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Abstract

We often use ”explainable” Artificial Intelligence (XAI)” and ”interpretable
AI (IAI)” interchangeably when we apply various XAI tools for a given
dataset to explain the reasons that underpin machine learning (ML) out-
puts. However, these notions can sometimes be confusing because interpre-
tation often has a subjective connotation, while explanations lean towards
objective facts. We argue that XAI is a subset of IAI. The concept of IAI
is beyond the sphere of a dataset. It includes the domain of a mindset. At
the core of this ambiguity is the duality of reasons, in which we can reason
either outwards or inwards. When directed outwards, we want the reasons
to make sense through the laws of nature. When turned inwards, we want
the reasons to be happy, guided by the laws of the heart. While XAI and
IAI share reason as the common notion for the goal of transparency, clarity,
fairness, reliability, and accountability in the context of ethical AI and trust-
worthy AI (TAI), their differences lie in that XAI emphasizes the post-hoc
analysis of a dataset, and IAI requires a priori mindset of abstraction. This
hypothesis can be proved by empirical experiments based on an open dataset
and harnessed by High-Performance Computing (HPC). The demarcation of
XAI and IAI is indispensable because it would be impossible to determine
regulatory policies for many AI applications, especially in healthcare, hu-
man resources, banking, and finance. We aim to clarify these notions and
lay the foundation of XAI, IAI, EAI, and TAI for many practitioners and
policymakers in future AI applications and research.
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1. Introduction

The notion of eXplainable Artificial Intelligence (XAI) suggests the ability
to clarify AI. It offers reasons, evidence, and contexts for the Artificial Intel-
ligence/Machine Learning (AI/ML) results. It answers questions of ”why”
and ”how”. ”Why” offers reasons, and ”how” explains how the AI arrived
at the result supported by reasons. It is a process of making sense of the
AI/ML outputs.

On the other hand, Interpretable AI (IAI) also provides reasons, but it
asks the question, ”Is the reason reasonable?” If we consider IAI to be a
high-level abstraction of XAI, IAI is the meta-XAI or criteria of XAI for
satisfaction. The IAI process requires our mindset. Molnar[33] argued that
our mindset is a perspective of the world when we construct a learning model.
In computer programming, ”interpretation” means interactively converting a
high-level language into machine codes line-by-line. A programming language
is a form of communication between programmers and other people. It also
helps programmers organize and describe ideas for a computer. Similarly, IAI
can be considered a form of communication among humans, while XAI is an
engagement process of our mindset for a given dataset within a particular
problem context.

Guidotti et al.[1] argued that IAI is needed for AI models, while XAI
aims for prediction results. Miller[2] attempted to define XAI from different
perspectives, including philosophy, cognitive psychology/science, and social
psychology. Miller did not differentiate between interpretability (XAI) and
explainability (IAI). Molnar[16] also prefers to use both terms interchange-
ably but differentiates between explainability/interpretability (degree to hu-
man understanding) and explanation(predictions). Lipton [3] defines ”inter-
pretability” from an ML algorithm perspective but finds the term is slippery.
He argued that today’s predictive (AI/ML) models are incapable of reason
at all. Nevertheless, Lipton proposed two approaches to understanding XAI:
the intrinsic (thing-in-itself) and the ”post-hoc” methods. He concludes that
understanding ”thing in itself” is to interpret, while ”post-hoc” is to explain.

Benois-Pineau et al. [4] define ”explaining” as the process of computing,
while ”interpreting” is the process of assigning meaning to the explanation,
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which sometimes also applies to the model’s representation. They infer that
interpretation involves human decision-making for the model’s representa-
tion.

Likewise, Brain and Cotton [5] argue that the concept of explainability
is closely related to interpretability because if ML models are interpretable,
their operations can be understood by a human through a process of expla-
nation. They claim that the interpretable ML models can intrinsically be
explained through reasoning. Following a similar logic, Burkart and Huber
[6] describe ”interpretation” as interpreting ML models, while ”explanation”
means providing reasons.

Although many researchers have made great contributions to differentiate
and articulate the meaning of interpretable AI (IAI) and eXplainable AI
(XAI) [7], confusion has still remained. As Zhong and Negre [8] argued, the
AI research community failed to reach a consensus for a strict definition of
interpretability and explainability. Many ambiguities exist not only in how to
define the terms but also in how to evaluate the ML models. They concluded
that many definitions are often cast out arbitrarily or subjectively.

The fundamental issue is that the primary question remains unclear or
has not been asked: ”If the ML model can provide a good prediction outcome,
why do we still need an explanation or interpretation?” What is the essential
difference between symbolic AI or Good Old Fashioned Artificial Intelligence
(GOFAI) and modern AI/ML? The answer lies in the ML process, which is
reversed programming logic.(See Figure. 1)

Figure 1: Reverse Programming Logic

This reversed programming logic drives the demand for XAI and IAI
because the data patterns generate a set of rules and prediction models.
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Consequently, the ML result could become unexplainable. Therefore, we long
for XAI and IAI. To some extent, the essence of the XAI/IAI process is to
reverse the reserved programming logic order. We can draw the logic analogy
between XAI/IAI and traditional programming logic order. Implicitly, the
process of explanation and interpretation shares the common notion (reason)
with a special characteristic of duality. This is why people use both terms
interchangeably. From a hierarchical perspective, XAI is a subset of IAI. IAI
is a subset of EAI, and EAI is a subset of TAI by drawing an isomorphism
[38]from the relation of AI, ML, Deep Learning (DL), and Generative AI
(Refer to Figure 2) because we need XAI to reverse ”reversed programming
logic”, IAI to understand XAI’s process, EAI to satisfy IAI’s reasons or
values, and TAI to rely on EAI criteria.

Figure 2: Relationship of TAI, EAI, IAI, and XAI

From a reasoning perspective, we can find that when reason is faced out-
ward, it sees logic, objectivity, inference, rules, and algorithms. Reasons (we)
want to make sense. It explains cause-and-effect, deductive, inductive, ana-
logical, correlational, probabilistic, and counterfactual inference. The law of
nature governs the XAI. However, when reasons (we) are faced inward, they
do not see all logical objects in an array. Instead, they see ”a blooming and
buzzing confusion” with half thoughts, fuzzy memories, and some unpleasant
regrets.[9]. In short, reasons want to be happy. The inward reasons reveal
our mind, internal freedom, passion, choice, intuitions, desires, and beliefs.
They give rise to fairness, ethics, morals, and justice [10]. They derive from
the law of the heart and eventually become the law of ethics and morality
(See Figure 3). In other words, XAI and IAI are based on different decision
rules or frames of mind.

Hence, we articulate the demarcation between XAI and IAI. This de-
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Figure 3: The Duality of Reason for Explanation and Interpretation

marcation can be demonstrated through a series of empirical experiments
by adopting widely recognized XAI techniques [34, 35, 36]. We aim to draw
many practitioners’ and policymakers’ attention to this essential difference
and lay the groundwork for future XAI, IAI, EAI, and Trustworthy AI (TAI)
research and AI applications. By doing so, we made the following contribu-
tions:

• We define the duality of reason as the demarcation between XAI and
IAI. It can help AI researchers, practitioners, and policy-makers to
understand the XAI and IAI issues in the context of EAI and TAI.

• We offer the logic of outward and inward reasoning as the innovative
approach to differentiate the XAI and IAI with various empirical exper-
iments. This approach mitigates the confusion. It eliminates slippery,
arbitrary, and subjective definitions of XAI and IAI.

• This study demonstrates how to harness HPC or cloud power to fine-
tune ML models based on a given dataset and employ well-established
explainable techniques to explain ML models within an interpretable
mindset.

• This work proposes a 3X3 high-level abstraction matrix for the meta-
hyperparameter concept to define XAI’s criteria from data to ML mod-
elling and from ML modelling to XAI across problems, hypothesis and
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validation/justification spaces. The search processing is determined by
both a given dataset and mindset. The study illustrated the end-to-end
(E2E) process of XAI and IAI experiments and highlighted details of
the XAI/IAI pipeline.

The rest of the paper is organized as follows: Section 2 provides a quick
survey of eight well-known XAI techniques. Section 3 introduces an open
dataset for car insurance claims and our mindset regarding how to implement
experiments at a high-level abstraction. Section 4 presents the experimental
results and further optimizes ML models through a hyperparameter search.
Section 5 discusses the results and gives a detailed analysis. Section 6
outlines the conclusions and highlights future research works.

2. Literature Review

2.1. Overview of XAI Techniques

Many widely recognized XAI techniques can be classified as computa-
tional versus non-computational, statistical methods versus causal methods
(under computational), global versus local (under statistical), and post-hoc
versus a priori(Refer to Fig 4) if we assume XAI to be a subset of IAI from
a top-down perspective. The meaning of ”post-hoc” is to examine the result
of the ML model after training [16] because we want to understand how the
final ML model reaches its conclusions. Due to limited space, we only con-
centrate on eight XAI techniques marked in orange. We exclude the saliency
map and sensitivity analysis from this study because we want to focus on
the gradient-boosting machines (GBM) as an ML model. Besides the global
(model-agnostic) post-hoc, we can also have global intrinsic models, such as
LRP [29] and DTD [30] for neural networks. The meaning of intrinsic implies
the model itself or opening a black box. In contrast, we can have extrinsic or
causal models that can also be categorized locally and globally. Under the
hood of the non-computational category, there are self-explanation scorecard
(self-XSC) and stakeholder playbook (SPB) [32]. These XAI models are
beyond the paper’s scope.

2.2. XAI Techniques Briefing

The idea of Local Interpretable Model-agnostic Explanations or LIME
[11] is to employ a local and simple surrogate model(fs) to replace the orig-
inal and complex model (fM) known as local model-agnostic. The following
equation can compute LIME:
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ξ(x) = arg min
fS∈F

L(fM , fS, πx) + Ω(fS) (1)

Where ξ(x) is the error between fM (ML or target model) and fS (sur-
rogate model) F is a class of potential explainable models, which fS ∈ F ,
Ω(fS) is the measurement of the complexity of fM . πx defines a proximity
measurement between an instance z and x as a locality around x.

LIME is a very popular XAI tool. We can use it even as a debugging
tool because it is simple and transparent. It can also be applied to many ML
models. However, the quality of LIME depends on a surrogate model. The
explainable results are often unstable. It gives rise to the Anchor model.

Figure 4: Taxonomy of XAI and IAI 1

[1]VI:Variable Importance, PDP: Partial Dependent Plot, ALE:Accumulated Local
Effects, ICE: Individual Conditional Expectation, LRP: Layer-wise Relevance Propaga-
tion, DTD: Deep Taylor Decomposition, LRP: Layer-wise Relevance Propagation, DTD:
Deep Taylor Decomposition, Self-XSC: Self Explanation Score Card, SPB: Stakeholder
Playbook
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Anchor is another local model-agnostic method presented by [12][13].
It aims to explain any black box model with high probability guarantees.
The basic idea is to employ a decision rule (IF-THEN) for one or some
instances while generalizing the rest. It does not aim to open the black box’s
architecture and understand the internal parameters of the model. Instead,
it uses a similar approach as LIME to use high-precision rules called anchors
for the target model. Thus, the anchor algorithm is universal and defined as
follows:

ED(z|A)[1f(x)=f(z)] ≥ τ, A(x) = 1 (2)

Where x means the instance being explained, A(x): Anchor is a set of
predictions. If A(x) = 1 when A is a sufficient condition for f(x) with
a high probability. The function f(x) implies the classification model to
be explained D(·|A) is the distribution of neighbours of x matching A. τ
specifies a precision threshold.

Comparing LIME, the Anchor approach provides the following advan-
tages: 1.) The result is easier to comprehend due to IF-THEN rules; 2.)
It can be applied to any model. It is less likely to underfit; 3.) It can also
serve as a subset and cover some essential instances; 4.) It supports parallel
computation. The disadvantages are 1.) The result heavily depends on
the initial configuration; 2.) An outcome is too specific with low coverage;
3.) Building an anchor depends on many factors. It leads to the particular
anchor of runtime varying widely; 4.) The explainable coverage is undefined
in some domains.

In order to achieve the total coverage, we can select the Individual Con-
ditional Expectations (ICE) curve showing an ML model profile because the
ICE plot gives the output of N instances [18] for features. The ICE plot
provides heterogeneous relationships. The disadvantage of the ICE plot is
that it can only show one feature at a time. To overcome the limitation, we
can leverage the Shapley value method [27]. The concept of this approach
has its roots in game theory, particularly cooperative game theory [28]. The
Shapley value only describes a very particular type of fairness that is equal
based on the principle that all players deserve equal rights and opportunities.

To calculate a model’s fairness, we can employ algorithmic fairness,
which is one of the global techniques. It was proposed by Kozodoi et al. [19]
with 11 fairness data metrics, including demographic, proportional, equalized
odds, predictive rate, false positive, false negative rate, accuracy, negative
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predictive value, etc. Given the limited space constraints, we only selected
some metrics, such as accurate, precise, and predictive probability measure-
ments. The advantages of accuracy and precision are that the prediction
result can be intuitively simple. It improves the prediction results globally.
However, it can be misleading in rare instances if the population size is im-
mensely large, which explains the fairness regarding the population size.

Another global technique is the Partial Dependent Profile or Plot (PDP).
It can demonstrate one or two features in the feature set S contributing to
the final prediction result in marginal effects. The marginal effects mean
that other features are excluded from the plot. The PDP can unveil the re-
lationship [15] between the input feature and the output prediction, whether
linear, monotonic, or complex. The mathematical relationship [31] can be
expressed as follows:

f̂S(xS) = ExC
[f̂(xS, xC)] =

∫
f̂(xS, xC)dP(xC) (3)

Where xS donates to a feature. xC stands for other features of the ML
model f̂ . The partial function f̂S is an estimated value resulting from the
average training data. It is similar to the Monte Carlo simulation, which
predicts possible outcomes from an uncertain event.

The advantages of the PDP plot are straightforward and easier to imple-
ment. If the selected feature is not correlated, the PDP can represent how
this feature impacts the predicted result on average. The disadvantages are:
1.) the maximum number of features is two; 2.) Some PDPs do not include
feature distribution, which can cause misinterpretation. 3.) If the features
in C and S are correlated, the PDP result cannot be trusted.

To solve the correlation issue, we can employ Accumulate Local Effect
Plots (ALE). The ALE [17] uses conditional distribution plus the effect of
correlated features of interest rather than marginal distribution. The ALE
concept can be formulated in the following equations:

f1,ALE(x1) =

∫ x1

xmin,1

E[f 1(X1, X2)|X1 = z1]dz2 − Cc (4)

=

∫ x1

xmin,1

(p2|1(x2|z1)f 1(z1, x2)dx2)dz1 − Cc (5)

Where f 1(x1, x2) = ∂(x1, x2)/∂x1 represent the local effect of x1 on f(·) at
(x1, x2). xmin,1 is the selected value near the lower bound of the effect support
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of p1(·). Cc is the constant chosen to centre the plot vertically p2|1(x2|z1)
stands for conditional density probability. In essence, the ALE calculates
the differences in predictions and only focuses on interesting features rather
than all. The difference in predictions is a result of the feature’s effects on
all individual instances in a certain interval.

The advantages of the ALE are: 1) It still works if features are correlated;
2) The computation of the ALE is faster; 3) It is much easier and more
transparent to explain results. The disadvantages of the ALE are: 1.) The
result can be unstable at various intervals. There is no perfect solution to
finding an ideal number of intervals; 2.) Unlike the PDP technique, we cannot
use ICE as a complementary plot to check the ALE’s heterogeneity in the
feature effect; 3.) Although the second-order ALE estimates can present a
changing stability across the feature space, it is not visible; 4.) Moreover,
the second-order effect plot is hard to explain; 5.) Compared to the PDP,
the ALE is much more complex in terms of implementation; 6.) The ALE
can not exhibit more than two features.

The last technique is Variable Importance (VI) or Feature Importance
(FI). It measures the importance of each variable or feature’s contribution
to the prediction result. We can permutate all variables or features and rank
them in a list to visualize VI [14]. Breiman proposed permutation VI for
the random forests algorithm [16]. The advantages of the VI are: 1.) It can
be explained directly and efficiently; 2.) The VI provides an overview of all
features. The disadvantages are 1.) If features are correlated, the interactive
components between features cannot be added; 2.) The accuracy of the VI
(or ranking order of VIs) heavily depends on the model’s errors; and 3.) The
VI is the result of the final model. All the above XAI techniques are also
known as model-agnostic models that can be applied to any ML model.

3. Database and Experimental Setup

3.1. Brief Overview of Dataset

Prior to a series of XAI experiments, it is necessary to understand a
dataset. We selected an open dataset regarding annual car insurance claims
from Kaggle [20]. It comprises exactly 10,000 observations and 19 features.
According to the data donor, most data is real, but the author changed some
values. It is unclear which part of the data has been artificially modified.
Furthermore, the dataset has 982 missing values in the ”credit score” column
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and 957 missing values in the ”annual mileage” column. Figure.5 depicts the
pattern of missing values.

Figure 5: Dataset and Missing Values

Although the missing values are slightly above a typical threshold level
of 5%, the previous experience [21] indicates that an imputation strategy is
still better than simply omitting these missing values because 8.8% is still
within the principle guideline for imputation. Moreover, Madley-Dowd et
al. [22] argued that the proportion of missing data should not be used to
guide decisions on multiple imputations. They prove that unbiased results
can be achieved even with up to 90% missing data. Considering the goal of
this study, excluding missing values might diminish the explanatory power
down the pipeline. Here is a critical decision point that differentiates between
XAI and IAI. The decision to take what kind of technique depends on the
individual’s experience, intuition, and even belief or mindset. At first glance,
data imputation seems to have nothing to do with the XAI model, but the
data patterns will render the rules on our behalf. Consequently, selecting the
right method of data imputation will directly impact XAI results. In other
words, the dataset given mindset is equivalent to XAI given IAI.

3.2. Experimental Setup and Implementation

Once the data imputation was completed, we split the dataset into a
70/30 ratio. The large part is for training, and the smaller proportion is for
testing. We can also split the dataset into 80/20 or 50/50 ratios. It depends
on a given problem context. Chollet[37] suggested a 50/50 ratio for a time
series problem because we try to predict the future given the past, not the
reverse. We set the cross-validation value to five.

The basic idea of the experiments is to train some common ML models
first, such as general linear model (GLM), random forests (RF), gradient
boost machine (GBM) and extended gradient boosting machine (Xgbm) that
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are considered to be a black box, and then we use explainable techniques,
such as VI, PDP, ICE, LIME, ALE, Shapley values, Anchors, and
Fairness to explain the black box for the prediction results.

We select the GBM to gain a basic understanding of the dataset. And
then, we run Xgbm in parallel for a hyperparameter search to find an op-
timal solution. The solution will increase the accuracy of the prediction
model. Usually, the optimal solution will take all features into account. Con-
sequently, the Xgbm model becomes very challenging to explain. It leads to
the immediate question: ”Is the reason reasonable?” It also gives rise to the
interpretation process. That is, when a reason turns to itself, it seeks to be
justified and satisfied. We can somewhat perceive it as the reason reflecting
on itself. It means the IAI process, which is iterative.

4. Experiment Implementation, Results and Analysis

4.1. Prediction Results

The experiment results are divided into three folds: 1.) Prediction results
via GLM[23], RF, and GBM for comparison. 2.) Hyper-parameter searching
for an optimizing solution via harnessing High-Performance Computing (or
cloud computing) power. 3.) Explainable results by global and local XAI
techniques. By comparison, GBM appears to be the best model to fit with
the dataset.(See Figure 6) However, the GBM result is not optimal. This
leads to an optimization process via a hyperparameters search.

Figure 6: GLM RF and GBM Residuals Comparison

4.2. Optimization Results

The hyperparameter search begins with an initial random guess of the
GBM model’s parameters based on our intuition. These parameters include
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the number of trees, interaction depth, shrinkage rate, and etc. (See Table
1)

Parameters Expt. 1 Expt.2 Expt.3 Xgbm on HPC
number of Trees 5,000 10,000 12,000 1,000
Learning Rate 0.001 0.01 0.1 0.05
Tree Depth 1 3 5 5
number min nodes 1 3 2 1
Col.Samples 1 1 0.85 0.9
Sub-sample 1 1 0.75 0.8
Non-Zero influ. 12 18 18 18
CPU Time(Sec) 6.86 36.59 65.53 109,796.71
Sys. time(Sec) 0.05 0.09 0.19 12.75
E. Time(Sec) 23.03 93.46 164.16 865.85
Best CV iter. 5,000 994 84 88
RMSE 0.354 0.325 0.323 0.312

Table 1: Hyperparameter Search Configuration

Table 1 shows that increasing the tree’s number has minimal impact on
the model performance. Decreasing the learning rate is not helpful either.
Based on the initial trial, the Xgbm model was applied. We harness the HPC
(or a cloud platform) for our hyperparameter search. The configuration of a
computational cluster is 128 CPU cores with 256 GRAM.

This experiment set up 576 hyper-grid search grid points for an optimal
solution. Although the final result does not seem to improve Root Mean
Square Error (RMSE) performance significantly for the particular dataset
due to the size of the dataset, this experiment aims to show the necessary
steps for the E2E XAI — IAI process. If using GBM, a 576 grid points search
will take over 30.5 hours in computation time. With an HPC platform, it
only takes about 14 minutes to create a dataset with 10,000 instances. If
the dataset has 100,000 or million instances, the HPC or cloud computing
power will make a significant difference. This optimization step is essential
to achieve a better explanation, especially for the VI technique.

4.3. Explanation AI

The first XAI experiment is the variable importance (VI) also known as
feature influence (FI). It is very straightforward. Each feature gain can be
calculated based on the optimal Xgbm model. (Figure 7). Next, we can
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plot the PDP diagrams for the numerical variable (Credit Score) against the
categorical variable (Driving experience). The PDP plot has three models
[General Linear Model (GLM), Random Forest (RF), and Gradient Boost
Machine (GBM)] for comparison. Figure. 8 illustrates the PDP result for
the credit score feature. Figure. 9 displays the PDP result for the driving
experience with three prediction models.

Figure 7: Variable Importance For Car Insurance Claim

Figure 8: PDP Credit Score for three ML Models

To explain some particular instances, we can use the LIME technique to
compute localized variable importance scores for a local profile because the
LIME can often plot several instances simultaneously. Here, we randomly
selected four instances to plot a local profile. (Refer to Figure 10)
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Figure 9: Average Prediction for Driving Experience

Figure 10: LIME XAI For Four Instances

As shown in Figure. 10, some variables may contribute to the negative
influence. For instance, the top left of Figure. 10 shows that if the driver’s
experience is between 20 and 29 years, it means the person has been rejected
a car insurance claim.

In addition to the LIME technique, the ICE is another local profile ex-
planation. Figure. 11 displays the local profile for driving experiences. The
ICE curves are extensions of the PDP. It plots each instance that contributes
to the average predicted value.

Notice that the left diagram shows a stack style, while the right side
exhibits the centred ICE. The centred ICE aims to visualize the heterogene-
ity in the prediction results. The decision on which diagram to adopt for
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Figure 11: ICE Curve for Driving Experience

explanation is dependent on the interpretation and even presentation.
Compared to LIME, the Shapley value evaluation can effectively work

with numerical variables. Consequently, we select four numerical variables:
”credit score”, ”past accident”, ”Driving Under the Influence (DUIS)”, and
”annual mileage”. Then, we arbitrarily select four instances or observations
[1, 25, 50 and 100] for the experiment. The final Shapley value plot shows
four observations [1, 25, 50, 100] in Figure 12. They are different, especially
cases 25 and 50, which are opposite regarding explainable features.

Figure 12: Shapley Value Explanation Cases: [1, 25, 50, 100]
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All the above experiments assume that features are not interactive with
each other. However, this assumption could face a challenge. For example,
the features of past accidents and annual mileage could be correlated because,
intuitively, the higher the driving mileage, the more accidents could occur.
We can verify our intuition or hypothesis with the ALE plot. Figure 13
has approved that our intuition is right but only after the threshold level of
annual mileage between 13,000 and 14,000. (Refer to Figure. 13, at left top)

Figure 13: ICE Curve for Driving Experience (left) and Age (Right)

Figure. 13 demonstrates four pairs of features (past accident versus an-
nual mileage, speeding violations versus driving experience, annual mileage
versus driving experience, and past accidents versus age) regarding the cor-
relation of the features. Some features are closely correlated if the value is
within a specific range. For example, the categorical variable of age and
the numerical variable of past accidents are closely correlated if the ages are
between 16 and 25. (see Figure 13 at the bottom right). The decision of se-
lecting which diagram to explain may rely on the researcher’s interpretation
and expertise. For this particular dataset, we only have 19 features. If the
dataset has 100 or even 1000 features, the number of feature combinations
could be significantly large. Consequently, we need a high-level abstraction
or IAI to subjectively select the desired feature combination for XAI. It is
apriori. That is, we want reason to be justified.
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Another instance of IAI is fairness, a concept introduced by Mitchell[24]
and Friedler[25]. The core of this fairness is to ensure that the prediction re-
sult does not discriminate against underrepresented subgroups in the dataset.
In statistics, this is known as sensitivity (true positive rate: TPR) and speci-
ficity (true negative rate: TNR). The ’demographic parity’ metric, which is
the sum of TRP + TNR, is particularly crucial as it provides an objective
measure of fairness in the prediction results.Figure. 14 presents Mathews Cor-
relation Coefficient (MCC) or Phi coefficient (φ) (at the top right) and Re-
ceiver Operating Characteristic (ROC) results (at the bottom right). These
two metrics demonstrate that predicting the OUTCOME for individuals with
over 30 years of driving experience is almost impossible, as the ROC met-
ric (purple colour) is very close to the diagonal line, indicating randomness.
The MCC measurement further confirms that the binary of OUTCOME is
not correlated with driving experience over 30 years. Conversely, the binary
variable OUTCOME is closely correlated for individuals with 0-9 years of
driving experience, providing an objective measure of fairness.

Figure 14: Fairness: Demographic and Predictive Probability

The last XAI experiment is the ”anchors” technique, which uses a simple
decision tree (IF-THEN) to explain the ML model. It means that the an-
chors use one or a few particular instances (or anchors) with decision rules
to explain the ML model while generalizing to as many other instances as
possible. The experiment uses five instances (anchors) to explain the ML
model. (Refer to Figure. 15 and Table 2). Notice that the selected case 5
only has 32.5% instances coverage, although the prediction precision is 100%,
while case 1 can achieve 90.8% prediction with nearly 70% coverage.
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Figure 15: Anchors Explainable AI by Five Instance

Case 1 2 3 4 5
Pred.Pre. 90.8% 94.4% 92.7% 92.4% 100.0%
Pred.Cov. 69.9% 15.6% 34.0% 30.8% 32.5%

Table 2: ANCHORS CASE

So far, we have implemented eight XAI experiments to demonstrate that
many IAI decision points or high-level abstractions are required during the
implementation of XAI experiments. There is a clear demarcation between
XAI and IAI. We argue these two notions are totally different. We cannot
use XAI and IAI interchangeably. Without IAI, XAI experiments could not
be executed.

5. Results Discussion

The paper’s primary research question is whether the XAI and IAI differ.
If so, why is it so important? How can we distinguish between them? We
solve these problems in three phases: data processing, ML modelling, and
analysis of XAI techniques. Each phase has many subsequent questions or
high-level abstractions for the goal of XAI. The approach is similar to Biecek
and Burzykowski’s [26] explanatory method. We can summarize the high-
level abstraction into a 3X3 matrix that consists of 1) data, 2) ML modelling,
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and 3) explanation multiplied by 1) problem context, 2) hypothesis, and
3) validation & justification. (See Figure 16). This high-level abstraction
of XAI can form a meta-hyperparameter search mechanism that could be
implemented iteratively.

Figure 16: Three Phases of Experiment

For the data processing phase, we performed a data imputation experi-
ment (Refer to Figure. 5). We believe the imputation data method is better
than the omitted missing data approach for XAI. Our belief is a part of our
intuition. We can ask many high-level reflected questions to interpret the
given dataset for the ML problem.

During the ML phase, three ML models are generated: GLM, RF, and
GBM with its extension of GBM (or Xgbm) for comparison of prediction
accuracy (See Figure. 6). We can also adopt a transformer model (deep
learning architecture) for prediction. The choice of which ML model to use
depends on the expected result of the prediction and subsequent selection
of XAI methods. (e.g. global intrinsic or global post-hoc). It determines
our mindset for a given dataset. When we build an ML model to fit with a
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dataset, we must consider at least five issues for the future XAI: 1.) Which
ML model should be selected for the context of the ML problem? 2.) What
is the dataset ratio for training, testing, and validation? 3.) Which feature or
features do I care about the most? 4.) How can the ML model be optimized?
All these questions are within a framework of a meta-hyperparameter search
that defines XAI criteria.

In general, the ML model may provide some clues for adopting which
XAI technique. For example, LRP and DTD are usually applied to neural
networks. Some XAI techniques are universal and can be applied to any type
of black box, such as LIME. As we showed above, the VI and PDP plots are
often unstable. The variables’ ranking order often changes if the RMSE is
drifting. It may indicate that some features are correlated. The ALE plot
is an alternative to the PDP. We show four pairs of correlation features in
Figure 13. If we want to focus on the local explanation, LIME, ICE, Shapley
value, and Anchor techniques offer solutions for XAI. However, the selection
of which XAI technique depends on our mindset or IAI regarding the problem
context.

6. Conclusion and Future Works

We argue that XAI and IAI differ. The demarcation of XAI and IAI is
the duality of the reason because whether we want to explain or interpret AI,
we must provide some reasons. However, reason has its duality, also known
as outward and inward reasoning. When we reason outwards, we want a rea-
son to make sense, which is governed by the law of nature, logic, algorithms,
rationality, and dataset. When we reason inwards, we want reason to be
happy. It is governed by the law of the heart that eventually leads to ethics,
belief, and intuition or mindset. Our E2E explanation process demonstrates
that many decision points or criteria of XAI are required based on our mind-
set and interaction with the XAI process. From a programming perspective,
IAI is similar to one level-up of abstraction, while XAI is more like detailed
commands that can get things done.

The implications of this demarcation clarify the notions between XAI
and IAI. This clarification can help many practitioners and policymakers
move beyond simple algorithmic explanations. This work’s main contribution
highlights the demarcation through various empirical experiments.

The limitation is that we are unable to test deep neural networks-related
XAI tools, such as LRP and DTD, as well as the causal methods for XAI.
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Moreover, how can we interpret the explainable results when we apply the
global intrinsic approach for explanation? Is there a Gestalt shift for the
intrinsic approaches? How can we generate high-level abstraction for a meta-
hyperparameter search? These are our future works. We will explore these
questions with other XAI techniques to understand how the other XAI tech-
niques impact IAI.
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