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ABSTRACT

Neural architectures such as Recurrent Neural Networks (RNNs), Transformers,
and State-Space Models have shown great success in handling sequential data by
learning temporal dependencies. Decision Trees (DTs), on the other hand, remain
a widely used class of models for structured tabular data but are typically not de-
signed to capture sequential patterns directly. Instead, DT-based approaches for
time-series data often rely on feature engineering, such as manually incorporating
lag features, which can be suboptimal for capturing complex temporal dependen-
cies. To address this limitation, we introduce ReMeDe Trees, a novel recurrent
DT architecture that integrates an internal memory mechanism, similar to RNNs,
to learn long-term dependencies in sequential data. Our model learns hard, axis-
aligned decision rules for both output generation and state updates, optimizing
them efficiently via gradient descent. We provide a proof-of-concept study on
synthetic benchmarks to demonstrate the effectiveness of our approach.
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Figure 1: Minimal Recurrent Decision Tree Example This figure shows an exemplary ReMeDe
tree applied to a sign recognition task. The task is to memorize the sign of x ∈ (−0.5, 0.5) at the
first position and predict it (-1 or 1) when a trigger value (1) appears, while intermediate positions
hold zeros plus small noise. The figure depicts the minimal ReMeDe tree solving this task. At the
root node, the tree checks whether the trigger occurs. If not (left branch), there are two cases: If the
hidden state is zero, it updates based on input, adopting the sign of the entry; otherwise, it remains
unchanged. If the trigger occurs (right branch), the tree splits on the hidden state to predict the sign
of the first value: negative for a negative hidden state, positive otherwise.

1 INTRODUCTION

Dealing with sequential, i.e. time-dependent, tabular data is an important area of machine learning
research. Besides forecasting, dynamic modeling is crucial for data-driven control methods. Both
have many practical applications in science, finance, healthcare, and many industrial areas.
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Generally speaking, there are two distinct structural approaches to learn dependencies over time.
The often employed memory window approach, that can be used with any type of regression or
classification algorithm, reduces the temporal dependencies to a static prediction problem by col-
lapsing the past L (input or output) values within a time series into a flat input to the model. This
is also sometimes referred to as (Nonlinear) Autoregressive Exogenous Model ((N)ARX) (Nelles,
2020). The other approach are recurrent models, which deal with time dependency explicitly. Mod-
ern forms of recurrent architectures like Recurrent Neural Networks (RNNs) (Elman, 1990), Long
Short-Term Memory networks (LSTMs) (Schmidhuber et al., 1997) define a hidden memory state,
which is updated in each inference step together with the calculation of the model outputs.

Recurrent approaches are in principle more powerful, because the model can deal with long-term
dependencies exceeding any practical choice of L for the memory window approach. Unfortunately,
truly recurrent (neural) models are still challenging to train due to unstable dynamics of backprop-
agated gradients over long sequences (Hochreiter, 1998), even with advances like gated memory
units as in LSTM networks (Schmidhuber et al., 1997). In addition, training neural networks can
afford a large amount of data. In real-world applications with limited data availability, they are of-
ten outperformed by tree-based ensembles such as XGBoost (Chen & Guestrin, 2016) or CatBoost
(Prokhorenkova et al., 2018). Unfortunately, for sequential data, such approaches have to be used
with the limited memory window technique.

In this paper, we introduce a novel decision tree (DT) algorithm, Recurrent Memory Decision
(ReMeDe) Trees, that, for the first time, incorporates recurrence in DTs through an internal memory
mechanism. Building on the techniques proposed by Marton et al. (2024a), our method enables ef-
ficient training of DTs via gradient descent, resulting in hard, axis-aligned recurrent DTs capable of
handling sequential data through a learnable internal memory. To the best of our knowledge, this is
the first approach to learn a memory-augmented recurrent DT model using backpropagation through
time (Werbos, 1990). Specifically, our contributions are:

• We extend Gradient-Based Decision Trees (Marton et al., 2024a) by incorporating an inter-
nal memory mechanism that can be learned using backpropagation through time.

• We modify the internal nodes of DTs to enable splits based on internal memory values,
allowing pathing decisions to be conditioned on past experiences.

• We propose a novel update procedure for the internal memory, leveraging the DT’s output
at each time step and incorporating a hard memory gating mechanism.

First experiments with synthetic problems indicate that, similar to RNNs, ReMeDe Trees can over-
come the limitations of fixed-size memory windows by efficiently compressing information in their
hidden state. This suggests that ReMeDe Trees could offer a promising approach for time series
tasks involving long-term dependencies, potentially combining the benefits of recurrent models for
sequential data with the interpretability and axis-aligned structure of DTs.

2 BACKGROUND

In this section, we will introduce the foundational concepts for ReMeDe Trees, which includes
the core notation and methodology of Gradient-Based Decision Trees, as well as Recurrent Neural
Networks.

2.1 GRADTREE: GRADIENT-BASED DECISION TREES

This section introduces the core principles and notation of Gradient-Based Decision Trees
(GradTree), which serve as the foundation for learning DTs through gradient-based optimization.
For a comprehensive overview, we refer to Marton et al. (2024a).

Traditional DTs rely on a hierarchical structure of nested decision rules. GradTree reformulates
DTs into arithmetic functions based on addition and multiplication, enabling efficient gradient-based
learning. Specifically, GradTree focuses on learning fully-grown (i.e., complete and balanced) DTs,
which can later be pruned if necessary. This means that every node has either zero or two successors
and all nodes with zero successors have the same depth.
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Such a tree of depth d can be expressed in terms of its parameters as:

y = t(x|λ, τ , ι) =
2d−1∑
l=0

λl L(x|l, τ , ι) (1)

Here, L is an indicator function that determines whether a data point x ∈ Rn reaches leaf node
l, λ ∈ C2d assigns class labels y ∈ Y to each leaf, τ ∈ R2d−1 contains the split thresholds, and
ι ∈ N2d−1 specifies the feature index for each internal node. The output space Y may be a set of
discrete class labels, in which Y ⊂ Nny , or some continuous space Y ⊂ Rny for application to
regression problems.

To enable gradient-based optimization and efficient computation using matrix operations, GradTree
introduces a dense representation of DTs. The traditional feature index vector ι is expanded into
a one-hot encoded matrix I ∈ R(2d−1)×n, and the split thresholds are represented as a matrix
T ∈ R(2d−1)×n, allowing individual thresholds for each feature. With internal nodes ordered in a
breadth-first manner, the tree function can be reformulated as:

g(x|λ, T, I) =
2d−1∑
l=0

λl L(x|l,T , I) (2)

The indicator function L for a leaf node l is defined as:

L(x|l,T , I) =
d∏

j=1

(1− p(l, j))S(x|Ii(l,j),Ti(l,j)) + p(l, j)
(
1− S(x|Ii(l,j),Ti(l,j))

)
(3)

In this formulation, i(l, j) denotes the internal node on the path to leaf l at depth j, and p(l, j)
indicates whether the path follows the left (p = 0) or right (p = 1) child node.

Traditional DTs use the non-differentiable Heaviside step function for splits, which impedes
gradient-based learning. GradTree replaces this with a smooth approximation using the logistic
sigmoid function:

S(x|ι, τ ) = ⌊S (ι · x− ι · τ )⌉ (4)

where S(z) = 1
1+e−z is the sigmoid function, ⌊z⌉ rounds z to the nearest integer, and ι · x denotes

the dot product. To maintain axis-aligned splits, ι is enforced as a one-hot encoded vector using a
hardmax transformation.

Since both rounding and hardmax operations are non-differentiable, GradTree utilizes the straight-
through (ST) estimator (Yin et al., 2019) during backpropagation. This allows non-differentiable
operations in the forward pass while enabling gradient flow in the backward pass. In contrast to many
approaches to learn soft, differentiable DTs, e.g. (Irsoy et al., 2012; Luo et al., 2021), GradTrees are
structurally (and also w.r.t. the inference process) equivalent to classical DTs without necessity for
any postprocessing, which may degrade the performance of the final DT model.

2.2 RECURRENT NEURAL NETWORKS (RNNS)

Recurrent Neural Networks (RNNs) are a class of neural networks designed to handle sequential
data by maintaining a dynamic hidden state that captures temporal dependencies. Unlike feed-
forward neural networks, which assume independent input samples, RNNs incorporate recurrent
connections, enabling them to retain information from previous time steps and model temporal cor-
relations within sequences.

An RNN processes an input sequence {x1,x2, . . . ,xt}, where xt ∈ Rnx is the input vector at time
step t, by recursively updating a hidden state ht ∈ Rnh as follows:

ht = ϕ
(
Wxhx

t +Whhh
t−1 + bh

)
(5)

where Wxh ∈ Rnh×nx is the input-to-hidden weight matrix, Whh ∈ Rnh×nh is the hidden-to-
hidden weight matrix, bh ∈ Rnh is the bias vector, and ϕ(·) is a activation function. Typically the

3



hyperbolic tangent (tanh) or ReLU are used, however, more recently using linear activation for the
hidden state has also received increased attention (Orvieto et al., 2023). The network produces an
output yt ∈ Rny at each time step, computed as:

yt = ψ
(
Whyh

t + by
)

(6)

whereWhy ∈ Rny×nh is the hidden-to-output weight matrix, by ∈ Rny is the output bias vector, and
ψ(·) is an activation function appropriate for the task, such as the softmax function for classification
tasks.

RNNs are usually trained using Backpropagation Through Time (BPTT), an extension of the stan-
dard backpropagation algorithm that unfolds the network across time steps to compute gradients
(Werbos, 1990), or Real-Time Recurrent Learning (RTRL) (Williams & Zipser, 1989). However,
standard RNNs are prone to vanishing and exploding gradients, which limit their ability to learn
long-term dependencies (Hochreiter, 1998). Despite these limitations, basic RNNs are effective for
tasks involving short to moderate sequential dependencies and serve as a foundational model for
more advanced recurrent architectures. Their parameter sharing across time steps allows efficient
learning from sequences of varying lengths, making them applicable to time series prediction, text
generation, and other sequential data modeling tasks.

Recognizing the limitations of basic RNNs, (Schmidhuber et al., 1997) proposed an extension which
makes use of a gating mechanism for the hidden state update. This involves additional gates for
adding new and forgetting old information respectively, rendering the resulting model more capa-
ble of dealing with longer lag times. This Long Short-Term Memory (LSTM) uses the following
equations:

f t = σg(Wfx
t + Ufh

t + bf ),

it = σg(Wix
t + Uih

t + bi),

ot = σg(Wox
t + Uoh

t + bo),

c̃t = σc(Wcx
t + Uch

t + bc),

ct = f t ⊙ ct−1 + it ⊙ c̃t,

ht = ot ⊙ σh(c
t),

(7)

where xt ∈ Rnx denotes the input vector at time step t, ⊙ denotes the Hadamard (elementwise)
product, it is the input gate activation, ot is the output gate activation, ht is the hidden state vector,
c̃t is the cell state activation, ct is the cell state, Wf,i,o,c, Uf,i,o,c are weight matrices, and bf,i,o,c are
bias vectors. Furthermore, σg is a sigmoid function, and σc,h is tanh.

3 RECURRENT MEMORY DECISION TREES

As in the previous section, we consider time-series problems, where for each time step k = 1, 2, ...,
a value xk ∈ Rnx is observed. The outputs yk ∈ Y may be either continuous, where Y ⊂ Rny , or
discrete in which Y ⊂ Nny .

The Hidden Memory There are two approaches to deal with time-depencency in dynamic
models: (1) NARX models where information about L past inputs xk−1, ...,xk−L or outputs
yk−1, ...,yk−L is used as model input in time step k. (2) Recurrent models where information
about an indefinite number of past time steps is used as model input by means of an additional
nm-dimensional memory M ⊂ Rnm , which stores (compressed) information about the past. Here,
mk is treated as an input variable to determine yk, but it also will be updated by the model in each
inference step.

It is obvious that NARX models can only effectively model Markov Processes up to orderL, whereas
recurrent models may be able to deal with much higher information lags. In order to use a hidden
memory M in a DT, it has to be observed by internal nodes, similar toX , and modified by leaf nodes,
similar to Y . This means that we can use the same equations as in GradTrees, but with X̃ = X ×M
and Ỹ = Y ×M. Since ỹ = (y,m), we may write

yt = g(x̃t|λ, T, I)y,
mt = g(x̃t|λ, T, I)m.

(8)
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Assuming that the memory is initially set to all zeros, i.e. m0 = 0nm
, we retain the general structure

and methodology as in GradTree that can be trained by gradient descent (or, to be more precise, in
this case: Backpropagation-Through-Time, see Werbos (1990)).

Internal Decision Nodes Similar to classical DTs and GradTree, we currently employ hard, axis-
aligned splits. However, ReMeDe Trees operate in the combined input-state space X̃ = X ×M .
This means that at each internal decision node, a routing decision through the tree may be either
based on a component of the input vector, or a particular dimension of the hidden memory state.
Hence the inference logic within the tree may explicitly depend on stored past information.

Memory Gating Gating techniques have been introduced in RNNs to deal with unstable gradient
dynamics during training (Hochreiter, 1998). Therein, additional input- or state-dependent gates
determine write-operations to the hidden state (either update with new information, or even deletion
of old information (Schmidhuber et al., 1997)), as formalized in the previous section. Augmenting
the memory access operation in ReMeDe Trees with gating mechanisms is quite straightforward and
should - similar to their effect in RNNs - allow the model to deal better with longer dependencies
over time. We use a very simple form of non-smooth, i.e. binary gating which aligns very well with
the overall DT model structure, and leave studying more intricate mechanisms for future work. This
gating mechanism will be introduced along with the output representation in the next paragraph.

Output Representation For ReMeDe Trees, each leaf node prescribes an output value, but also
an update to the nm−dimensional memory state mt. Classical DTs use a zero-order output rep-
resentation, i.e. the output value is explicitly prescribed in the leaf nodes. For classification tasks,
such as those considered in the experiments within this article, this is of course reasonable. Hence,
the output will be calculated as

yt = g(x̃t|λ, T, I)y = yj , (9)

where yj ∈ Y denotes the constant output prescribed in the leaf node j that was selected by the tree
inference. However, for continuous output values - such as the memory updates - other variants have
been considered. For applications in time-series prediction, it is often recommended in practice to
use a first order output, i.e.

yt = yt−1 + g(x̃t|λ, T, I)y, (10)

to be able to deal with trends effectively. Other, more sophisticated, approaches utilize a
parametrized mapping in each leaf node for static or dynamic problems, such as linear model
trees (Czajkowski & Kretowski, 2016; Ammari et al., 2023) or fuzzy weighted linear models in
the LoLiMoT algorithm (Nelles & Isermann, 1996). We consider studying different variants of out-
put representation, in particular for memory updates, an interesting avenue for future research. For
outputs, we use a zero order formulation and for the memory update an RNN-inspired parametrized
equation:

mt = mt−1 + ⌊ψg(cj)⌉ψ(W x
j x

t),

cj ,W
x
j = g(x̃t|λ, T, I)m,

(11)

where j denotes the leaf node selected by tree inference, ψ is tanh, W x
j ∈ Rnm×nx is a learnable

weight matrix, cj is a zero order output prescribed by leaf node j, ψg : R → [0, 1] is a sigmoid
function, and ⌊·⌉ : R → Z maps its argument to the nearest integer, i.e. applied componentwise to
ψg(cj), we have ⌊ψg(cj)⌉ ∈ {0, 1}nm , representing the hard gating mechanism for the hidden state
update. Similar to the split decision in GradTree, this is achieved by rounding the sigmoid output of
a gating parameter cj and using the ST operator to ensure a reasonable gradient flow.

4 EVALUATION

In our evaluation, we provide a proof of concept that our formulation allows learning a recurrent
memory DT architecture in an RNN-like fashion solely with BPTT. Therefore, we evaluate our
method on 5 different synthetic datasets with increasing complexity that are designed in a way that
they can only be solved with an internal memory, whenever a competing memory window-based
model faced hard limits with respect to window size.
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4.1 PROOF OF CONCEPT - SYNTHETIC DATA GENERATION PROCEDURES

This subsection introduces five synthetic data generation procedures designed to model temporal
dependencies and delayed response behaviors in time series data. Each method simulates distinct
patterns, including delayed reactions and memory effects, across one- and two-dimensional input
spaces. The following subsections describe each method in detail with corresponding mathematical
formalizations.

1. Delayed Sign Retrieval (Single-Dimensional, Fixed Delay) The first procedure generates a
single-dimensional time series where the task is to recover the sign of the initial input after a fixed
delay. A trigger signal appears at a specific timestep, prompting the output to reflect the sign of the
initial value, while the output remains zero at all other timesteps. Let x0 ∼ U(−v, v) be the initial
value, and d denote the fixed delay. The input sequence x ∈ Rd+2 and the target output y ∈ Rd+2

are defined as:
x = [x0, 0, 0, . . . , 0, t], (12)

y = [0, 0, . . . , 0, sign(x0)], (13)

where t is the trigger value and the sign function is defined as:

sign(x) =

{
1 if x ≥ 0,

−1 if x < 0.
(14)

2. Delayed Sign Retrieval (Two-Dimensional, Fixed Delay) This method extends the previous
setup to a two-dimensional input. The first channel contains the initial value, and the second channel
receives the trigger after a fixed delay. The model must output the sign of the first input upon
the appearance of the trigger. Let x0 ∼ U(−v, v) and d be the fixed delay. The input matrix
X ∈ R(d+2)×2 and the output y ∈ Rd+2 are defined as:

X =


x0 0
0 0
...

...
0 t

 , y = [0, 0, . . . , 0, sign(x0)]. (15)

3. Delayed Sign Retrieval (Single-Dimensional, Variable Delay) This variant introduces a vari-
able delay, randomly sampled from a uniform range [dmin, dmax]. The trigger appears at a random
timestep, requiring the model to output the sign of the initial value. Let δ ∼ U(dmin, dmax) and
x0 ∼ U(−v, v). The input x and output y are defined as:

x = [x0, 0, . . . , 0, t, 0, . . . ], (16)

y = [0, . . . , 0, sign(x0), 0, . . . ], (17)

where the trigger t appears at timestep δ.

4. Delayed Sign Retrieval (Two-Dimensional, Variable Delay) This method generalizes the
two-dimensional fixed delay scenario by allowing the trigger to appear at a randomly chosen
timestep within a predefined delay range. Let δ ∼ U(dmin, dmax). The input matrix X and out-
put y are:

X =


x0 0
0 0
...

...
0 t
... 0

 , y = [0, . . . , 0, sign(x0), 0, . . . ]. (18)
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Table 1: PoC Results. We report the average test accuracy along with the standard deviation on our
proof-of-concept datasets, computed over five independent random trials.

PoC 1 PoC 2 PoC 3 PoC 4 PoC 5

ReMeDe (ours) 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
LSTM 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Random Guess 0.334 ± 0.001 0.333 ± 0.001 0.332 ± 0.002 0.333 ± 0.001 0.333 ± 0.001
Naı̈ve Baseline 0.930 ± 0.002 0.930 ± 0.002 0.889 ± 0.001 0.889 ± 0.002 0.877 ± 0.003

5. Sign Memory Task The final procedure generates sequences composed of alternating blocks
of −1 and 1, interspersed with zero-valued delay blocks. The task is to reproduce the last non-zero
block upon encountering a new non-zero block. Let bj ∈ {−1, 1} denote the j-th non-zero block of
length l, and z represent a zero block of length d. The input x and target output y are constructed
as:

x = [b1, z, b2, z, . . . , bn], (19)
y = [0, z, b1, z, b2, . . . ]. (20)

Each non-zero block bj is randomly selected from {−1, 1}, and the model must recall and reproduce
the previous block at the appropriate timestep.

4.2 EXPERIMENTAL SETUP

Methods We evaluate two recurrent architecture on our datasets: LSTMs and ReMeDe Trees.
While more recent RNNs, such as xLSTM (Beck et al., 2024), might provide a SoTA-benchmark, the
aim here is to show viability of the approach instead of benchmarking by comparing two recurrent
models with gated hidden state updates. We omit comparison with NARX models, as it is clear that
given a fixed lookback size of the model, our experiments can always be configured such that these
models cannot learn the necessary temporal dependencies. Furthermore, we compare against two
baselines, a simple random guess and a naive baseline making an informed guess (i.e., predicting
the most probable value for each element in the sequence) based on the task.

Hyperparameters To select suitable hyperparameters for each task, we used Optuna (Akiba et al.,
2019) with 60 trials. Specifically, we optimized only the learning rates, while keeping all other
hyperparameters fixed. In particular, we selected a small tree depth of 6 and a hidden state size of
only 5, to demonstrate that even with a compact model architecture, meaningful patterns can still be
learned effectively. For LSTM, we selected a basic architecture with two hidden layers of 32 and
16 neurons and dropout. Similar to ReMeDe, we optimized the learning rate using Optuna with 60
trials.

Datasets For our proof-of-concept experiments, we utilized the datasets introduced in Section 4.1.
Specifically, we set the fixed delay to 5 and defined the variable delay within the range [3, 7]. For
each task, we generated a total of 10,000 sequences. Continuous values were sampled from the
uniform distribution U(−0.5, 0.5), and the delay was perturbed with a small random noise drawn
from the normal distribution N (−0.01, 0.01).

4.3 RESULTS

We can learn recurrent decision trees with backpropagation through time Our results con-
firm that recurrent DTs can be effectively trained end-to-end using backpropagation through time.
As shown in Table 1, our ReMeDe model achieves perfect test accuracy across all PoC datasets,
matching the performance of LSTM baselines. This demonstrates that gradient-based optimiza-
tion using the proposed method is a viable approach for learning DTs with temporal dependencies,
enabling both structured decision-making and sequence modeling within a single method.
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Figure 2: ReMeDe Tree Update Visualization This figure shows an ReMeDe tree trained to a sign
recognition task. The task is to memorize the sign of x ∈ (−0.5, 0.5) at the first position and predict
it (-1 or 1) when a trigger value (1) appears, while intermediate positions hold zeros plus small noise.

Table 2: Average Tree Size. We report
the average tree size, measured in terms
of the number of nodes.

Number of Nodes

PoC 1 22.2
PoC 2 20.2
PoC 3 21.0
PoC 4 23.0
PoC 5 43.8

Mean 26.0

ReMeDe Trees have a small tree size Table 2
presents the average tree size, measured in terms of
the number of nodes, including both internal and leaf
nodes, across our proof-of-concept datasets. The DTs
are pruned by removing all redundant paths, ensuring a
more compact representation. The results indicate that
the learned DTs remain compact, with an average size
of 26.0 nodes. Notably, the tree learned on PoC5 ex-
hibits a considerably larger size, averaging 43.8 nodes,
whereas the trees for the remaining tasks are of similar
size, ranging between 20 and 23 nodes. This observa-
tion underscores the efficiency of the proposed method
in capturing underlying dependencies while maintain-
ing a moderate tree size. The compactness of ReMeDe
Trees is particularly advantageous for interpretability on small datasets and enhances verifiability
for more complex tasks.

ReMeDe Trees can effectively update and access the internal memory To illustrate how state
updates operate in a compact ReMeDe tree, we present the example in Figure 2. The tree depicted
in this figure was learned by our method in a simplified setting (using a tree of depth 4 with a
single memory parameter) on PoC1. At the root node, the tree evaluates whether the hidden state is
smaller than −0.23, effectively distinguishing whether the first entry in the sequence was negative
(left branch) or positive (right branch). At the second level, the tree checks whether the trigger
condition is met (> 0.5). If the trigger is activated, the tree makes the corresponding prediction for
the sign. Otherwise, the hidden state may be updated. The update mechanism follows the left path in
the diagram, where the hidden state is updated only if it falls within the interval [−0.23, 0.13]. This
condition is typically satisfied only for the first element in the sequence, as subsequent updates are
significantly amplified by a weight of 37.63. If the hidden state lies outside this interval, no update
occurs, which corresponds to the delay phase. This example highlights how ReMeDe effectively
captures and recalls sequential information, demonstrating its suitability for structured decision-
making in temporal tasks.

5 RELATED WORK

Classical DT learning algorithms, such as C4.5 (Quinlan, 2014) or CART (Breiman, 2017), are
based on growing a DT by greedily splitting the input space in a componentwise fashion to optimize
the reduction in the chosen error metric at each step of building the tree. No method has been yet
proposed to incorporate updates of an internal memory state based on these algorithms.

Nevertheless, the idea of using explicit time-dependency in the DT framework is not new. (Chen
et al., 2016) propose a model which they call recurrent DT, for camera planning. In contrast to
ReMeDe, no internal memory state is used but previous outputs are fed back into the model as inputs,
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which renders this approach a special case of NARX models in the terminology used here. The same
holds for (Chegini & Lucas, 2010), who extend the LoLiMoT algorithm (Nelles & Isermann, 1996)
to include output feedback for financial time series prediction. (Alaniz et al., 2021) propose an
intricate scheme to learn a recurrent model, involving a DT, but also a combination between an
LSTM and an Attribute-Learning System, where a DT uses the hidden state of an LSTM.

Others have taken the converse route and combine classical DT with recurrent models in leaf nodes,
such as (Ren et al., 2021). Therein, first the input data is split using classical DT algorithms and then
separate RNNs are trained for each leaf node, inheriting the potential suboptimality of the former.
Also worth mentioning is a family of approaches that uses hierarchical, tree structured switching
linear systems for dynamics modeling, such as (Nassar et al., 2018), which share some structural
similarities with ReMeDe Trees, although the resulting models are quite different. In particular,
the hidden state used there is discrete and some of the involved operations are soft, i.e. stochastic.
In contrast, a ReMeDe Tree consists only of a single hard, axis-aligned DT which performs read
and write operations on its own hidden memory state, enabled by training the complete model via
gradient descent. To the best of our knowledge, no other recurrent DT using continuous hidden state
feedback has been proposed yet.

6 CONCLUSION AND FUTURE WORK

In this article, we introduce a novel recurrent method, Recurrent Memory Decision (ReMeDe) Trees,
which leverages an internal hidden state trained through Backpropagation-Through-Time to con-
struct hard, axis-aligned and recurrent DTs building on the GradTree model (Marton et al., 2024a).
We have shown on synthetic test problems that our method is able to effectively compress past
information into its hidden state to capture dependencies between inputs and outputs.

In the future, we would like to extend our method to more advanced base models, such as DTs with
non-trivial output representations in leaf nodes and advanced memory gating techniques. Addition-
ally, ReMeDe Trees can be readily introduced into tree ensembling approaches, such as GRANDE
(Marton et al., 2024b). Combining the basic ReMeDe Tree model presented in this paper with the
aforementioned extensions may hopefully show that recurrent DTs have the potential to yield com-
petitive performance in time series learning tasks involving long-term dependencies, combining the
advantages of recurrent models in time series tasks with the advantages of hard, axis-aligned DTs.
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