
0 50000 100000 150000 200000 250000 o 50000 100000 150000 200000

Figure 6: Testing Cumulative Reward over Training Figure 8: Testing Cumulative Reward over Training
Episodes on FFDQN model batch size 32-bit with Episodes on FFDQN model batch size 128-bit with

commission costs. comimission costs.

Testing Stage - CNN architecture - Batch size 32 - No-Commission Testing Stage - CNN architecture - Batch size 128 - No-Commission

15.0
25 A
12.5
204
10.0
£ 154 s‘
.g E 1.5
3 3
g 10 e 50
51 2.5
0.0
0_
-2.5
6 50600 100'000 150'000 200'000 250'000 0 50000 100000 150000 200000 250000 300000 350001

Figure 9: Testing Cumulative Reward over Training Figure 11: Testing Cumulative Reward over Training
Episodes on CNN model batch size 32-bit without Episodes on CNN model batch size 128-bit without

commission costs. commission costs.
Testing Stage - CNN architecture - Batch size 32 - With Commissions Testing Stage - CNN architecture - Batch size 128 - With Commissions
5 4 175
15.0
0 -
12.5
...5 - 0 -
" L1
: 5
B T 7.5-
£ 10 :
g -10 2
5.0
_15 | 2.5 .
0.0
-20 4
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 300000 350000

Figure 10: Testing Cumulative Reward over Training Figure 12: Testing Cumulative Reward over Training
Episodes on CNN model batch size 32-bit without Episodes on CNN model batch size 128-bit without
commission costs. commission costs.

often engage in excessive trading, especially during
exploration phases, leading to the accumulation
of transaction costs and negative net rewards. In
fact, Zhang et al. (2021) discuss how RL agents
tend to overfit to short-term opportunities during
training. When commissions are introduced, these
short-term trades incur cumulative costs, resulting
in negative overall rewards. Omne possible solution
is based on the regularization techniques where
we penalize frequent trades by adding a regulariza-
tion term to the reward function (Zhang et al., 2021).

Conclusion

This essay shows that DDQN with Dueling Archi-
tecture is a promising RL approach for financial
trading, achieving positive returns—especially in
no-commission settings—and adapting well to
transaction costs with larger batch sizes. First,

With-
MNo-Commission I

Architecture Batch Size Commission
Return
Return
FFDQN 32 10% -35%
FFDQN 128 11% 8%
CNN-DDQN 32 20% -20%
CNN-DDQN 128 16% 17%

Figure 13: Annual Return (%) after one year of real-
world SP500 trading

the FFDQN 32-bit batch model exhibited a strong
sensitivity to transaction costs: it achieved a +10%
return without commission, but performance de-
teriorated sharply to —35% with commission. In
contrast, the FFDQN 128-bit model performed more
consistently, with +11% return without commission
and +8% with commission, suggesting better gener-
alization. Increasing the batch size appears to have
a regularizing effect, likely by reducing variance in
Q-value estimates during training (Henderson et al.,
2018).

For CNN-based models, the 32-bit batch version
again shows signs of strong sensitivity, returning

+20% with no commission but dropping to —20%
with commissions. The CNN 128-bit batch version,
however, was the most robust, achieving +16% with-
out commission and +17% with commission—even
improving under realistic trading constraints. This
robustness may suggest that the larger batch size
helped the model learn more stable and efficient
policies.

The results suggest that the 32-bit model likely
overfitted to short-term, noisier market trends,
failing to generalize effectively under realistic trading
conditions where transaction costs are present.
Overfitting in reinforcement learning (RL) differs
from the traditional supervised learning context.
In RL the objective is to learn an optimal policy
by maximizing expected cumulative rewards in
a non-stationary and often partially observable
environment (Sutton & Barto, 2018). While RL
models do not "overfit” in the conventional sense,
they can still converge to sub-optimal policies due
to poor exploration, limited experience replay, or
inadequate generalization to unseen states (Zhang et
al., 2018).

The financial stock market is generally harder
to model compared to Atari 2600 games due to its
complex state space, stochastic and non-stationary
dynamics, sparse and noisy rewards, and higher
computational demands. These differences under-
score why RL models for financial markets require
advanced techniques and computational resources.
Mnih, Silver et al. (2015) trained their RL models on
Atari games for approximately 7 to 10 days per game,
with over 40 games in total. In comparison, financial
RL models often deal with even larger datasets. My
model was trained on 1-min range of index data and
in almost one day training. Training an accurate
trading policy would require extensive data from
1900 onward and significant computational resources.

References

Hambly, B., Xu, R., & Yang, H. (2022) Recent

Advances in Reinforcement Learning Finance.

Henderson, P., Islam, R., Bachman, P., Pineau,
J., Precup, D., & Meger, D. (2018). Deep
Reinforcement Learning that Matters. In
Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1).

Jiang, Z., Xu, D., & Liang, J. (2017). A deep
reinforcement learning framework for the
financial portfolio management problem.
arXiv preprint arXiv:1706.10059.

Keskar, N. S., et al. (2017). On Large-Batch
Training for Deep Learning: Generalization
Gap and Sharp Minima. arXiv preprint
arXiv:1609.04836.

Lapan, M. (2018). Deep Reinforcement Learning
Hands-On: Apply modern RL methods
to practical problems of chatbots, games,
robotics, and stock trading with PyTorch.
Birmingham: Packt Publishing.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A.,
Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski,
G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D.,
Wierstra, D., Legg, S. and Hassabis, D. (2015)
Human-level control through deep reinforce-
ment learning. Nature, 518(7540), pp.529- 533

Sutton, R. & Barto, A. (2018) Reinforcement Learn-
ing. An Introduction. MIT Press. Cambridge

Van Hasselt, H., Guez, A., & Silver, D. (2015).
Deep reinforcement learning with double
Q- learning. Proceedings of the Thirtieth
AAAT Conference on Artificial Intelligence
(AAAI-16), Phoenix, Arizona, USA.

Van Hasselt, H. (2010) Double Q-Learning. Ad-

vances in Neural Information Processing
Systems. 23:2613-2621

Zejnullahu, F., Moser, M., & Osterrieder, J., (2022)
Applications of Reinforcement Learning in
Finance - Trading with a Double Deep Q-

Network.

Wang, Z., Schaul, T., Hessel, M., Van Has-
selt, H., Lanctot, M. & De Freitas, N.
(2016). Dueling Network Architectures
for Deep Reinforcement Learning. arXiv
preprint |arXiv:1511.06581. Available at:
https://arxiv.org/abs/1511.06581 [Accessed
Date 10 November 2024].

Zhang, Y., Yang, X. & Li, D. (2021). Enhancing

trading strategies using reinforcement learn-
ing combined with supervised learning and
genetic algorithms. IEEE Transactions on
Computational Intelligence and Al in Games.

Zhang, C., Vinyals, O., Munos, R., & Ben-
gio, S. (2018). A study on overfitting in
deep reinforcement learning. arXiv preprint
arXiv:1804.06893

http://arxiv.org/abs/1706.10059
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1804.06893

