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Abstract. Asynchronous trading in high-frequency financial markets introduces significant biases into econometric

analysis, distorting risk estimates and leading to suboptimal portfolio decisions. Existing synchronization methods,

such as the previous-tick approach, suffer from information loss and create artificial price staleness. We introduce a

novel framework that recasts the data synchronization challenge as a constrained matrix completion problem. Our

approach recovers the potential matrix of high-frequency price increments by minimizing its nuclear norm—capturing

the underlying low-rank factor structure—subject to a large-scale linear system derived from observed, asynchronous

price changes. Theoretically, we prove the existence and uniqueness of our estimator and establish its convergence

rate. A key theoretical insight is that our method accurately and robustly leverages information from both frequently

and infrequently traded assets, overcoming a critical difficulty of efficiency loss in traditional methods. Empirically,

using extensive simulations and a large panel of S&P 500 stocks, we demonstrate that our method substantially

outperforms established benchmarks. It not only achieves significantly lower synchronization errors, but also corrects

the bias in systematic risk estimates (i.e., eigenvalues) and the estimate of betas caused by stale prices. Crucially,

portfolios constructed using our synchronized data yield consistently and economically significant higher out-of-sample

Sharpe ratios. Our framework provides a powerful tool for uncovering the true dynamics of asset prices, with direct

implications for high-frequency risk management, algorithmic trading, and econometric inference.

Key words: Finance; High-Frequency Data; Asynchronous Trading; Nuclear Norm Minimization; Price Staleness.

1. Introduction
Asynchronicity is a stylized feature of high-frequency data, rooted in the natural mechanisms of
data generation. In financial markets, for instance, assets trade at distinct, irregular time instances
due to factors such as price staleness, market friction, varying liquidity, and the differential speed of
information flow. Price staleness, a near-universal phenomenon, means that efficient prices update
at heterogeneous rates across assets, leading to non-homogeneously spaced observations. When a
price does not update, the observed price is merely a repetition of the last recorded tick, creating
a challenge for time-series analysis. Beyond finance, asynchronicity is also pervasive in fields like
ecology, clinical medicine, and environmental science, often arising from mixed-frequency sampling
schemes.

The presence of asynchronicity poses significant challenges to econometric and statistical analy-
sis, distorting estimates and leading to flawed conclusions in applications such as covariance matrix
estimation, multivariate analysis, portfolio allocation, and beta estimation. The consequences can
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be profound. For example, Hollstein et al. (2020) demonstrate that the empirical validity of the
Conditional Capital Asset Pricing Model (CAPM) hinges critically on the accurate estimation of
betas from high-frequency data. Their work suggests that measurement errors, exacerbated by asyn-
chronous trading, can lead to the premature rejection of foundational economic theories. The core
statistical challenges are twofold. First, simple imputation methods like the nearest-tick or previous-
tick approach introduce biases in multivariate estimation (Hayashi and Yoshida 2005). Second, in
high-dimensional settings, conventional data alignment via subsampling discards a vast amount of
non-synchronized data, resulting in a significant loss of efficiency. While numerous approaches have
been developed to mitigate these issues (c.f., Chen et al. 2020; Fan et al. (2016); Kong and Liu 2018;
Pelger 2019; Shin et al. (2023); Kong et al. 2023; Cui et al. 2024), they often struggle to balance bias
reduction with the full utilization of available information.

There are two streams of works that delve into synchronizing the high-frequency data to facilitate
the subsequent applications. The first stream synchronizes the data by dropping some original data.
Three main methods in this stream are the Previous Tick method (Zhang 2011), the Refresh Time
Scheme (Barndorff-Nielsen et al. 2011), and the Generalized Synchronization procedure (Aı̈t-Sahalia
et al. 2010). All three methods first select the synchronized sampling time points and then, for each
asset and each selected time point, choose one observation that is most close to each synchronized
sampling time point from all the original observations of that asset. The drawback of those methods
is the drop of a large proportion of data, especially when the number of assets is large and some
assets are sparse. The second stream is considering the original data set as a set with missing values
and imputing data relying on a parametric state space model and EM algorithm, see Liu and Tang
(2014) and Shephard and Xiu (2017). Howerver, in high-dimensional settings, the EM algorithm is
computationally time consuming.

In this paper, we introduce a novel method for data synchronization. We formulate the problem
by minimizing the nuclear norm of the potential increment matrix that are ideally synchronized
and well structured, under a large system of linear constraints of increments over non-synchronous
durations, see (2) below. The usage of the nuclear norm is inspired by the well-known low-rank plus
noise construction of the data matrix in many applications. The common factor component plus
the idiosyncratic error term (discrete or continuous) is a concrete example in finance. The linear
constraints over the durations serve as a natural extraction of the data generation mechanism that
realizes the data asynchronicity.

Solving this constrained low-rank optimization problem effectively removes idiosyncratic noise and
recovers the “signal” component of the potential increment matrix from complex, disorganized data.
Our method differs from the tick-sampling approaches by utilizing all data points, thereby avoiding
the efficiency loss and potential biases from using overlapping increments in subsequent inference,
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such as covolatility estimation. It also differs from EM-based methods by being computationally
stable and theoretically grounded in large-dimensional diffusion systems. At its core, our approach is
a relaxed rank minimization problem, straightforward to implement and efficiently solved using the
Alternating Direction Method of Multipliers (ADMM).

Our method is also different from the price matrix completion via sampling projection operator
though our data synchronization approach can be deemed as a potential increment matrix completion
via solving large random linear systems. Indeed, synchronizing the data discretely sampled from a
large dimensional diffusion process by price matrix completion via the projection operator (projecting
a parameter matrix onto the family of matrices that is supported only on sampled entries leaving
missing entries set as zeros) meets difficulty since the idiosyncratic error process is intrinsically non-
stationary as a general semi-martingale with stochastic volatility. This non-stationarity makes the
noisy part as strong as the signal part leading to the so-called spurious factors, see Zhang et al.
(2018) and Onatski and Wang (2024). Taking difference of the semi-martingale to relieve the non-
stationarity and simultaneously do the sampling projection is however not applicable because of the
data asynchronicity. But all durations and the increments over the durations are observable, and
they are simply sum of potential (ideally synchronized but latent) increments, which forms a linear
system. This is how come our procedure.

Rank minimization under linear constraints has been studied in optimization and operations
research. For instance, Recht et al. (2010) proves that the nuclear norm minimization has a unique
solution when the linear operator satisfies the nearly isometry condition. However, their framework
is largely deterministic, assuming a noise-free data matrix and a linear operator with randomness
properties that are independent of the data. In our setting, both the linear operator (related to the
random trading durations) and the data-generating process are stochastic. We further allow for a
stochastic idiosyncratic noise process to contaminate the low-rank signal. This introduces significant
complexity, as the potential correlation between the diffusion process components and between the
linear operator and the potential increment matrix makes the derivation of concentration inequali-
ties highly non-trivial. Consequently, no statistical theory has previously existed for the solution’s
existence and convergence properties in the context of asynchronous, noise-contaminated, large-panel
high-frequency data. This paper aims to fill this theoretical gap.

Our work makes several contributions. To the best of our knowledge, we are the first to prove,
under a high-dimensional high-frequency asymptotic regime, that nuclear norm minimization under
these stochastic linear constraints yields a unique solution equal to the true low-rank matrix with high
probability. This is achieved by establishing the restricted isometry property via a novel concentration
inequality for the self-normalized Frobenius norm of a large realized covariance matrix. We are also
the first to provide a statistical convergence rate for the completed potential increment matrix. An
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interesting finding is that the statistical accuracy depends on the sample sizes of both sparse and
dense series, in contrast to many tick-based approaches that suffer from efficiency loss.

Empirically, our contributions are equally significant. Through extensive simulations and analysis
of a large panel of S&P 500 stocks, we have demonstrated the clear superiority of our method. It not
only yields substantially more accurate estimates of the underlying return and covariance matrices
but also provides a more realistic depiction of systematic risk by correcting the bias in eigenvalues
caused by stale prices. Most importantly, we have shown that this statistical superiority translates
directly into economic value: portfolios constructed using our synchronized data generate consistently
higher out-of-sample Sharpe ratios. Our analysis of spot beta dynamics during market turmoil further
underscores the reliability of our approach, producing stable and economically intuitive risk profiles
where traditional methods fail.

The present paper is organized as follows. In Section 2, we introduce our methodology and model
set up in detail. Our main theoretical results are provided in Section 3. The Monte Carlo simulations
are conducted in Section 4. Empirical studies and findings are given in Section 5. All technical proofs,
robustness check and additional results are included in the Supplementary Appendix.

2. Methodology and Model Specification
2.1. Asynchronicity and Large-Scale Linear System
Motivated by the high-frequency data analysis, we assume that the asynchronous data is dis-
cretely sampled from a large-dimensional diffusion process defined on some filtered probability space
(Ω,F ,Ft; 0≤ t≤ T ) as follows.

(dXt)N×1 = (µt)N×1dt+ (σt)N×r(dWt)r×1 + (σ∗
t )N×N(dW ∗

t )N×1, (1)

where Wt is a standard multivariate Brownian motion, σt is the spot volatility process for the “signal”
component, σ∗

t is a diagonal matrix of spot volatility process for the idiosyncratic diffusion process
while the W ∗

t is the driving Brownian motion, and T is a fixed time horizon. The first term in the
right hand side of (1) represents the drift term, the second term is a low-rank common component
to be reconstructed and the third one is an idiosyncratic “noise” term.

Data asynchronicity means that the coordinate processes (Xit, i = 1, ...,N) of Xt are separately
generated in completely different time instances. Assume that Xit is sampled at time instances
{τi0, τi1, τi2, ..., τiin} which are different across i= 1, ...,N . Let T = {t1, ..., tn}= ∪1≤i≤N{τi1, ..., τiin}

and τi0 = 0 for all i= 1, ...,N . Then Xitj
can be thought of as missing value if tj ̸∈ {τi1, ..., τiin}. Let

the potential increment matrix be ∆ = [(∆1, ...,∆N)′]N×n with ∆ij =Xitj
−Xitj−1 , and the potential

matrix be X = (Xitj
)N×n. Though X·tj

, the j-th column of X, has at least one observed data, ∆j·,
the j-th row of ∆, may not. This makes the projection operator approach for matrix completion
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based on ∆ not applicable, see for example Candes and Recht (2012) and Chen et al. (2019). The
same method applied to X is of difficult also because the semi-martingale is generally nonstationary
making the idiosyncratic “noise” part as strong as the “signal” part leading to spurious factors, see
Zhang et al. (2018) and Onatski and Wang (2024).

Though the potential increment matrix ∆ is far from fully observed, the increments over durations,
a linear transform of ∆, can be fully observed. Define a linear operator A as follows.

A(∆) = diag{A1, ...,AN}vec(∆′) =:Avec(∆′),

where Ai = (a(i)
jk )ni×n is a matrix of zeros and ones so that Ai∆i = bi where bi = (Xiτi1 −

Xiτi0 , ...,Xiτini
−Xiτi(ni−1))′ which is the vector of observed increments of Xit over durations, and

vec(·) is the standard vectorization operator. A simple example of Ai is as follows.

Ai =


a

(i)
11 a

(i)
12 · · · a

(i)
1n

a
(i)
21 a

(i)
22 · · · a

(i)
2n

· · · · · ·
a

(i)
ni1 a

(i)
ni2 · · · a(i)

nin

=


1 1 0 0 , · · · , 0 0 0 0
0 0 1 0 , · · · , 0 0 0 0

, · · · ,
0 0 0 1 , · · · , 0 0 0 0
0 0 0 0 , · · · , 0 1 1 1

 .

The first row of Ai amounts to saying that we can only observe the sum of the first two potential
increments of Xit but not any of them. In finance, this is caused by the trading mechanism so that
the observation times are typically random and unequally spaced. Let b= (b′

1, ..., b
′
N)′. The constraint

for ∆ is A(∆) = b. An illustration of the asynchronicity for two assets is in Figure 1
Both in theory and applications, we assume that the signal term {σtdWt|0 ≤ t ≤ T} is in some

manifold of low-dimension. Suppose that for each sample path ω, σt(ω) = (σ0)N×r(Σt(ω))r×r where σ0

is a constant volatility level and the time variation of the volatility process σtσ
′
t is due to Σt. Typically,

we assume that Σt is always of full rank for any time t. Without loss of generality, we assume, as in
Kong (2017, 2018), that σ∗

t is a diagonal matrix with locally bounded entries of stochastic processes,
and W ∗

t is a N -dimensional Brownian motion with correlation matrix (ρ∗)N×N . So the parameter
space is

Θ = {(σ0,Σt(ω)dWt(ω)); (σ0)′σ0 =Nα, ω ∈Ω},

where α is a constant in (0,1] that controls the strength of the low-rank signal component, Ω stands
for the sample space. While the ω will be involved in the probability calculation, the deterministic
parameter is σ0 ∈Σ0.

When the idiosyncratic error term is vanishing, the problem to solve is to recover the potential
increment matrix ∆ = Π. One proposal is to find a low-rank matrix so that the following optimization
has a solution.

Π̂ = argmin
Π
∥Π∥∗ subject to A(Π) = b, (2)
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Figure 1 Asynchronous observations of two assets.

Note. This figure illustrates the problem of asynchronous trading for two assets (i-th and m-th) relative to a syn-
chronous time grid, T . The red line in the figure frames the range of returns that are in T and unobservable (potential),
the blue line frames the range of returns that are in T and observable, and the black line frames the range of all
observable returns. The equations represent the linear constraints.

where ∥ ·∥∗ stands for the nuclear norm of some matrix. When the idiosyncratic error term is present,
(2) only identifies the low-rank signal part of the potential increment matrix ignoring completing the
increments inside b that includes idiosyncratic errors. To simultaneously recover the low-rank com-
ponent Π and impute the missing increments in ∆, we consider the following optimization problem.

(Π̂, ∆̂) = argmin
Π,∆
∥Π∥∗ subject to A(∆) = b & ∆ = Π + Π∗. (3)

In the context of the model (1), Π and Π∗ in (3) correspond to the increment matrices contributed
by σtdWt and µtdt+σ∗

t dW
∗
t , respectively.

2.2. Computational Issues
To solve the optimization problem (3), we propose to apply the ADMM algorithm, which is simple but
powerful. The ADMM decomposes a large global optimization problem into small local subproblems,
such that it can be efficient when both the dimension and the sample size of the data are large, see
Scheinberg et al. (2010) and Boyd et al. (2011) for details.

2.2.1. Scaled ADMM Algorithm Since ∆ = Π + Π∗ and Π∗ can be considered as the residuals,
the equivalent Lagrangian formula is

min(∆,Π)
1
2∥A(∆)− b∥2

F + µ

2 ∥∆−Π∥2
F +λ∥Π∥∗,
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which is further equivalent to the following relaxed form

min(∆,Π,Z∆,ZΠ)
1
2∥A(∆)− b∥2

F + µ

2 ∥Z∆−Π∥2
F +λ∥ZΠ∥∗

subject to ∆ =Z∆, Π =ZΠ,
(4)

where Z∆ and ZΠ are auxiliary variables.
To solve (4), we borrow the idea from Scheinberg et al. (2010) and propose a scaled version of the

ADMM algorithm, which relies on the following augmented Lagrangian:

L̃(∆,Π,Z∆,ZΠ,U∆,UΠ) =1
2∥A(∆)− b∥2

F + µ

2 ∥Z∆−Π∥2
F +λ∥ZΠ∥∗

+η

2∥Z∆−∆ +U∆∥2
F + η

2∥ZΠ−Π +UΠ∥2
F ,

(5)

where η > 0 is a penalty parameter, U∆ and UΠ are scaled dual variables corresponding to the
constraints in (4). We then solve problem (5) by updating the unknown terms one by one. Let
(∆k,Πk,Zk

∆,Z
k
Π,U

k
∆,U

k
Π) be the solution at step k, for k= 0,1,2, · · · . We first update ∆ according to

∆k+1 = arg min
∆

L̃(∆,Πk,Zk
∆,Z

k
Π,U

k
∆,U

k
Π)

= arg min
∆

{1
2∥A(∆)− b∥2

F + η

2∥Z
k
∆−∆ +Uk

∆∥2
F}

= arg min
∆

{1
2∥A(∆)− b∥2

F + η

2vec((Zk
∆−∆ +Uk

∆)′)′vec((Zk
∆−∆ +Uk

∆)′)}.

Denote ∆̃ = vec(∆′), we rewrite above result as

∆̃k+1 = arg min
∆̃

{1
2∥A∆̃− b∥2

F + η

2
[
vec((Zk

∆ +Uk
∆)′)′− ∆̃′

] [
vec((Zk

∆ +Uk
∆)′)− ∆̃

]}
= (A′A+ ηI)−1 [A′b+ ηvec((Zk

∆ +Uk
∆)′)

]
,

where the last equation can be obtained by taking the derivative of ∆̃ for the above objective function
and solving the equation

A′A∆̃−Ab′ + η∆̃− ηvec(Zk
∆ +Uk

∆) = 0.

We then have
∆k+1 = vec−1 ((A′A+ ηI)−1 [A′b+ ηvec((Zk

∆ +Uk
∆)′)

])′
,

where vec−1 is the inverse vectorization (or matricization) operator. The closed form of Πk+1 is

Πk+1 =arg min
Π

L̃(∆k+1,Π,Zk
∆,Z

k
Π,U

k
∆,U

k
Π) = 1

µ+ η
(µZk

∆ + ηZk
Π + ηUk

Π),

and similarly, for Zk+1
∆ and Zk+1

Π ,

Zk+1
∆ = 1

µ+ η
(µΠk+1 + η∆k+1− ηUk

∆), Zk+1
Π = shrink(Πk+1−Uk

Π,
λ

η
).

To get Zk+1
Π , we have used equation (8) in Gandy et al. (2011), where for a scalar ψ > 0, shrink(Ψ, ψ) is

an operator that gives a soft-threshold to each singular value of the matrix Ψ such that shrink(Ψ, ψ) =
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Algorithm 1 Estimation of ∆ and Π via scaled ADMM
Input: Observations of log-prices: X = {Xi,τi0 ,Xi,τi1 , . . . ,Xi,τiin

; i = 1, . . . ,N}. Initial estimates:
Π0,Z0

∆,Z
0
Π,U

0
∆,U

0
Π (typically initialized to be zero). Tuning parameters: µ,λ, η.

Output: Estimated matrices ∆̂ and Π̂.
1: Construct matrices A1, . . . ,AN and vector b from the observations of X.
2: Set iteration counter k← 0.
3: while not converged do

� Update primal variables
4: ∆k+1← vec−1 ((A′A+ ηI)−1 [A′b+ ηvec((Zk

∆ +Uk
∆)′)])′

5: Πk+1← 1
µ+η

(µZk
∆ + ηZk

Π + ηUk
Π)

� Update auxiliary variables
6: Zk+1

∆ ← 1
µ+η

(µΠk+1 + η∆k+1− ηUk
∆)

7: Zk+1
Π ← shrink

(
Πk+1−Uk

Π,
λ
η

)
� Update dual variables

8: Uk+1
∆ ←Uk

∆ +Zk+1
∆ −∆k+1

9: Uk+1
Π ←Uk

Π +Zk+1
Π −Πk+1

10: k← k+ 1
11: end while

12: Set ∆̂←∆k and Π̂←Πk.

U diag(max(ρ1 − ψ,0), · · · ,max(ρN − ψ,0))V ∗ with Udiag(ρ1, · · · , ρN)V ∗ to be the singular value
decomposition of Ψ. For convenience, we set

Uk+1
∆ =Uk

∆ +Zk+1
∆ −∆k+1, Uk+1

Π =Uk
Π +Zk+1

Π −Πk+1.

The computational steps are summarized in Algorithm 1.
Remark 1 (Computational Efficiency and Implementation). The main computational

bottleneck in Algorithm 1 is the inversion of the matrix (A′A+ ηI)−1, as A′A can be a huge, non-
diagonal matrix. To maintain computational efficiency, we leverage the Woodbury matrix identity:

(A′A+ ηI)−1 = η−1I − η−1IA′ [I +Aη−1IA′]−1
Aη−1I = η−1I − η−2A′ [I−1 + η−1AA′]−1

A,

as calculating the inverse of the diagonal matrix I + AA′/η is fast. In addition, since we have all
the closed forms of ∆k+1,Πk+1,Zk+1

∆ ,Zk+1
Π ,Uk+1

∆ , and Uk+1
Π , the Algorithm 1 is not time-consuming

even if the sample size and dimension of X are high. In practice, the algorithm is considered to have
converged when the following condition is satisfied for a tolerance level of ϵ= 10−5:

max

{
∥∆k+1 − ∆k∥F

max (1, ∥∆k∥F , ∥∆k+1∥F ) ,
∥Πk+1 − Πk∥F

max (1, ∥Πk∥F , ∥Πk+1∥F ) ,
∥∆k − Zk

∆∥F

max
(
1, ∥∆k∥F , ∥Zk

∆∥F

) ,
∥Πk − Zk

Π∥F

max
(
1, ∥Πk∥F , ∥Zk

Π∥F

)}< ϵ.
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2.2.2. Choices of Initial Estimates and Tuning Parameters The above algorithm is not sensi-
tive to the initial estimates of Π, Z∆, ZΠ, U∆, UΠ. We can set them to the zero matrices. First of all,
to improve the convergence speed of the algorithm, we can use the previous tick method to get a full
observed X, which means we let Xit1 to be the first observation of the ith asset and Xitj

=Xitj−1 if
the ith asset has no observation at time tj . We then set the initial values of Z∆ to be the first-order
difference of the initial estimate of X and run the PCA to get the initial estimate of Π. The initial
estimate of U∆ and UΠ can be set to zero matrices.

To select the optimal tuning parameter (µ, λ, η), we propose a data-driven validation scheme based
on artificial masking. The procedure aims to find the parameter that minimizes imputation error on
a held-out portion of the data. Our scheme operates as follows. Given the input log-price matrix P , a
set of candidate masking probabilities {p1, p2, .., pm}, and a number of repetitions Q, we sequentially
do the following. (i) Mask generation: For each probability pi and each repetition j ∈ {1, ...,Q}, we
generate a binary mask matrixMij . This is done by first identifying all observable entries in P and
then randomly selecting a fraction pi of them to be masked. In Mij , these masked positions are
marked with 1, and all others with 0. (ii) Imputation: The Algorithm 1 is then applied onto the
partially observed data (the entries of P ◦Mij) to produce a completed matrix P̂ij(µ,λ, η). (iii) Error
calculation: We then calculate the imputation error between the imputed matrix P̂ij(µ,λ, η) and the
original matrix P , but only on the set of entries that were artificially masked (corresponding position
of Mij is 1).

The optimal parameter is chosen as the one that yields the lowest average imputation error across
all masks and repetitions. We evaluate the imputation accuracy using the following two error metrics:

Rabsolute(µ,λ, η) := 1
mQ

m∑
i=1

Q∑
j=1

∥(P̂ij(µ,λ, η)−P) ◦Mij∥F

∥Mij∥F

,

Rrelative(µ,λ, η) := 1
mQ

m∑
i=1

Q∑
j=1

∥(P̂ij(µ,λ, η)−P) ◦Mij∥F

∥P ◦Mij∥F

,

(6)

where ◦ denotes the Hadamard product. The Frobenius norm ∥ · ∥F in the numerator is calculated
only over the set of masked entries.

To demonstrate the effect of these tuning parameters, we conduct the validation procedure
using the following candidate sets: µ ∈ {0.01,0.02, ...,0.5}, λ ∈ {0.0001,0.0002, ...,0.005}, η ∈

{0.001,0.002, ...,0.05}. The set of masking probabilities is {0.1,0.2, ...,0.7}, and the number of repe-
titions is set to Q= 1. Figure 2 illustrates the impact of each tuning parameter on the absolute error.
The corresponding results for the relative error are provided in the Supplementary Appendix.

Figure 2 illustrates the sensitivity of the absolute error to the tuning parameters µ, λ, and η. Several
key observations guide our parameter selection strategy. First, the estimation error appears insensitive
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Figure 2 Absolute error as a function of tuning parameters µ, λ and η.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
b

s
o

lu
te

 e
rr

o
r 

(A
E

)

10-3 Absolute error vs. 

N=20, 1min

N=50, 1min

N=120, 1min

N=100, 0.5min

N=100, 1min

N=100, 5min

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10-3

0

1

2

3

4

5

A
b

s
o

lu
te

 e
rr

o
r 

(A
E

)

10-3 Absolute error vs. 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.5

1

1.5

2

2.5

3

3.5

4

A
b

s
o

lu
te

 e
rr

o
r 

(A
E

)

10-3 Absolute error vs. 

Note. The absolute error is calculated according to (6). The vertical dotted line in each panel indicates the parameter
value that minimizes the error.

to the specific value of η. Based on this observation and to enhance computational efficiency, we
simplify the three-dimensional search by fixing the ratio between the two parameters, setting λ/η =
0.1. Second, the figure shows that the optimal values for µ and λ are quite stable, consistently falling
within a relatively narrow range. This suggests that the optimal parameter configuration is robust
to the specific characteristics of the dataset (such as the number of assets or observation frequency,
as implicitly varied across the panels). This stability allows us to streamline the tuning process in
practice. Instead of searching over a wide grid, we can focus on more refined candidate sets, M and
L, for µ and λ, respectively. Formally, the optimal parameters (µ̂, λ̂) can be determined by solving
the following optimization problem:

(µ̂, λ̂) = arg min
µ∈M,λ∈L

Rabsolute(µ,λ,10λ).

2.3. Technical Assumptions

To connect the matrix parameter Π to the generative semi-martingale, one can relate Π to σ0 and Σt

so that the varying of Π is caused by the smooth change of σ0 and Σt for every sample path ω ∈Ω.
That is the parameter Π is simply a potential increment matrix of some regular semi-martingale for
some volatility parameter given ω. Thus we impose the technical conditions on the dynamics of the
generative model (1) and the durations that realizes the operator A.

The first assumption is a regular condition for the durations of the coordinate processes. Before
stating it, we introduce one more notation. For a generic process Yt ∈Rd, let

dik := ♯{j; τi(l−1) ≤ tj ≤ tk−1 ≤ τil for some 1≤ l≤ ni}

to be the number of potential increments before ∆n
kY := Ytj

−Ytj−1 in the observed interval (τi(l−1), τil]
which contains the time point tk−1. We make a convention that dik := 0 if the set is empty and the
resulting sum

∑0
l=1 ∆n

k−lY = 0.
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Assumption 1. 1. There exists positive random variables Rj’s independent of F , such that
tj − tj−1 ≤Rj,

∑n
j=1Rj ≤C, maxj Rj = o(1), and (

∑n
j=1Rj)3/4/maxj Rj ≥ c for some c > 0.

2. The maximum diagonal element of the diagonal matrix AA′ satisfies

P

(
∥AA′∥∞ > 2

(
1 +

√
Nn/n∗

))
≤ exp{−γNn},

where n∗ =
∑N

i=1 ni and γ is a positive constant.
3. There exists a sequence of numbers {Dik} that are independent of F and satisfy dik ≤Dik.

Assumption 1-1 allows for random and unequally spaced sampling times. Though the upper bound
Rj ’s are assumed to be independent of the process Xt, the coordinate durations can be stopping times
that are dependent on Xt. Assumption 1-2 regularizes the maximum number of potential increments
missed in an observed duration. A simple example is that ∥AA′∥∞ is bounded. In this case, the
probability upper bound is zero for large enough N and n once

√
Nn/n∗→∞, and tj− tj−1’s are of

order 1/n and all conditions in Assumption 1 are satisfied.
The next assumption assumes that the systematic and idiosyncratic spot volatility processes are

locally bounded, and the correlation matrix ρ∗ is sparse in some sense.

Assumption 2. 1. There exists a sequence of stopping times sm→∞ and a sequence of numbers
cm, such that maxi≤N(|σi(t∧sm)|+ |σ∗

i(t∧sm)|)≤ cm.
2. maxi≤N

∑N
j=1 |ρ∗

ij| ≤C.
3. ∥IV1∥2

F := ∥
∑T

0 ΣtΣ′
tdt∥2

F ≥ cr for some c > 0.
4. |σ∗

i(t+h)−σit| ≤Ch1/2−ϵ for some constant C and arbitrary constant ϵ.

3. Main Theoretical Results
The first theoretical result gives the nearly-isometry property for A operating on matrix gener-
ated from large-dimensional semi-martingales. Let PR,D be a probability measure conditional on
{Rj ,Dik; i≤N,j ≤ n,k≤ n}.

Theorem 1. Let the quantities L1 =
∑n

k=1Rk

∑N
i=1 ∥σ0(i, ·)∥2(

∑Dik
l=1 Rk−l) log (

∑Dik
l=1 Rk−l) and

L2 =
∑n

k=1Rk

∑N
i=1(

∑Dik
l=1 Rk−l) log (

∑Dik
l=1 Rk−l), where σ0(i, ·) is the i-th row of σ0. For some small

c > 0,

PR,D

(
|∥A(Π)∥2

F −∥Π∥2
F

∥Π∥2
F

|> δ

)
≤C exp

{
−c2δ2Nα/L1

}
+ 2exp

−c2r2/

 n∑
j=1

R2
j

1/2
 , (7)

and

PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F

∥∆∥2
F

|> δ

)



12

≤2 exp
{
−N

2−αc2δ2

144Cr2L1

}
+ 2exp

{
− N

2c2δ2

144CL2

}
+ 2N exp

{
− c

24Cmaxj R
2−ϵ
j

}
(8)

+ 2exp

−c2N2−2α/

128C2
n∑

j=1
R2

j

+ 2exp
{
− Ncϵ∗

6
√

2Cmaxj Rj

}
.

Remark 2 (Interpretation of L1 and L2). The number L2/N is an approximate measure

of the average length of durations across all assets within the time window. As an example when

the diagonal entries of AA′ are bounded so that tj − tj−1 = O(1/n), L2 is upper bounded by

maxk

∑N
i=1Dik log (n)/n≤ CN log (n)/n. In particular, if the vector (D1k, · · · ,DNk)′ is sparse when

the asynchronicity is rare, the upper bound could be of smaller order than O(N log (n)/n). Then

the reciprocal N/L2 is approximately equal to the average number of observed durations across all

assets, which is larger than the smallest sample size of the most sparsely sampled asset. This implies

that our approach makes use of all the data points through the large-scale linear system, in constrast

with the tick subsampling method listed in previous sections which depends much on the sample size

of most illiquid assets, thus loss of efficiency in estimation and subsequent applications. The number

L1 is a cross-sectionally weighted version of L2 and hence has a similar interpretation as L2.

Before we prove a uniform result on |∥A(Π)∥2
F −∥Π∥2

F |/∥Π∥2
F and |∥A(∆)∥2

F −∥∆∥2
F |/∥∆∥2

F over

the set of matrices Π and ∆, we introduce some facts of the Grassmannian manifold. The set of all

d-dimensional subspaces of RD is known as the Grassmannian manifold which is denoted by B(D,d).

First of all, let U be an arbitrary subspace of N ×n matrices with dimension r≤N ∧n, then there

exists a finite set Ω of at most (12/δ)r points such that for every Π ∈ U with ∥Π∥2
F/N

α ≤ 1, there

exists a Q ∈Ω such that ∥Π−Q∥F/N
α/2 ≤ δ/4. Define the natural distance between two subspaces

by ρ(T1, T2) := ∥PT1 − PT2∥, where T1 and T2 are subspaces and PTi
is the orthogonal projection

associated with each subspace. This equals to the sine of the largest principal angle between T1 and

T2. As demonstrated by the work of Szarek on ϵ-nets of the Grassmannian, c.f., Szarek (1983), the

covering number of B(N,r) at resolution ϵ (i.e. the smallest number of subspaces Ui such that for any

subspace U , there is an i with ρ(U,Ui)≤ ϵ) is at most ( 2C0
ϵ

)r(N−r) where C0 is a constant independent

of ϵ, N and r.

By the union bound and Theorem 1, we have the following theorem.

Theorem 2. Suppose that Assumptions 1-2 hold. If

r(N − r) log

√Nn

n∗ + 1

= o

{
Nα

L1

}
and Nα/L1→∞,
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then for any 0< δ < 1,

PR,D

(
|∥A(Π)∥2

F −∥Π∥2
F

∥Π∥2
F

|> δ, for some σ0 ∈B(N,r)
)

≤C exp{−c2δ2Nα/L1}+ 2exp

−c2r2/

 n∑
j=1

R2
j

1/2
 ,

(9)

for c small enough and C large enough which might depend on δ.
If

r(N − r) log

√Nn

n∗ + 1

= o

{
N2−α

L1

}
and N2−α/L1→∞,

then for any 0< δ < 1,

PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F

∥∆∥2
F

|> δ, for some σ0 ∈B(N,r)
)

≤ 2 exp
{
−N

2−αc2δ2

144Cr2L1

}
+ 2exp

{
− N

2c2δ2

144CL2

}
+ 2exp

{
− Ncϵ∗

6
√

2Cmaxj Rj

}
(10)

+2exp

−c2N2−2α/

128C2
n∑

j=1
R2

j

+ 2N exp
{
− c

24Cmaxj R
2−ϵ
j

}
.

Let Π0 be a matrix of rank less than or equal to r and satisfy the constraints in (3). The problem
(3) has a solution for Π that equals to Π0 with probability (PR,D) at least

1−C exp
{
−c2δ2Nα/L1

}
− 2 exp

−c2r2/

 n∑
j=1

R2
j

1/2
 .

Moreover, Let ∆0 be a matrix satisfying the constraints in (3). The problem (3) has a solution for
∆ that equals to ∆0 with probability (PR,D) at least

1− 2 exp
{
−N

2−αc2δ2

144Cr2L1

}
− 2 exp

{
− N

2c2δ2

144CL2

}
− 2 exp

{
− Ncϵ∗

6
√

2Cmaxj Rj

}

−2 exp

−c2N2−2α/

128C2
n∑

j=1
R2

j

− 2N exp
{
− c

24Cmaxj R
2−ϵ
j

}
. (11)

Remark 3 (Dependence on Data Frequency). Similar to Theorem 1, an interesting finding
is that the uniform rate depends also on the average length of the observed durations which is
different from the previous-tick approach in large-panel high-frequency data analysis literature. For
the previous-tick method, the statistically efficiency rests on the length of the time lags of the most
illiquid asset where data comes with the lowest frequency.

Theorem 2 implies that

sup
σ0∈B(N,r)

|∥A(∆)∥2
F −∥∆∥2

F |=Op

(
N
√
L1/N2−α

)
=:Op(NaNn). (12)
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Let
Gn(Π,∆) := 1

2(∥A(∆)− b∥2
F ) + 1

2µ∥∆−Π∥2
F +λ∥Π∥∗,

and
Gn0(Π,∆) := 1

2∥∆−∆0∥2
F + 1

2µ∥∆−Π∥2
F +λ∥Π∥∗.

(12) shows that Gn(Π,∆) and Gn0(Π,∆) are uniformly close enough. The minimizers of Gn(Π,∆)
and Gn0(Π,∆) are denoted by (Π̂, ∆̂) and (Π̂0, ∆̂0), respectively. The next theorem shows how close
are the two minimizers.

Theorem 3. Under Assumptions 1-2, ∥Π̂ − Π̂0∥F/
√
N = Op

(√
aNn
1+λ

)
and ∥∆̂ − ∆̂0∥F/

√
N =

Op

(√
aNn
1+λ

)
.

The minimizer of Gn0(Π,∆) satisfies the following first order condition.

(1 +µ)∆̂0 = ∆0 +µΠ̂0, Π̂0 =U0Dλ/µ+V
′

0 , (13)

where Dv+ always denotes a thresholded singular value matrix whose j-th singular value is max{λj−

v,0} with λj being the jth largest singular value of ∆̂0 (the v in the above equation is λ/µ), and U0

and V0 are the left and right singular vectors of ∆̂0, respectively. Let D be the the matrix of singular
values of ∆̂0. Combining the two conditions in (13) leads to the following equation

U0

(
D− µ

1 +µ
Dλ/µ+

)
V ′

0 = 1
1 +µ

∆0.

A solution to this equation is D− µ
1+µ

Dλ/µ+ = 1
1+µ

D∗ where D∗ is the matrix of singular values of
∆0. That being said,

∆̂0 =U∗{(D∗)λ+ +D∗∗}V ′
∗ and Π̂0 =U∗{(D∗)λ+ +D∗∗}λ/µ+V

′
∗ ,

where U∗ and V∗ are the left and right singular vector matrices of ∆0, respectively, and

D∗∗ = 1
1 +µ

{
D∗−

[
(D∗)λ+ +λ

(
Ik 0
0 0

)]}
,

with k being the number of singular values of D∗ greater than or equal to λ. Let J be the number of
singular values of D∗ greater than or equal to λ(1 + 1/µ). ∆̂0 shrinks the first k singular values by
subtracting λ from them and scaling down the remaining singular values with a factor of 1/(1 +µ).
Π̂0 shrinks the first J singular values of D∗ by subtracting λ(1 + 1/µ) from them and truncate the
remaining singular values to zero. The shrinkage of the largest singular values for Π̂0 is more than
that for ∆̂0 because the former is of low rank but the latter is not, and thus J ≥ k. When µ = 0,
Π̂0 = U∗(D∗)λ+V

′
∗ and ∆̂0 = ∆0, which boils down to the solution to (2). Notice here that ∆0 as

a true potential increment matrix is unknown and has to be numerically solved and approximated
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by ∆̂, but this is not achievable when setting µ= 0 in the optimization. Also notice the difference

between (Π̂0, ∆̂0) and (Π̂, ∆̂). The latter is the computationally feasible version while the former is

a theoretical approximation that is easy to analyze mathematically. Theorem 3 demonstrates that

they are close in terms of the averaged Frobenius norm.

Let ∥ · ∥ be the operator norm of a matrix. Next, we analyze the closeness of (Π̂, ∆̂) to (Π0,∆0).

Theorem 4. Assume that Π0 = U∗rdiag{λ∗
1, ..., λ

∗
r}V ′

∗r where U∗r and V∗r are matrices consisting

of r left and right singular vectors of ∆0 corresponding to λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
r, respectively. Under

Assumptions 1-2,

∥∆̂−∆0∥ ≤ λ∨ µ

1 +µ
λ∗

k+1 +
√
NaNn/(1 +λ),

∥∆̂−∆0∥F ≤ λk ∨ µ

1 +µ

N∧n∑
j=k+1

λ∗
j +

√
NaNn/(1 +λ),

and

∥Π̂−Π0∥ ≤ λ(1 + 1
µ

)∨
[(
λ∗

r+1−λ
(

1 + 1
µ

))
I(J > r) +λ∗

J+1I(J ≤ r)
]

+
√
N
aNn

1 +λ
,

∥Π̂−Π0∥F ≤
[
rλ

(
1 + 1

µ

)
+ (J − r)

(
λ∗

r+l−λ
(

1 + 1
µ

))]
I(J > r)

+[Jλ(1 + 1/µ) + (r− J)λ∗
J+1]I(J ≤ r) +

√
N
aNn

1 +λ
,

with probability approaching one.

Theorem 4 gives the convergence rates of the estimators ∆̂ and Π̂. In each upper bound, the first

term is a bias due to the shrinkage brought by the low-rank penalty, while the last term comes

from the data synchronization or approximation error of ∥A(∆)∥ by ∥∆∥F . In estimating ∆0, setting

λ= µ= 0 is optimal to reduce the bias, but large value of λ decreases the approximation error. In

estimating Π0, small value of µ and large value of λ enlarge the bias term λ(1 + 1/µ) but decrease

the bias term λ∗
r+1− λ(1 + 1/µ) when J > r. So there is a tradeoff between the bias terms, between

the bias and approximation error, and between estimating Π0 and ∆0.

To relieve the complexity in choosing the tuning parameter, we introduce a bias-corrected version

of the estimators. Given ∆̂ at hand, we do the SVD, and correct the singular value matrix by adding

λ onto its first k (assume a priori known first) largest singular value and multipling 1 + µ onto the

remaining singular values. We denote the resulting estimator by ∆̃. Given the Π̂, we do the SVD

also, and correct the singular value matrix by adding λ(1+1/µ) onto its first J (again known a priori

first) singular values. We denote the resulting estimator by Π̃. Now, we have the following asymptotic

results for the de-biased estimators.
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Theorem 5. Under Assumptions 1-2,

∥∆̃−∆0∥/
√
N =Op

((
λ∨ µ

1 +µ
λ∗

k+1 + 1
)√

aNn/(1 +λ)
)
,

∥∆̃−∆0∥F/
√
N =Op

((
λ∨ µ

1 +µ
λ∗

k+1 + 1
)√

aNn/(1 +λ)
)
,

and
∥Π̃−Π0∥√

N
=Op

{[
λ

(
1 + 1

µ

)
+ 1
]√

aNn

1 +λ
+ λ∗

J+1I(J < r) +λ∗
r+1I(J > r) + 0I(J = r)√

N

}
,

∥Π̃−Π0∥F√
N

=Op


[
λ

(
1 + 1

µ

)
+ 1
]√

aNn

1 +λ
+

r∑
l=J+1

λ∗
l I(J < r) +

J∑
l=r+1

λ∗
r+1I(J > r) + 0I(J = r)

√
N

 .
Theorem 5 shows that as in the typical case where

√
aNn
1+λ

= o(1), the de-biased estimator decreases
the bias with a downward scaling of

√
aNn
1+λ

for ∆0. As for Π, a good choice is setting J = r (or
equivalently tuning λ(1+1/µ)). In this case, the convergence rate for Π̃ simplifies to λ(1+1/µ)

√
aNn
1+λ

in both averaged operator norm or Frobenius norm, and the bias is also scaled down by a factor of√
aNn
1+λ

. To further understand the choice of J = r, we separate ∆ into the sum of ∆1 + ∆2 where ∆1

is the potential increment matrix attributed by low-rank diffusion σtdWt and ∆2 is that attributed
by µtdt+σ∗

t dW
∗
t . In traditional high-dimensional factor analysis, ∥E(∆2∆′

2)∥ is bounded by Cnoise
while ∥E(∆1∆′

1)∥ ≥ crNα >Cnoise for large N and n (recall the parameter space Θ). Then choosing
λ(1 + 1/µ) so that J = r is selecting a threshold in between Cnoise and crNα to differentiate the
low-rank component and the idiosyncratic component. As an end of this section, it is worthy of notice
that our results hold for weak factor cases where α < 1, that being said the strong factor condition
is not necessary.

4. Monte Carlo Simulation
In this section, we use Monte Carlo simulations to demonstrate the effectiveness of our methodology.

4.1. Simulation Settings
We adopt a stochastic volatility model without jumps, similar to the framework in Kong et al. (2023).
The latent log-price process, Xt, and the latent factor process, Vt, are specified as follows:

dXt = βtdVt + dZt and dVt = µvdt+σv,tρ
1/2dW v

t ,

where Zt is an idiosyncratic error process and W v
t is a multivariate (r-dimensional) Brownian motion.

The matrix ρ= (ρij)r×r = {diag(H)}−1/2HH ′{diag(H)}−1/2, where H = (hij)r×r is a lower triangular
matrix with elements hij = 0.6|i−j| for i≥ j. The diagonal volatility matrix, σv,t = diag(σv,t1, ..., σv,tr),
contains individual factor volatilities, each following a Heston-type square-root process:

dσ2
v,tl = κ(σ̄2−σ2

v,tl)dt+ s
√
σ2

v,tldW̄v,tl,
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where W̄v,t = (W̄v,t1, ..., W̄v,tr)′ is a multivariate Brownian motion independent ofW v
t , with correlation

matrix Ir. The initial value for each variance process, σ2
v,0l, is drawn from a uniform distribution

U [0.8σ̄2,1.2σ̄2]. We set r= 3, (κ, σ̄2, s) = (3,0.32,0.3) and µv = (0.05,0.03,0.02)′.
The process Zt =√µσ∗

t dW
∗
t , where σ∗2

tj is generated by the same procedure as σ2
tl with the same

parameters, and W ∗
t is a N -dimensional Brownian motion with the correlation matrix ρ∗ being a

block diagonal matrix with each block being
(
ρ̃∗

ij = 0.6|i−j|
)

10×10
. This setting is similar to that in

Ait-Sahalia and Xiu (2017). We let µ= 0.1 such that the averaged standard errors of all elements of
Zt is around 18% of that of Yt.

The factor loading matrix βt = β̃0M where M = (β̃0′β̃0/pα)−1/2 such that β′
tβt/p

α = Ip, and β̃0 =(
β̃0

j (l)
)l=1,...,r

j=1,...,N
with β̃0

j (1)∼ U [0.25,1.75] associated with the market factor, and β̃0
j (l)∼N(0,0.52)

for l= 2, ..., r. In the base case, the factor strength α is set to 1.
Our simulation is configured with N = 100 assets over a time horizon of T = 5 trading days.

Each day is discretized into a grid of n= 390 equally-spaced intervals, corresponding to a 1-minute
frequency with a time step of tj − tj−1 = δn = 1/390. Asynchronous trading times for each asset are
then generated from a standard Poisson process with an arrival intensity of λasy = 1. For our proposed
algorithm, the tuning parameters are initialized to λ= 0.001, µ= 0.1, and η = 0.01.

To assess the robustness of our method, we systematically vary key parameters of the simulation,
keeping all other settings fixed according to the baseline configuration described above. We consider
four scenarios:
(i) Number of Assets: We set the number of assets N to 20, 50, 120.
(ii) Observation Frequency: We vary the length of the observation interval δn, setting it to 1/780

(30-second), 1/390 (1-minute), and 1/78 (5-minute).
(iii) Asynchronous Intensity: We divide the N = 100 assets into two equally-sized groups and

assign different Poisson arrival intensities, (λasy,1, λasy,2), to each. We test three configurations:
uniform low intensity (0.5, 0.5), mixed intensity (0.5, 3), and uniform high intensity (3, 3).

(iv) Factor Strength: We examine the impact of different factor strengths by setting α to 0.8
(strong), 0.5 (moderate), and 0.2 (weak).

We conduct 200 Monte Carlo replications for each Data Generating Process (DGP) to evaluate
the finite-sample performance of our proposed Nuclear Norm (NN) method. We compare it against
several widely-used methods for handling asynchronous data, which can be broadly classified into
two categories:
(i) Imputation Methods: These methods aim to fill in missing observations. In addition to our NN

method, we include:
• Previous-Tick interpolation (PI), as used in Zhang (2011).
• Linear Interpolation (LI).
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Figure 3 Box plots of the L1 norm of the incremental relative error matrix.
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Note. Upper panel: varying number of assets; lower panel: different observation frequencies. Here, “LI” stands for
linear interpolate; “PI” stands for previous-tick interpolate; “PA” for pre-averaging; “NN” stands for our nuclear
norm. Small green squares denote the mean values.

(ii) Subsampling Methods: These methods create a synchronized dataset by selecting a sparse subset

of the original data. We consider:

• Refresh Time (RT), proposed by Barndorff-Nielsen et al. (2008).

• Pre-Averaging (PA), as used in Mykland et al. (2019).

For all methods, after obtaining a synchronized return matrix, we estimate the covariance matrix

using the Principal Component Analysis (PCA)-based approach developed by Ait-Sahalia and Xiu

(2017).

We evaluate the estimation accuracy of increment matrix Π̂ by reporting scaled L1 norm of relative

error (Π̂−Π)⊘Π, that is, 1
nN
∥(Π̂−Π)⊘Π∥L1 , where (aij)n×m⊘(bij)n×m = (aij/bij)n×m. We evaluate

the estimation accuracy of covariance matrix Σ̂ by reporting various relative estimation error of

norms, including the Frobenius ∥Σ̂− Σ∥F/∥Σ∥F , the matrix L2 ∥Σ̂− Σ∥/∥Σ∥, and the maximum

∥Σ̂−Σ∥max/∥Σ∥max norms, where Σ represents the true integrated covariance.

4.2. Simulation Results

Figure 3 presents the recovery bias of the returns matrix across various sample sizes and number

of assets. Notably, our nuclear norm approach consistently outperforms alternative methods,1 with
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Figure 4 Box plots of the L1 norm of the incremental relative error matrix.
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Note. Upper panel: different asynchronous intensities; lower panel: different factor strengths. Here, “LI” stands for
linear interpolate; “PI” stands for previous-tick interpolate; “PA” for pre-averaging; “NN” stands for our nuclear
norm. Small green squares denote the mean values.

low estimation errors even with few assets (N = 20). Furthermore, our method demonstrates supe-

rior stability, as evidenced by its minimal performance variation, whereas other techniques exhibit

substantially larger fluctuations.

Figure 4 illustrates the recovery bias of the returns matrix under varying levels of asynchrony and

different factor strengths. Across all scenarios, our nuclear norm method leads the field, maintaining

the lowest estimation errors. As expected, every method’s performance deteriorates as asynchrony

intensifies—unobservable prices become excessive at extreme levels of asynchrony. Nevertheless, our

approach consistently yields small, stable errors. Moreover, variations in factor strength have only a

minor impact on its performance.

We further evaluate the accuracy of the covariance matrix estimation across different asynchronous

recovery methods, examining how it is influenced by four key variables: the number of assets and the

sampling frequency (Table 1), the magnitude of asynchronous intensity and the strength of underlying

factors (Table 2).

The left panel of Table 1 illustrates the impact of number of assets (N) on covariance estimation

accuracy. Two key findings emerge. First, our NN method consistently outperforms all competing
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Table 1 Covariance estimation accuracy: Varying assets and frequencies.

Dimension Frequency

N RT LI PI PA NN Minute RT LI PI PA NN

∥Σ̂−Σ∥F /∥Σ∥F

20
0.131 0.134 0.132 0.296 0.073

0.5 min
0.121 0.080 0.080 0.252 0.060

(0.055) (0.035) (0.029) (0.159) (0.032) (0.049) (0.029) (0.028) (0.123) (0.025)

50 0.143 0.137 0.133 0.301 0.077 1 min 0.151 0.139 0.135 0.301 0.079
(0.060) (0.037) (0.033) (0.156) (0.031) (0.067) (0.037) (0.035) (0.152) (0.032)

120
0.149 0.141 0.137 0.301 0.076

5 min
0.307 0.233 0.227 0.431 0.145

(0.062) (0.036) (0.034) (0.153) (0.032) (0.127) (0.058) (0.053) (0.197) (0.058)

∥Σ̂−Σ∥/∥Σ∥

20
0.126 0.133 0.115 0.289 0.074

0.5 min
0.119 0.080 0.078 0.246 0.058

(0.063) (0.041) (0.039) (0.178) (0.036) (0.056) (0.033) (0.032) (0.137) (0.028)

50 0.138 0.137 0.125 0.296 0.077 1 min 0.147 0.139 0.131 0.292 0.079
(0.069) (0.042) (0.041) (0.175) (0.035) (0.076) (0.043) (0.042) (0.171) (0.037)

120
0.144 0.141 0.133 0.293 0.076

5 min
0.294 0.233 0.216 0.419 0.145

(0.072) (0.041) (0.041) (0.172) (0.036) (0.145) (0.066) (0.065) (0.220) (0.064)

∥Σ̂−Σ∥max/∥Σ∥max

20
0.155 0.119 0.135 0.277 0.070

0.5 min
0.149 0.071 0.084 0.230 0.053

(0.078) (0.038) (0.035) (0.194) (0.036) (0.064) (0.030) (0.027) (0.132) (0.026)

50 0.162 0.121 0.139 0.270 0.071 1 min 0.169 0.126 0.147 0.274 0.071
(0.080) (0.038) (0.035) (0.179) (0.034) (0.083) (0.040) (0.037) (0.164) (0.036)

120
0.164 0.130 0.152 0.280 0.071

5 min
0.304 0.224 0.274 0.388 0.138

(0.079) (0.040) (0.039) (0.170) (0.036) (0.159) (0.069) (0.068) (0.208) (0.065)

Note. This table summarizes results from 200 Monte Carlo simulations. The reported values are averages, with standard devi-
ations in parentheses. The left and right panels show results under varying numbers of assets (N) and observation frequencies,
respectively. Covariance matrices are estimated using a PCA-based approach (Ait-Sahalia and Xiu 2017). The methods compared
are: Refresh Time (RT), Linear Interpolation (LI), Previous-Tick Interpolation (PI), Pre-Averaging (PA), and our proposed
Nuclear Norm (NN) method. Bold entries highlight the best-performing method in each scenario.

methods across both error norms and all sizes (N = 20, 50, 120). Second, the NN method also exhibits
the lowest standard deviation, highlighting its superior stability and reliability.

The right panel examines the effect of observation frequency. As expected, the estimation accuracy
of all methods degrades as the frequency decreases. Despite this general trend, the NN method
maintains its top-ranking performance, demonstrating its robustness even with less frequent data. In
contrast, while the interpolation methods (LI and PI) perform reasonably well, particularly at higher
frequencies, the PA method consistently yields the poorest results.

Next, we verify the effect of asynchronous intensity and factor intensity on covariance estima-
tion. First, we examine the impact of asynchronous intensity. As expected, the performance of most
methods deteriorates as the intensity of asynchrony increases (i.e., as more prices become unobserv-
able). However, our proposed NN method demonstrates remarkable robustness, showing only a slight
degradation in performance. In contrast, the interpolation-based methods (LI and PI) are highly
sensitive to this parameter. While they perform reasonably well at a low asynchronous intensity
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Table 2 Covariance estimation accuracy: Varying asynchrony and factor strength.

Asynchronous intensity Factor strength

λasy RT LI PI PA NN α RT LI PI PA NN

∥Σ̂−Σ∥F /∥Σ∥F

(0.5,0.5)
0.134 0.060 0.062 0.301 0.079

0.8
0.158 0.139 0.135 0.314 0.084

(0.054) (0.023) (0.023) (0.152) (0.033) (0.066) (0.036) (0.034) (0.150) (0.031)

(0.5,2.0) 0.192 0.243 0.252 0.301 0.078 0.5 0.201 0.148 0.146 0.382 0.120
(0.091) (0.034) (0.033) (0.152) (0.032) (0.061) (0.030) (0.028) (0.140) (0.025)

(2.0,2.0)
0.201 0.361 0.340 0.301 0.077

0.2
0.383 0.258 0.261 0.615 0.285

(0.093) (0.036) (0.035) (0.152) (0.032) (0.045) (0.015) (0.014) (0.112) (0.018)

∥Σ̂−Σ∥/∥Σ∥

(0.5,0.5)
0.134 0.057 0.058 0.292 0.079

0.8
0.151 0.138 0.130 0.300 0.081

(0.061) (0.027) (0.027) (0.171) (0.037) (0.077) (0.042) (0.042) (0.171) (0.037)

(0.5,2.0) 0.185 0.234 0.234 0.292 0.078 0.5 0.172 0.136 0.127 0.338 0.097
(0.103) (0.043) (0.044) (0.171) (0.037) (0.078) (0.040) (0.039) (0.172) (0.035)

(2.0,2.0)
0.193 0.361 0.333 0.292 0.077

0.2
0.274 0.160 0.153 0.503 0.181

(0.105) (0.042) (0.043) (0.171) (0.036) (0.072) (0.024) (0.022) (0.169) (0.027)

∥Σ̂−Σ∥max/∥Σ∥max

(0.5,0.5)
0.150 0.061 0.080 0.274 0.072

0.8
0.170 0.120 0.139 0.279 0.072

(0.067) (0.029) (0.035) (0.164) (0.036) (0.082) (0.040) (0.032) (0.161) (0.036)

(0.5,2.0) 0.198 0.259 0.273 0.274 0.071 0.5 0.178 0.119 0.132 0.306 0.081
(0.109) (0.072) (0.076) (0.164) (0.036) (0.076) (0.037) (0.030) (0.155) (0.032)

(2.0,2.0)
0.212 0.319 0.342 0.274 0.069

0.2
0.228 0.156 0.161 0.390 0.154

(0.114) (0.055) (0.074) (0.164) (0.036) (0.063) (0.037) (0.035) (0.141) (0.034)

Note. This table summarizes results from 200 Monte Carlo simulations. The reported values are averages, with standard devia-
tions in parentheses. The left and right panels show results under varying asynchronous intensities (λasy) and factor strengths,
respectively. Covariance matrices are estimated using a PCA-based approach (Ait-Sahalia and Xiu 2017). The methods com-
pared are: Refresh Time (RT), Linear Interpolation (LI), Previous-Tick Interpolation (PI), Pre-Averaging (PA), and our proposed
Nuclear Norm (NN) method. Bold entries highlight the best-performing method in each scenario.

(e.g., 0.5), their accuracy collapses when the intensity is high (e.g., 2). This is because these methods

rely on nearby observed prices for imputation. As asynchrony intensifies, the average time between

valid price observations widens, forcing interpolation over longer gaps and inevitably introducing

significant bias.

Second, we analyze the effect of factor strength (α). The PA method performs very poorly, espe-

cially when the underlying factors are weak. The NN method achieves the best performance across

nearly all scenarios. The only exception occurs at α= 0.2, where the PI and LI methods yield com-

parable results. This is likely because when the common factor is extremely weak, the cross-sectional

dependence is minimal, which reduces the relative advantage of our global, factor-based approach.

Nevertheless, even in this edge case, the NN method still provides the most accurate recovery of the

underlying return matrix, as shown in Figure 4.
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5. Empirical Analysis
To demonstrate the practical applicability and utility of our proposed methodology, we conduct
several empirical applications. The remainder of this section is organized as follows. Section 5.1
describes the asynchronous characteristics of high-frequency data. Section 5.2 highlights the difference
between the eigenvalues derived from traditional stale prices (derived from the PI method) and
those recovered by our methodology. Section 5.3 compares the imputation errors across different
approaches. Section 5.4 evaluates the impact of these methods on portfolio selection. Finally, Section
5.5 analyzes the beta discrepancies during periods of market turbulence.

5.1. Data Description
We combine data for S&P 500 constituents from the TAQ database with data for the SPDR S&P
500 ETF Trust (SPY) from Pi Trading, covering the period from January 2008 to December 2022.
Following Bollerslev et al. (2024), we exclude holidays and days with shortened trading hours. Our
analysis is based on high-frequency data at 1-minute, 5-minute, and 10-minute frequencies. For each
frequency, an observation is deemed “missing” if no trade for the respective asset occurs within the
corresponding time interval (e.g., within a given one-minute window for the 1-minute series). We
construct a balanced panel, which ultimately comprises 360 stocks.

Asynchrony is a pervasive feature of high-frequency data. In our analysis, we define the 1-minute
interval as the base observational unit, corresponding to a discrete time grid T = {t1, ..., tn}.2 The
challenge of asynchronous trading can thus be framed as an imputation or data completion problem.
Our primary goal is to recover complete time series of prices at 1-minute, 5-minute, and 10-minute
frequencies, respectively, for every stock in the panel.

Let T = {t1, ..., tn} represent the complete grid of discrete observation times within a given period
(e.g., a trading day with n= 390 one-minute intervals starting from an initial time t0). For any stock
i, let {τi1, ..., τiin} denote the subset of times at which its price is actually observed. Asynchronous
trading occurs when a stock’s observation set does not cover the entire grid, i.e., T \ {τi1, ..., τiin} ≠
{∅}. Consequently, the set of time points where the price of stock i is considered missing is defined
by the set difference T \ {τi1, ..., τiin}. Figure 5 provides a summary of such missingness across our
high-frequency panel data.

Panel A of Figure 5 plots the daily average number of missing stocks at the 1-minute frequency.
Despite a well-documented increase in overall trading activity over the past 15 years, the number of
missing stocks at this high frequency has remained persistently high, showing no significant down-
ward trend. While this number temporarily declined during the COVID-19 pandemic, the trend was
short-lived, reverting to its previous level of approximately 100 within a year. In contrast, at lower
frequencies (5- and 10-minute intervals), the issue of missing data is substantially less severe, with
the count of missing stocks typically remaining below 40.
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Figure 5 Missing values over time.

Note. This figure illustrates patterns of missing data in our sample. Panel A displays the daily average number of
stocks with missing observations at the 1-minute frequency. Panels B, C, and D depict the daily evolution of the
cross-sectional quantiles of missing observations for data sampled at 1-minute, 5-minute, and 10-minute frequencies,
respectively.

Panel B of Figure 5 illustrates the intraday evolution of the cross-sectional quantiles of the missing
probability—also known as staleness probability3—at the 1-minute frequency. We observe a median
missing rate of 20–30%, a level consistent with the findings of Bandi et al. (2020) for NYSE-listed
stocks. The prevalence of such missing data, or price stagnation (i.e., price staleness), is a critical
issue in high-frequency analysis. The problem becomes even more acute at finer time scales; for
instance, Bandi et al. (2024) reports a missing rate exceeding 50% for highly liquid stocks at the
10-second frequency. Using these stale prices as if they were true observations of the underlying price
process can introduce significant biases into key financial analyses, such as volatility and correlation
estimation. Returning to our specific findings, Panel B reveals that the extent of missingness can
be extreme for some assets, with the 90th percentile reaching 60% even at the 1-minute frequency.
As we decrease the sampling frequency, this issue is substantially mitigated. Panel C shows that the
90th percentile of the missing rate drops to approximately 15% for 5-minute data. For 10-minute
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Figure 6 Asset realized correlation over time.

Note. This figure reports the results of the cross-sectional quantiles for realized correlation (daily).

data (Panel D), the missing rate becomes negligible, with the 90th percentile falling below 5%. This
trend is intuitive, as non-trading spells of 10 minutes are relatively uncommon for the stocks in our
sample.

Figure 6 confirms the presence of significant cross-sectional correlations among stocks, although
the magnitude of this correlation tends to decrease as the sampling frequency increases. This strong
inter-dependence, often driven by common factors like industry effects, represents a valuable source
of information for handling asynchrony. Ignoring it when imputing prices risks discarding crucial
data.

However, conventional imputation methods that rely solely on an asset’s own time series fail to
exploit this cross-sectional information. For instance: The PI method, which carries forward the
last observed price, utilizes only past univariate information and ignores contemporaneous trades in
related stocks. The LI method artificially smooths prices between an asset’s trades. Consequently,
these univariate approaches cannot propagate the impact of market-wide information—reflected in
the trading of correlated assets—to the price of an asynchronously traded stock. Therefore, any
imputation scheme based purely on an individual time series is inherently limited, as it neglects
vital information from the cross-section, such as latent factors. Capturing this complex dependence
structure effectively requires sophisticated modeling tools (see, e.g., the discussion in Pelger 2020).

An alternative approach, distinct from imputation, is the refresh time scheme, which synchronizes
data by subsampling, retaining only the time points where a specified set of assets has traded (Aı̈t-
Sahalia et al. 2010). This method, however, faces a significant trade-off in high-dimensional settings. A
full-cross-section refresh time discards a vast amount of temporal data, whereas a pairwise refresh time
is restricted to two assets and fails to scale. Ultimately, both univariate imputation and subsampling
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Figure 7 Eigenvalues for covariance.
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Note. This figure shows the first two eigenvalues of the panel covariance matrix for different groups, which are divided
sequentially according to the missingness of the original data, with group 1 indicating the highest number of missing
values and group 10 indicating the lowest number of missing values.

schemes struggle to effectively balance the preservation of temporal data with the integration of

high-dimensional cross-sectional information.

5.2. Eigenvalues

The eigenvalues of the covariance matrix provide direct insights into the structure of systematic risk.

To investigate this, we first categorize our 360 stocks into 10 equally-sized groups (36 stocks per

group) based on their total number of missing observations, sorted from highest to lowest. Figure

7 then plots the magnitudes of the first two eigenvalues of the covariance matrix for each of these

groups. These leading eigenvalues represent the amount of variance explained by the first two principal

components, which are often interpreted as dominant systematic factors.

To evaluate our methodology, we compare it against the PI imputation, a standard benchmark in

high-frequency finance. The PI method is the primary source of price staleness, as it simply carries

forward the last observed price, creating an artificially static price series. Our analysis contrasts the

eigenvalue structure of the covariance matrix derived from these stale, PI-imputed prices with that

derived from the “effective prices” recovered by our proposed method.

Our findings reveal that price staleness significantly distorts the covariance matrix’s eigenvalue

structure, an effect that is most pronounced under two conditions: at higher frequencies (1-minute)

and for stocks with more missing data.

(i) At the 1-minute frequency, the discrepancy is stark. In Group 1 (stocks with the most missing

data), the leading eigenvalue from the PI method is approximately 0.4, whereas our method

yields a value of around 0.5. This gap diminishes as data quality improves, becoming minimal

in Group 10. A similar, substantial difference is also observed for the second eigenvalue.
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(ii) At lower frequencies (5- and 10-minute), the distortion from the PI method is less severe, with
significant differences in eigenvalues confined primarily to the first few groups (i.e., those with
the most missing data).

Furthermore, focusing on the more reliable eigenvalues generated by our method for the 1-minute
data, we observe a clear increasing trend in their magnitude from Group 1 to Group 10. This suggests
a fundamental difference in the risk composition of these stocks. Stocks that trade frequently (e.g.,
in Group 10) exhibit stronger co-movement and are more exposed to systematic factors. Conversely,
stocks prone to infrequent trading (e.g., in Group 1) possess a larger component of idiosyncratic risk,
which is not captured by the leading principal components, even after our advanced imputation.

5.3. Imputation Error
In this subsection, we conduct an extensive study to compare the imputation accuracy of our proposed
method against several benchmarks, including the LI and PI methods. We evaluate performance
based on the imputation errors of log-prices across various sampling frequencies.4

To create a controlled setting for evaluating imputation errors, we follow a two-step procedure to
artificially mask observed data points. For each day t in our sample (t= 1, ..., T ):
Step 1: Identify testable data: We start with the potential log-price matrix for that day, denoted

as Pt (an N × n matrix, where N the number of stocks and n is the number of intraday
observations). We first exclude any prices that were already missing in the original dataset.
The remaining set of observed prices forms our “ground truth” data for the test.

Step 2: Construct mask matrix: We then create a binary mask matrix,Mt, of the same dimensions.
For each position corresponding to an observable price in Pt, we randomly assign a value of 1
(indicating the price will be masked) with a pre-specified probability p, and 0 otherwise. We
vary this masking probability p across the set {0.1,0.2, ...,0.7} to assess performance under
different levels of data sparsity. 5

The observed data available to the imputation methods is thus the element-wise product Pobs
t =

Pt◦Mc
t , whereMc

t is the complement ofMt and ◦ denotes the Hadamard product. After applying an
imputation method to obtain an estimate P̂t, we measure its accuracy only on the artificially masked
data points. The main results are summarized in Table 3. We report two error metrics, averaged over
all trading days:

Absolute error := 1
T

T∑
t=1

∥(P̂t−Pt) ◦Mt∥F

∥Mt∥F

,

Relative error := 1
T

T∑
t=1

∥(P̂t−Pt) ◦Mt∥F

∥Pt ◦Mt∥F

,

(14)

where P̂t is the imputed price matrix, and the Frobenius norm ∥ · ∥F in the numerator is calculated
only over the set of masked entries.
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Table 3 Imputation error for different methods.

Mask 1 minute 5 minute 10 minute

probability PI LI NN PI LI NN PI LI NN

Absolute error

0.1 0.1088 0.0757 0.0681 0.2070 0.1426 0.1225 0.2853 0.1947 0.1646
0.2 0.1151 0.0785 0.0711 0.2195 0.1488 0.1289 0.3027 0.2033 0.1737
0.3 0.1220 0.0819 0.0747 0.2338 0.1558 0.1363 0.3213 0.2128 0.1839
0.4 0.1311 0.0864 0.0794 0.2514 0.1648 0.1459 0.3455 0.2254 0.1973
0.5 0.1427 0.0925 0.0857 0.2739 0.1764 0.1582 0.3768 0.2425 0.2153
0.6 0.1586 0.1006 0.0942 0.3036 0.1922 0.1749 0.4178 0.2650 0.2390
0.7 0.1814 0.1128 0.1067 0.3485 0.2170 0.2008 0.4781 0.3004 0.2759

Relative error

0.1 0.0270 0.0188 0.0169 0.0509 0.0351 0.0300 0.0699 0.0478 0.0402
0.2 0.0286 0.0195 0.0176 0.0540 0.0366 0.0316 0.0742 0.0499 0.0425
0.3 0.0303 0.0204 0.0185 0.0575 0.0383 0.0334 0.0788 0.0522 0.0449
0.4 0.0326 0.0215 0.0197 0.0618 0.0405 0.0357 0.0847 0.0553 0.0482
0.5 0.0354 0.0230 0.0212 0.0673 0.0434 0.0388 0.0924 0.0595 0.0526
0.6 0.0394 0.0250 0.0233 0.0746 0.0473 0.0429 0.1024 0.0650 0.0584
0.7 0.0450 0.0280 0.0264 0.0857 0.0534 0.0492 0.1172 0.0737 0.0674

Note. See (14) for error calculations in this table. Key to abbreviations: “LI” stands for linear interpolate; “PI” stands for
previous-tick interpolate; “NN” stands for our nuclear norm.

Table 3 presents several key findings. First and foremost, our proposed method consistently and
significantly outperforms the conventional PI method, yielding imputation errors that are approxi-
mately half the size of those from the PI approach. This superiority is robust across all tested sampling
frequencies and masking probabilities. We therefore conclude that relying on stale prices, which inher-
ently ignores both cross-sectional dependence and dynamic time-series patterns, leads to substantial
and avoidable inaccuracies in price imputation. In contrast, our global optimization framework, by
recovering an underlying low-rank structure, provides a much more accurate approximation of the
true, unobserved high-frequency prices.

Second, our method also demonstrates a clear advantage over the LI method. A plausible explana-
tion for this result is that the gains from capturing cross-sectional dependence, a key feature of our
model, outweigh the benefits of simple temporal interpolation. Furthermore, the performance gap
between our method and the benchmarks widens as the masking probability increases. This high-
lights the particular strength of our approach in scenarios with high data sparsity, where traditional
methods like PI become increasingly unreliable.

Finally, we observe that the imputation performance of all methods tends to degrade at lower
frequencies (e.g., 10-minute). This presents a general challenge for high-frequency data imputation,
as longer time intervals between observations can obscure the underlying price dynamics. Despite
this challenge, the superiority of our method remains striking. For instance, even under a severe
70% masking probability, our method achieves a lower error rate than the PI method does under a
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minimal 10% masking probability. This compelling result underscores the remarkable efficiency and
robustness of our proposed imputation framework.

5.4. Applications to Portfolio Selection
In this subsection, we evaluate the economic significance of the covariance matrix estimates by
examining their performance in a practical portfolio allocation context. We consider the following
constrained minimum-variance portfolio problem:

min
w

w′Σw, s.t. w′1= 1,∥w∥1 ≤ c, (15)

where ∥w∥1 ≤ c impose an risk-exposure constraint, with ∥ · ∥1 denoting the L1 norm. A value of
c= 1 corresponds to a long-only portfolio (no short sales), whereas c > 1 allows for short selling.

Our empirical analysis uses intraday data only, excluding overnight returns to avoid complications
from dividend issuances and stock splits. To ensure robustness to price jumps, we further apply
a five-standard-deviation truncation rule. The truncation threshold is calibrated using the bipower
variation estimator of Barndorff-Nielsen and Shephard (2004), adjusted for diurnal volatility patterns
following the methodology of Li et al. (2017) and Bollerslev et al. (2024).

Following the literature Fan et al. (2012), Ait-Sahalia and Xiu (2017), and Cui et al. (2024), we
adopt a monthly rebalancing strategy. At the end of each month, we construct the optimal portfolio
weights by solving problem (15) using an estimate of the integrated covariance matrix. This covariance
matrix is estimated using the high-frequency data from the past month, first imputed by one of
the competing methods and then processed using the estimator of Ait-Sahalia and Xiu (2017). We
then evaluate the out-of-sample performance of these portfolios over the next month under various
exposure constraints c.

The results are presented in Table 4, where we report three key performance metrics: out-of-sample
annualized average return (AR), annualized standard deviation (SD), and the Sharpe ratio (SR).

Table 4 reports the out-of-sample portfolio performance from 2016 to 2022 across various gross
exposure constraints (c) and for five equally-sized stock groups. These groups are formed by sorting
stocks based on their degree of data missingness, from highest (Group 1) to lowest (Group 5), allowing
us to assess performance under different data quality scenarios.

A primary finding is that portfolios constructed using our imputation method achieve the highest
Sharpe ratios in nearly all scenarios. This result underscores the economic value of accurately esti-
mating the covariance matrix by accounting for asynchrony. While the Sharpe ratios tend to decline
as leverage increases (i.e., as c grows), they stabilize for c > 4. It is important to note that while more
advanced covariance estimators, such as that of Cui et al. (2024), could potentially further enhance
performance, our focus here is on isolating the impact of the imputation method itself, for which we
use a standard estimation approach.
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Table 4 The out-of-sample performance of monthly-rebalanced optimal portfolios.

Constraint: 2 Constraint: 3 Constraint: 4 Constraint: 5

G. PI LI NN PI LI NN PI LI NN PI LI NN

1 AR 11.796 12.925 13.777 12.782 12.852 13.836 12.782 12.852 13.938 12.782 12.852 13.938
SD 23.179 24.265 24.439 23.345 24.576 25.191 23.345 24.576 25.281 23.345 24.576 25.281
SR 0.508 0.532 0.564 0.547 0.522 0.549 0.547 0.522 0.551 0.547 0.522 0.551

2 AR 6.743 6.999 6.993 6.155 6.321 6.861 6.115 6.064 6.537 6.115 6.064 6.537
SD 20.954 21.072 21.355 20.819 20.923 21.220 20.811 20.927 21.262 20.811 20.927 21.262
SR 0.321 0.332 0.327 0.295 0.302 0.323 0.293 0.289 0.307 0.293 0.289 0.307

3 AR 11.373 13.375 13.858 11.617 13.809 14.575 11.598 13.974 14.660 11.598 13.974 14.660
SD 24.311 24.467 24.513 24.624 24.962 24.978 24.681 25.055 25.094 24.681 25.055 25.094
SR 0.467 0.546 0.565 0.471 0.553 0.584 0.469 0.557 0.584 0.469 0.557 0.584

4 AR 5.655 5.431 5.844 6.097 6.011 6.690 6.351 6.204 6.936 6.350 6.204 6.935
SD 23.790 23.950 23.844 23.604 23.703 23.567 23.566 23.669 23.538 23.566 23.669 23.538
SR 0.237 0.226 0.245 0.258 0.253 0.283 0.269 0.262 0.294 0.269 0.262 0.294

5 AR 4.002 4.183 4.377 4.028 4.226 4.312 4.023 4.212 4.316 4.023 4.212 4.316
SD 21.204 21.268 21.334 21.469 21.539 21.580 21.500 21.574 21.627 21.500 21.574 21.627
SR 0.188 0.196 0.205 0.187 0.196 0.199 0.187 0.195 0.199 0.187 0.195 0.199

Note. This table reports the out-of-sample performance of portfolios constructed using different covariance matrix estimators,
evaluated monthly from 2016 to 2022. We report the annualized average return (AR), annualized standard deviation (SD), and
the Sharpe ratio (SR). “G.” refers to the stock groups defined before, and c denotes the gross exposure constraint from the
optimization problem (15). Values in bold indicate the highest Sharpe ratio for each given case.

A striking pattern emerges from the inter-group comparison: portfolios of stocks with more missing

data (e.g., Groups 1-2) consistently generate higher average returns and Sharpe ratios than those

with less missing data (e.g., Groups 4-5). The Sharpe ratio of Group 1, for instance, is more than

double that of Group 5. This observation aligns with the well-documented liquidity premium in asset

pricing. Infrequent trading, which directly causes data missingness in our high-frequency setting, is a

hallmark of illiquidity. Seminal works by Amihud and Mendelson (1986) and Pástor and Stambaugh

(2003) have established that illiquid stocks tend to offer higher expected returns to compensate

investors for higher trading costs and exposure to systematic liquidity risk.

However, the link is not one-to-one. Price staleness and traditional liquidity measures are highly

correlated but distinct concepts (Bandi et al. 2020, 2024). Bandi et al. (2024) posit that staleness can

be decomposed into a systematic component, driven by factors like capital “shadow costs”, and an

idiosyncratic component, related to asset-specific spreads. The performance differentials we observe

across groups may therefore reflect a complex interplay of these factors, leading to conclusions that

may differ from those based on low-frequency data alone.

Finally, it is worth noting that relying on price staleness for out-of-sample portfolio allocations

may reduce out-of-sample performance, which is consistent with the findings of Kong et al. (2024).

Moreover, here we also find that when missing values are severe (staleness probability is high), the
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gap between portfolio allocation using estimates of effective prices (NN method) and using stale
prices (PI method) may be larger.

5.5. Spot Beta

In this subsection, we investigate the impact of price staleness on the estimation of spot betas for
individual stocks relative to an exchange-traded fund (ETF). We estimate the spot beta using the
fixed-k local regression method proposed by Bollerslev et al. (2024), to which we refer the reader
for detailed computational procedures. To the best of our knowledge, the effect of price staleness (as
induced by the PI method) on high-frequency beta estimation has not been systematically studied,
and this analysis aims to fill that gap. This is a critical gap, as recent literature demonstrates the
profound impact of high-frequency beta estimation on asset pricing tests. For example, Hollstein
et al. (2020) find that the empirical failures of the Conditional CAPM can be largely resolved by
moving from daily to high-frequency betas. While their study successfully underscores the value of
high-frequency data, it relies on lag-based adjustments to mitigate non-synchronicity. Our analysis,
therefore, also serves to show how our synchronization framework can provide cleaner and more
reliable beta estimates, which are essential inputs for the type of asset pricing tests conducted by
Hollstein et al. (2020), thereby preventing potentially misleading inferences caused by data artifacts
like price staleness.

Our market proxy is the SPDR S&P 500 ETF Trust (SPY). While the S&P 500 Index (SPX) is
the theoretical benchmark, it is not directly tradable. The SPY, designed to track the SPX, is one
of the most liquid and widely traded ETFs globally, making it an ideal instrument for this analysis.

To highlight the effects of asynchrony, we focus our analysis on a period of extreme market turbu-
lence: the ten trading days from March 5 to March 18, 2020. This period witnessed the onset of the
COVID-19 financial crisis, characterized by an oil price war (March 9, “Black Monday I” crash), the
declaration of a global pandemic (March 11), and emergency actions by the Federal Reserve (March
15), leading to extreme price volatility. In our regression framework, the SPY return series serves as
the regressor, and the individual stock return series is the dependent variable.6

We specifically compare two types of stocks: those with a high number of missing observations
during this period and those with very few. For instance, Mettler-Toledo International (MTD, Indus-
trials) and Verizon Communications (VZ, Communication Services) represent the extremes of high
and low data missingness, respectively, within our sample for this period. Our subsequent analysis
will focus on these two representative stocks.

In our empirical tests, we primarily focus on testing the null hypothesis of zero beta (H0 : β =
0). This focus is motivated by the strong idiosyncratic nature of individual stock returns, which
often makes it statistically challenging to detect a consistently significant, non-zero beta. Following
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Figure 8 Spot beta for the presence of price staleness.
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Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 15-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

Bollerslev et al. (2024), our main analysis uses a 15-minute estimation window (k= 15). Robustness
checks using k= 5 and k= 10 are provided in the Supplementary Appendix.

The upper panel of Figure 8 reveals a striking pattern for the MTD stock: the spot beta esti-
mates are frequently exactly zero, with confidence intervals degenerating to zero width. This is not a
reflection of economic reality but rather a methodological artifact induced by the PI imputation. As
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established in the classic literature on non-synchronous trading (Scholes and Williams 1977), when
a stock’s price does not update, the PI method records a zero return. This mechanically sets the
stock’s local covariance with the market (i.e. SPY) to zero, forcing the corresponding beta estimate
to be zero as well. This issue is, unsurprisingly, most severe for the less liquid stock, MTD.

The consequences extend beyond distorted point estimates; this artifact critically undermines the
validity of statistical inference. For instance, on March 9, 2020 (“Black Monday I”), the PI-based
data yields an exceptionally high p-value of 0.342 for the functional test of the null hypothesis that
the beta process is identically zero. This misleading result leads to a failure to reject the null of zero
systematic risk during a major market crash.

In stark contrast, when using the effective prices recovered by our method (see Figure 9), the p-value
for the same test on the same day is merely 0.046, leading to a clear rejection of the null hypothesis.
This discrepancy highlights a fundamental flaw: the zero-inflated return series generated by the PI
method violates the “local Gaussianity” assumption that underpins the inferential framework of
Bollerslev et al. (2024). Consequently, any statistical tests based on such contaminated data become
unreliable.

In stark contrast to the erratic zero-beta estimates produced by the PI method, the beta paths
derived from our approach (Figure 9) are notably smoother and more continuous. This demonstrates
that once the microstructure noise from non-synchronous trading is properly filtered, a stock’s sys-
tematic risk exposure is revealed to be a dynamically evolving intraday process, not a series of binary
jumps. This finding aligns with the modern consensus in high-frequency finance that asset price
processes are well approximated by continuous semi-martingales (Aı̈t-Sahalia and Jacod 2014).

The resulting statistical inference is also substantially more credible. For MTD on March 18, 2020,
for example, the uniform test yields a p-value of 0.003, allowing for a decisive rejection of the zero-beta
null hypothesis and accurately capturing the stock’s significant market risk on that day. Even on days
with less statistical power, the confidence intervals remain informative, showing the beta fluctuating
around a non-zero mean. This underscores how a robust imputation method, when combined with
the optimal inference framework of Bollerslev et al. (2024), enables reliable inference even from short
estimation windows.

The period of March 2020 included several market-wide “circuit breaker” trading halts (on March
9, 12, 16, and 18), and Figure 9 provides a clear window into how risk characteristics evolved under
such extreme stress. For instance, VZ, a defensive telecommunications stock, generally exhibits a beta
near zero, consistent with its sector profile. However, during the most turbulent sessions, the volatility
of its beta and the width of its confidence bands visibly expand, reflecting a heightened spillover
of systematic risk even to traditionally “safe” assets. This provides compelling visual evidence for
the intraday variation of systematic risk, a phenomenon documented by Andersen et al. (2021).
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Figure 9 Spot beta for the absence of price staleness.
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Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 15-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

Furthermore, MTD’s beta path on March 18 reveals a distinct intraday pattern, trending upwards

in the afternoon, potentially reflecting the market’s continuous repricing of the stock’s risk as new

information was digested. Such fine-grained dynamics are completely obscured in daily or lower-

frequency data.
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In summary, the proper handling of non-synchronous trading is a critical prerequisite for draw-
ing valid economic conclusions from high-frequency spot regressions. The conventional previous-tick
method not only produces severely biased zero-beta estimates but also invalidates statistical inference.
By employing a robust imputation technique, we can uncover the true, dynamic, and economically
meaningful evolution of a stock’s beta, particularly during periods of market turmoil. This capacity
for precise, real-time risk measurement has significant practical implications for risk management,
algorithmic trading, and event study analysis, allowing market participants to assess and respond to
changes in asset risk with a high degree of precision when it matters most.

6. Conclusion
Asynchronous trading is a fundamental challenge in high-frequency finance that biases risk estimates
and impairs asset allocation. We address this by recasting data synchronization as a constrained
matrix completion problem. Our framework recovers the complete matrix of synchronous price incre-
ments by minimizing its nuclear norm—capturing the underlying low-rank factor structure—subject
to linear constraints derived from observed, asynchronous prices.

Theoretically, we prove the existence and uniqueness of our estimator, establish its convergence
rate, and show that it efficiently pools information across both liquid and illiquid assets, overcoming
a key limitation of traditional methods. Empirically, using extensive simulations and a large panel
of S&P 500 stocks, we demonstrate that our approach substantially outperforms established bench-
marks. It corrects systematic biases in risk estimates and, most critically, generates portfolios with
economically and statistically significant higher out-of-sample Sharpe ratios. Our research provides
a powerful and practical tool for uncovering the true dynamics of asset prices, opening promising
avenues for future work in areas such as microstructure modeling and mixed-frequency analysis. By
providing a theoretically sound and empirically validated solution to a long-standing problem, this
paper enables more precise risk measurement and offers a clearer lens into the dynamic nature of
modern financial markets.
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Endnotes
1The RT method is excluded from this comparison. This is because RT is a subsampling technique, not an

imputation method; it only retains a sparse subset of true observed returns and does not generate any estimated
values to be compared against the ground truth.

2We select the 1-minute frequency, rather than a higher frequency (e.g., 1-second), to mitigate the effects of
microstructure noise. Nevertheless, our methodology is also applicable to such ultra-high-frequency data, a direction
we reserve for future research.
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3Staleness probability refers to the likelihood that a price update does not occur within a given interval. See, e.g.,

Bandi et al. (2017), Bandi et al. (2020), and Kong et al. (2024).
4This choice is motivated by the semi-martingale nature of high-frequency asset price dynamics. Unlike low-

frequency data, the properties of high-frequency price increments depend on the length of the time interval, making

a direct analysis of log-prices more appropriate across different frequencies (e.g., 1-minute, 5-minute, and 10-minute).
5Four different missing observations in low-frequency data were investigated by Duan et al. (2024): (i) missing-

at-random, (ii) simultaneous adoption, (iii) staggered adoption, (iv) switchback. Random missing in high-frequency

data, or random missing but with missing probabilities that are not constant but semi-martingale processes may be

more acceptable (e.g., Bandi et al. 2017 and Kong et al. 2024).
6The period’s turmoil ignited on March 9 when an oil price war erupted, sparking recession fears and the “Black

Monday I” crash. The crisis deepened on March 11 as the WHO declared a global pandemic and the U.S. announced a

European travel ban, devastating key industries. In a dramatic response, the Federal Reserve executed an emergency

rate cut to zero on March 15, but this was perceived as a panic move, failing to reassure investors and triggering

another severe market plunge.
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e-companion to Kong et al.: Data Synchronization at High Frequencies ec1

Technical Proofs and Additional Results
This appendix contains technical proofs and additional results for the paper.
• Appendix EC.1 provides the proofs of theorems in the main text.
• Appendix EC.2 provides the additional simulation results.
• Appendix EC.3 provides additional empirical results.

EC.1. Proofs
Proof of Theorem 1 The proof proceeds by establishing the restricted isometry property (RIP)

for the linear operator A. We will prove the two bounds, (7) and (8), separately.
Proof of the Bound in (7)

Recall the model setting that

dXt = µtdt+σtdWt +σ∗
t dW

∗
t =: dXµ + dXc

t + dX∗
t , (EC.1)

which implies a corresponding decomposition for the increment matrix, where σt = σ0Σt.
Let V =

(∫ tj

tj−1
ΣtdWt

)
r×n

, Πµ =
(
Xµ

itj
−Xµ

itj−1

)
N×r

, Π =
(
Xc

itj
−Xc

itj−1

)
N×n

and Π∗,µ =(
X∗

itj
−X∗

itj−1

)
N×n

+ Πµ := Π∗ + Πµ. Now, we first prove that the solution for Π in (3) is equal to
Π0 with probability approaching one (conditional on {Rj ,Dik; i≤N,j ≤ n,k≤ n}). Rearranging the
second equation in (3), we have A(Π) = b−A(Π∗,µ) := b∗ and the solution is to find a matrix of rank
no larger than r so that this constraint is satisfied and ∥Π∥∗ is minimized. To this end, we first prove
that Π satisfies the nearly isometry condition for small enough δ,

PR,D

(
(1− δ)∥Π∥F ≤ ∥A(Π)∥ ≤ (1 + δ)∥Π∥F for all σ0 ∈Σ0)

≥ 1−C exp

−c2r2/

 n∑
j=1

R2
j

1/4
−C exp{−c2r2δ2Nα/L1},

which amounts to the following condition for another small δ (δ is a generic small constant that may
vary at different appearance),

PR,D

(
|∥A(Π)∥2−∥Π∥2

F

∥Π∥2
F

| ≤ δ for all σ0 ∈Σ0
)

≥ 1−C exp

−c2r2/


 n∑

j=1
R2

j

1/4

−C exp{−c2r2δ2Nα/L1}. (EC.2)

Since ∥Π∥2
F =Nα∥V ∥2

F , (EC.2) reduces to the following relative concentration condition for V .

PR,D

(
|∥A(σ0V )∥2−∥σ0V ∥2

F

∥V ∥2
F

|>Nαδ for some σ0 ∈Σ0
)

≤ C exp
{
−c2r2δ2Nα/L1

}
+C exp

−c2r2/

 n∑
j=1

R2
j

1/4
 . (EC.3)
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Step 1.1: Bounding the Denominator ∥V ∥2
F .

In the sequel, we aim to prove (EC.3). We first consider the limit of ∥V ∥2
F in the denominator

which is irrelevant to σ0. Notice that V consists of r rows of martingale differences with shrinking
intervals, by standard stochastic calculus, for k= 1, ..., r,

PR,D

∥Vk·∥2−
∫ T

0
Σtk·Σ′

tk·dt > x

√√√√ n∑
j=1

R2
j


≤ E exp

−θx
√√√√ n∑

j=1
R2

j + θ
n∑

j=1

[
(Vkj −Vk(j−1))2−

∫ tj

tj−1

Σt,k·Σ′
t,k·dt

]
≤ exp

−θx
√√√√ n∑

j=1
R2

j

E


n−1∏
j=1

e
θ

[
(Vkj−Vk(j−1))2−

∫ tj
tj−1

Σt,k·Σ′
t,k·dt

]

× EFtn−1
e

θ

[
(Vkn−Vk(n−1))2−

∫ tn

tn−1
Σt,k·Σ′

t,k·dt

]}
.

Now we compute the conditional expectation inside the unconditional expectation. By the change
of time, there exists a standard Brownian motion B so that

(Vkn−Vk(n−1))2−
∫ tn

tn−1
Σt,k·Σ′

t,k·dt=B2
<Vk>tn

tn−1
−<Vk >

tn
tn−1

,

where < Vk >b
a is the quadratic variation of Vk in the interval (a, b]. Notice that

e
θ[(Vkj−Vk(j−1))2−

∫ tj
tj−1

Σt,k·Σ′
t,k·dt]

is the end point of a submartingale for θ > 0, by Assumption 2, <
Vk >

tj
tj−1≤CRj , and hence

EFtn−1
e

θ

[
(Vkn−Vk(n−1))2−

∫ tn

tn−1
Σt,k·Σ′

t,k·dt

]
≤ Eeθ[B2

CRn
−CRn] =EeθCRn(Z2−1) ≤ e2θ2C2R2

n , (EC.4)

by Lemma 1 of Fan et al. (2012) for |θCRn| ≤ 1/4, where Z is a standard normal random variable.
Iteratively using (EC.4),

PR,D

 n∑
j=1

(Vkj −Vk(j−1))2−
∫ T

0
Σt,k·Σ′

t,k·dt > x

√√√√ n∑
j=1

R2
j


≤ exp

−θx
√√√√ n∑

j=1
R2

j + 2θ2C2
n∑

j=1
R2

j

,
which is minimized when θ= x/(4C2

√∑n
j=1R

2
j ) and the minimum is e(−x2/(8C2)). By the range of θ,

the range of x is 0<x≤C
√∑n

j=1R
2
j/Rj for all j = 1, ..., n. Therefore,

PR,D

∥V ∥2
F −

r∑
k=1

∫ T

0
Σt,k·Σ′

t,k·dt > x

√√√√ n∑
j=1

R2
j


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≤
r∑

k=1
P

 n∑
j=1

(Vkj −Vk(j−1))2−
∫ T

0
Σt,k·Σ′

t,k·dt > x

√√√√ n∑
j=1

R2
j/r


≤ rmax

k≤r
P

 n∑
j=1

(Vkj −Vk(j−1))2−
∫ T

0
Σt,k·Σ′

t,k·dt > x

√√√√ n∑
j=1

R2
j/r

 .
Similarly, we can obtain the other side

PR,D

∥V ∥2
F −

r∑
k=1

∫ T

0
Σt,k·Σ′

t,k·dt <−x

√√√√ n∑
j=1

R2
j

≤ e−x2/(8C2)+log r.

Summarizing the above two equations, we have

PR,D

|∥V ∥2
F −

r∑
k=1

∫ T

0
Σt,k·Σ′

t,k·dt|>x

√√√√ n∑
j=1

R2
j

≤ 2e−x2/(8C2)+log r. (EC.5)

We take x= cr/{2(
∑n

j=1R
2
j )1/4} for c small enough which satisfies the range condition for x because

of the assumption that
(
∑n

j=1 R2
j )3/4

maxj Rj
≥ cr

2C
. By the condition that

∫ T

0 Σt,k·Σ′
t,k·dt ≥ c and choose c

small,

PR,D

(
∥V ∥2

F ≤
cr

2

)
≤ 2 exp

−c2r2/

32C2

 n∑
j=1

R2
j

1/2

 . (EC.6)

Step 1.2: Bounding the Numerator ∥A(σ0V )∥2
F −∥σ0V ∥2

F .

Next, we consider the numerator ∥A(σ0V )∥2
F − ∥σ0V ∥2

F . To express the difference by a sum of
crossing products, we recall

dik := ♯{j; τi(l−1) ≤ tj ≤ tk−1 ≤ τil for some 1≤ l≤ ni}

to be the number of potential increments before ∆n
kV in the observed interval (τi(l−1), τil] which con-

tains tk−1. We make a convention that dik := 0 if the set is empty and the resulting sum
∑0

l=1 ∆n
k−lV =

0. We rewrite

∥A(σ0V )∥2
F −∥σ0V ∥2

F =
n∑

k=1

N∑
i=1

(σ0(i, ·)∆n
kV )(σ0(i, ·)

dik∑
l=1

∆n
k−lV ).

Recall that L1 =
∑n

k=1Rk

∑N
i=1 ∥σ0(i, ·)∥2(

∑Dik
l=1 Rk−l) log (

∑Dik
l=1 Rk−l).

PR,D

(
∥A(σ0V )∥2

F −∥σ0V ∥2
F >Nαx

)
≤ exp{−θNαx}E

n−1∏
k=1

exp

θ
N∑

i=1
(σ0(i, ·)∆n

kV )(σ0(i, ·)
dik∑
l=1

∆n
k−lV )


×EFn−1 exp

{
θ

N∑
i=1

(σ0(i, ·)∆n
nV )(σ0(i, ·)

din∑
l=1

∆n
n−lV )

}

≤ exp
{
−θNαx+Crθ2

n∑
k=1

Rk∥
N∑

i=1
σ0(i, ·)

Dik∑
l=1

∆n
k−lV σ

0(i, ·)∥2
F

}
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≤ exp
{
−θNαx+Crθ2

n∑
k=1

Rk

r∑
m=1

N∑
i=1

(σ0(i,m))2
N∑

i=1
(σ0(i, ·)

Dik∑
l=1

∆n
k−lV )2

}
≤ exp

{
−θNαx+Cr2θ2NαL1

}
, (EC.7)

for any θ > 0, where in the last step we have made use of the fact that |
∑dik

l=1 ∆n
k−lV | ≤

C
(∑Dik

l=1 Rk−l

)1/2
log
(∑Dik

l=1 Rk−l

)1/2
by Assumption 2 and the law of iterated logarithm for diffusion

paths, and the fact that given Fk−1,

N∑
i=1

(σ0(i, ·)∆n
kV )(σ0(i, ·)

dik∑
l=1

∆n
k−lV )

is an end point of a continuous martingale and hence can be represented by BTk,nN
for some stopping

time Tk,nN satisfying

Tk,nN ≤CRkN
α

N∑
i=1
∥σ0(i, ·)∥2

(
Dik∑
l=1

Rk−l

)
log
(

Din∑
l=1

Rk−l

)
.

A simple use of the optional stopping theorem for submartingales leads to the last inequality.

Step 1.3: Combining the Bounds.

Take θ = x/(2Cr2L1), the upper bound of (EC.7) is minimized with the minimum being

exp{−x2Nα/(4Cr2L1)} for any x> 0. Combining the bounds for the numerator and the denominator

(EC.6) via a union bound, we have:

PR,D

(∥A(Π)∥2
F −∥Π∥2

F

∥Π∥2
F

> δ

)
≤ PR,D

(
∥V ∥2

F ≤ cr/2
)

+P
(
|∥A(Π)∥2

F −∥Π∥2
F |>Nαδcr/2

)
≤ 2 exp

−c2r2/

 n∑
j=1

R2
j

1/2
+C exp

{
−c2δ2Nα/L1

}
, (EC.8)

where c is taken small and the first probability bound is irrelevant to σ0. (EC.8) proves the theorem

for fixed σ0.

Proof of the Bound in (8)

The proof follows a similar strategy, but the analysis is more complex due to the presence of the

idiosyncratic component Π∗. We use the decomposition ∆ = Π + Π∗.

Step 2.1: Bounding the Denominator ∥∆∥2
F .

To prove (8), we present a decomposition, ∥∆∥2
F =Nα∥V ∥2

F + ∥Π∗,µ∥2
F + 2tr(Π′Π∗,µ). The result

for ∥V ∥2
F is already given as above. To derive the concentration result for ∥Π∗∥2

F , we decompose

Π∗ = Π∗
1 + Π∗

2 :=
(∫ tj

tj−1

σ∗
tj−1

dW ∗
t

)
N×n

+
(∫ tj

tj−1

(σ∗
t −σ∗

tj−1
)dW ∗

t

)
N×n

.
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Notice that ∥Π∗
2∥2

F =
∑N

i=1
∑n

j=1

(∫ tj

tj−1
(σ∗

it−σ∗
itj−1

)dW ∗
it

)2
and

∫ tj

tj−1
(σ∗

it − σ∗
itj−1

)2dt ≤ CR2−ϵ
j . For

|θCR2−ϵ
j |< 1/4,

PR,D

|∥Π∗
2∥2

F −
N∑

i=1

n∑
j=1

∫ tj

tj−1

(
σ∗

it−σ∗
itj−1

)2
dt|>Ny

√√√√ n∑
j=1

R4−2ϵ
j


≤ N max

i
P

| n∑
j=1


(∫ tj

tj−1

(
σ∗

it−σ∗
itj−1

)
dW ∗

t

)2

−
∫ tj

tj−1

(
σ∗

it−σ∗
itj−1

)2
dt

 |
> y

√√√√ n∑
j=1

R4−2ϵ
j


≤ 2N exp

−θy
√√√√ n∑

j=1
R4−2ϵ

j + 2θ2C2
n∑

j=1
R4−2ϵ

j

 , (EC.9)

which is minimized at θ = y/(4C2
√∑n

j=1R
4−2ϵ
j ) with 2e{−y2/(8C2)+log(N)} being the minimum for

0< y <C
√∑n

j=1R
4−2ϵ
j /R2−ϵ

j for all j = 1, ..., n.
For Π∗

1, we have

∥Π∗
1∥2

F −
N∑

i=1

n∑
j=1

σ∗2
itj−1

(tj − tj−1) =
n∑

j=1
(σ∗

tj−1
)2(tj − tj−1)

N∑
i=1

[(Zi)2− 1],

where Zi’s are independent standard normal random variables. By Lemma 2.27 of Wainwright (2019),
for independent standard Gaussian random variables Z1, ...,ZN and Cθ2R2

j

2 < 1/4,

EFtj−1
exp

{
θ(σ∗

tj−1
)2(tj − tj−1)

N∑
i=1

[(Zi)2− 1]
}

≤ EFtj−1
exp

{
θ2(σ∗

tj−1
)4π2(tj − tj−1)2

2 ∥ρ∗(Z1, ...,ZN)′∥2
2

}

≤ EFtj−1
exp

{
Cθ2R2

j

2

N∑
i=1

Z2
i

}
≤ exp

{
CNR2

jθ
2

2
(
1 +Cθ2R2

j

)}

≤ exp
{

3CNR2
jθ

2

4

}
.

Again, following the steps in proving the result for ∥V ∥2
F , we have

PR,D

|∥Π∗
1∥2

F −
N∑

i=1

n∑
j=1

σ∗2
itj−1

(tj − tj−1)|> z

√√√√N n∑
j=1

R2
j


≤ 2 exp

−θz
√√√√N n∑

j=1
R2

j + 3Cθ2

4 N
n∑

j=1
R2

j

 , (EC.10)

which is minimized at θ = 2z/(3C
√
N
∑n

j=1R
2
j ) with the minimum e−z2/3C for 0 < z ≤

3
√
C
√
N
∑n

j=1R
2
j/(2
√

2Rj) for all j.
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Now we summarize the results to give the concentration result for ∆. Let IV =
Nα

∫ T

0 (
∑r

k=1 Σt,k·Σ′
t,k·)dt+

∑N
i=1
∫ T

0 (σ∗
it)2dt=:NαIV1 + IV2. For any 0<u< 1,

PR,D

(
|∥∆∥2

F − IV |>Nu for some σ0 ∈B(N,r)
)

≤ PR,D

(
Nα|∥V ∥2

F − IV1|>Nu/3
)

+PR,D

(
∥Πµ∥2

F >Nu/3
)

+PR,D (|∥Π∗∥− IV2|>Nu/3) .

For the first term, (EC.5) shows that

PR,D

(
Nα|∥V ∥2

F − IV1|>Nu/3
)
≤ 2 exp

−N2−2αu2/

72C2
n∑

j=1
R2

j


By the boundedness of the drift coefficient, for n large enough,

PR,D

(
∥Πµ∥2

F >Nu/3
)

= 0.

Taking θ = 1/(4CR2−ϵ
j ) and y = u/(3

√∑n
j=1R

4−2ϵ
j ) in (EC.9), and θ = ϵ∗

√
2CRj

and z =
√
Nu/(3

√∑n
j=1R

2
j ) for ϵ∗ small enough in (EC.10), we have for small but fixed u,

PR,D (|∥Π∗∥− IV2|>Nu/3)

≤ 2N exp
{
− u

12Cmaxj R
2−ϵ
j

+
∑n

j=1R
4−2ϵ
j

8(maxj R
2−ϵ
j )2

}

+2exp
{
− Nuϵ∗

3
√

2Cmaxj Rj

+
3N(ϵ∗)2∑n

j=1R
2
j

8(maxj Rj)2

}

≤ 2N exp
{
− u

12Cmaxj R
2−ϵ
j

}
+ 2exp

{
− Nuϵ∗

3
√

2Cmaxj Rj

}
.

Putting pieces together, for N and n large enough,

PR,D

(
|∥∆∥2

F − IV |>Nu for some σ0 ∈B(N,r)
)

≤ 2 exp

−N2−2αu2/

72C2
n∑

j=1
R2

j

+ 2N exp
{
− u

12Cmaxj R
2−ϵ
j

}

+2exp
{
− Nuϵ∗

3
√

2Cmaxj Rj

}
.

Due to Assumption 2, we further deduce that

PR,D

(
∥∆∥2

F ≤Nc/2 for some σ0 ∈B(N,r)
)

≤ 2 exp

−N2−2αc2/

128C2
n∑

j=1
R2

j

+ 2N exp
{
− c

24Cmaxj R
2−ϵ
j

}

+2exp
{
− Ncϵ∗

6
√

2Cmaxj Rj

}
.
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Step 2.2: Bounding the Numerator ∥A(∆)∥2
F −∥∆∥2

F .

So far we have given a bound for the denominator of {∥A(∆)∥2
F −∥∆∥2

F}/∥∆∥2
F . Next, we investi-

gate into the numerator, i.e., the difference ∥A(∆)∥2
F −∥∆∥2

F . We begin with the difference between
∥A(Π∗)∥2

F and ∥Π∗∥2
F . This difference can also be expressed as

∥A(Π∗)∥2
F −∥Π∗∥2

F =
n∑

k=1

N∑
i=1

Π∗(i, k)
dik∑
l=1

Π∗(i, k− l).

Recall the notation L2. Similar to the derivation in (EC.7), we have

PR,D

(
|∥A(Π∗)∥2

F −∥Π∗∥2
F |> y

√
L2

)

≤ exp
{
−θy

√
L2

}
E

n−1∏
k=1

exp

θ
N∑

i=1
Π∗(i, k)

dik∑
l=1

Π∗(i, k− l)


×EFn−1 exp

{
θ

N∑
i=1

Π∗(i, n)
din∑
l=1

Π∗(i, n− l)
}

≤ exp
{
−θy

√
L2 +Cθ2L2

}
, (EC.11)

for any θ > 0 and where in the last step, again, we have made use of the optional stopping theo-
rem for submartingales and the Lévy representation theorem for continuous martingales. Take θ =
y/(2C

√
L2), the upper bound of (EC.11) is minimized at e−y2/(4C) for any y > 0.

Lastly, we consider the difference between ∥A(Πµ)∥2
F and ∥Πµ∥2

F . By the local boundedness of µt

in Assumption 2, we soon have

|∥A(Πµ)∥2
F −∥Πµ∥2

F | ≤C
N∑

i=1

n∑
k=1

Rk

Dik∑
l=1

Rk−l = o(N),

by Assumption 1. This shows that

PR,D

(
|∥A(Πµ)∥2

F −∥Πµ∥2
F |>Nϵ/3

)
= 0,

for large enough N and n. Taking

x= ϵN1−α

3 , y = ϵN

3
√
L2

,

we have

PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F |>Nϵ

)
≤ 2 exp

{
− N2−αϵ2

36Cr2L1

}
+ 2exp

{
− N2ϵ2

36CL2

}
.

Step 2.3: Combining the Bounds.
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Finally, combining the probability bounds for the numerator and denominator of ∥A(∆)∥2
F −∥∆∥2

F
∥∆∥2

F

leads to the desired result in (8):

PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F

∥∆∥2
F

|> δ

)
≤ PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F |>

cNδ

2

)
+PR,D

(
∥∆∥2

F ≤
Nc

2

)
≤ 2 exp

{
−N

2−αc2δ2

144Cr2L1

}
+ 2exp

{
− N

2c2δ2

144CL2

}

+2exp

−c2N2−2α/

128C2
n∑

j=1
R2

j

+ 2N exp
{
− c

24Cmaxj R
2−ϵ
j

}

+2exp
{
− Ncϵ∗

6
√

2Cmaxj Rj

}
. (EC.12)

□

We next prove Theorem 2 that says the upper bounds in (EC.8) and (EC.12) hold uniformly in
σ0 ∈B(N,r).

Proof of Theorem 2 First, we recall that U is an arbitrary subspace of N × n matrices with
dimension r. Without loss of generality, we assume that ∥Π∥2

F ≤ 1 and let M be the maximum of
A(Π) for Π ∈ U . Theorem 1 demonstrates that (7) holds for each Q, and thus (1 − δ/2)∥Q∥F ≤

∥A(Q)∥ ≤ (1 + δ/2)∥Q∥F for large enough N and n (replace δ in (7) by δ/2). Then by the triangular
inequality,

∥A(Π)∥ ≤ ∥A(Q)∥+ ∥A(Π−Q)∥ ≤ 1 + δ/2 +Mδ/4≤ 1 + δ,

where we noticed that M ≤ 1 + δ due to M ≤ 1 + δ/2 +Mδ/4, and

∥A(Π)∥ ≥ ∥A(Q)∥−∥A(Π−Q)∥ ≥ 1− δ/2− (1 + δ)δ/4≥ 1− δ.

This proves that for any δ ∈ (0,1), for N and n large enough,

PR,D

(
|∥A(Π)∥2

F −∥Π∥2
F

∥Π∥2
F

|> δ/2 for some σ0 ∈U
)

≤ 2 exp

−c2r2/

 n∑
j=1

R2
j

1/2
+C

(24
δ

)r

exp{−c2δ2Nα/L1}. (EC.13)

Notice that the term ( 24
δ

)r is only multiplied to the second term in the upper bound of Theorem 1
because the first term in the bound is irrelevant to σ0. By Lemma 4.4 and equation (4.17) of Recht
et al. (2010),

sup
σ0∈{U ;ρ(U,Ui)≤ϵ/2}

|∥A(Π)∥F −∥Π∥F

∥Π∥F

| ≤ δ′ := δ/2 + (∥A∥+ 1)ϵ. (EC.14)
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To make δ′ < δ, we should have ∥A∥= λ1/2
max(AA′)≤ δ/(2ϵ)− 1 where AA′ is a diagonal matrix. In

the subsequent, we choose ϵ= (δ/4)(
√
Nn/p+ 1)−1. By the definition of A and the Assumption on

∥A∥, we have

PR,D

(
∥A∥> δ

2ϵ − 1
)
≤ PR,D

(
λ1/2

max(AA′)> 2
√
Nn/n∗ + 1

)
≤C exp{−γNn}. (EC.15)

Combining (EC.14) and (EC.15), we have

PR,D

(
sup

σ0∈{U ;ρ(U,Ui)≤ϵ/2}
|∥A(Π)∥F −∥Π∥F

∥Π∥F

∥> δ

)
≤C exp{−γNn}.

By (EC.13) and the covering number of B(N,r),

PR,D

(
|∥A(Π)∥2

F −∥Π∥2
F

∥Π∥2
F

|> δ/2, for some σ0 ∈U
)

≤ 2
(2C0

ϵ

)r(N−r)(24
δ

)r

exp
{
−c2δ2Nα/L1

}
+ 2exp

−c2r2/

 n∑
j=1

R2
j

1/2


≤ C exp{−c2δ2Nα/L1}+ 2exp

−c2r2/
n∑

j=1
R2

j

 ,
for c small enough and C large enough which depend on δ and may change across lines, where in the
last step, we have made use of the condition that

r(N − r) log

√Nn

n∗ + 1

= o

{
Nα

L1

}
.

This proves (9).
Next, we prove the uniqueness. Suppose that there is another matrix Π1 of rank at most r so that
A(Π1) = b or A(Π1) = b−A(Π∗) and Π0 ̸= Π1. Then Π1 −Π0 is a nonzero matrix of rank at most
2r and A(Π1 − Π0) = 0. However, 0 = ∥A(Π1 − Π0)∥ ≥ (1− δ)∥Π1 − Π0∥F > 0, where δ implicitly
depends on 2r here. This contradiction shows the uniqueness of Π.

Similar to the proof of (10), due to

r(N − r) log
√
Nn/n∗ + 1 = o(N2−α/L1)

we have

PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F

∥∆∥2
F

|> δ for some σ0 ∈B(N,r)
)

≤ PR,D

(
|∥A(∆)∥2

F −∥∆∥2
F |>

cNδ

2 for some σ0 ∈B(N,r)
)

+PR,D

(
∥∆∥2

F ≤
Nc

2

)
≤ 2 exp

{
−N

2−αc2δ2

144Cr2L1

}
+ 2exp

{
− N

2c2δ2

144CL2

}

+2exp

−c2N2−2α/

128C2
n∑

j=1
R2

j

+ 2N exp
{
− c

24Cmaxj R
2−ϵ
j

}

+2exp
{
− Ncϵ∗

6
√

2Cmaxj Rj

}
.
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Let ∆1 be another solution of (3), similarly, we have

0 = ∥A(∆1)−A(∆0)∥2 ≥ (1− δ)∥∆1−∆0∥2
F > 0.

This proves the uniqueness of ∆ solving (3).

□

Proof of Theorem 3 Let (Π̂∗, ∆̂∗) be a linear combination of (Π̂, ∆̂) and (Π̂0, ∆̂0), i.e., (Π̂∗, ∆̂∗) =
δ
β
(Π̂, ∆̂) + (1 − δ

β
)(Π̂0, ∆̂0) for β > δ. Then we have ∥(Π̂∗, ∆̂∗) − (Π̂0, ∆̂0)∥F = δ and ∥(Π̂, ∆̂) −

(Π̂0, ∆̂0)∥F = β. By the convexity of the function Gn(Π,∆), we have

δ

β
Gn(Π̂, ∆̂) + (1− δ

β
)Gn(Π̂0, ∆̂0)≥Gn(Π̂∗, ∆̂∗).

This together with (12) yields

δ

β
(Gn(Π̂, ∆̂)−Gn(Π̂0, ∆̂0)) ≥ Gn(Π̂∗, ∆̂∗)−Gn(Π̂0, ∆̂0)

≥ Gn0(Π̂∗, ∆̂∗)−Gn0(Π̂0, ∆̂0)− 2NaNn

≥ c(1 +λ)(∥Π̂∗− Π̂0∥2
F + ∥∆̂∗− ∆̂0∥)− 2NaNn

= c(1 +λ)δ2− 2NaNn, (EC.16)

for some c > 0 with probability approaching one, where in the last step we have made use of Theorem

4.2 in Zhang and Zhang (2016). The inequality (EC.16) demonstrates that

0≥ δ

β

[
Gn(Π̂, ∆̂)−Gn(Π̂0, ∆̂0)

]
≥ c(1 +λ)δ2− 2NaNn.

This shows that Gn(Π,∆) can not be minimized outside a δ neighborhood of (Π̂0, ∆̂0) when δ >√
cNaNn

1+λ
, and hence ∥Π̂− Π̂0∥F =Op

(√
NaNn

1+λ

)
and ∥∆̂− ∆̂0∥F =Op

(√
NaNn

1+λ

)
.

□

Proof of Theorem 4 The proof relies on a standard error decomposition. By adding and subtract-

ing the oracle estimators ∆̂0 and Π̂0, we can write:

∆̂−∆0 = ∆̂− ∆̂0 + ∆̂0−∆0, Π̂−Π0 = Π̂− Π̂0 + Π̂0−Π0.

Applying the triangle inequality to the norms of these expressions, the results of Theorem 4 follow

directly from the bounds provided in Theorem 3 and the definitions of the oracle estimators ∆̂0 and

Π̂0.

□
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Proof of Theorem 5 The proof strategy is to decompose the total error into two components: the
error of the de-biased estimator relative to the initial estimator, and the error of the initial estimator
itself, which is bounded by Theorem 3. We begin with the following decompositions:

∆̃−∆0 = ∆̂− ∆̂0 +
[
(∆̃− ∆̂) + (∆̂0−∆0)

]
, (EC.17)

Π̃−Π0 = Π̂− Π̂0 +
[
(Π̃− Π̂) + (Π̂0−Π0)

]
. (EC.18)

We will analyze the second term on the right-hand side for both cases. Let Un and Vn be the matrices
of left and right singular vectors of ∆̂, respectively. By the SIN(θ) theorem and Theorem 3,

∥Un−U∗∥/
√
N + ∥Vn−V∗∥/

√
N =Op

(√
aNn

1 +λ

)
. (EC.19)

Let Db be the difference between the matrices of the singular values of ∆̃ and ∆̂, then we have by
(EC.19)

∥∆̃− ∆̂ + ∆̂0−∆0∥= ∥UnDbV
′

n−U∗DbV
′

∗∥=OP

∥Db∥

√
NaNn

1 +λ

 .
This together with (EC.17) and Theorem 3 proves the results for ∥∆̃−∆0∥. For the closeness in the
Frobenius norm, the steps are the same but with the operator norm replaced by the Frobenius norm.

The proofs for Π̃ are similar to that for ∆̃ except for noticing that the difference between
the matrices of the singular values of Π̃ and Π̂ has J nonzero singular values all equal to
λ(1 + 1/µ), while the difference between the matrices of the singular values of Π̂0 and Π0

has the nonzero singular values being (−λ(1 + 1/µ), ...,−λ(1 + 1/µ)︸ ︷︷ ︸
J

,−λ∗
J+1, ...,−λ∗

r) when J < r,

being (−λ(1 + 1/µ), ...,−λ(1 + 1/µ)︸ ︷︷ ︸
r

, λ∗
r+1 − λ(1 + 1/µ), ..., λ∗

J − λ(1 + 1/µ)) when J > r, and being

(−λ(1 + 1/µ), ...,−λ(1 + 1/µ)︸ ︷︷ ︸
r

) when J = r. Then by the Wyle theorem and the SIN(θ) theorem,

∥Π̃− Π̂ + Π̂0−Π0∥/
√
N

= Op

{[
λ

(
1 + 1

µ

)
+ 1
]√

aNn

1 +λ
+ λ∗

J+1I(J < r) +λ∗
r+1I(J > r) + 0I(J = r)√

N

}
,

and replacing the operator norm by the Frobenius norm,

∥Π̃− Π̂ + Π̂0−Π0∥F/
√
N

= Op


[
λ

(
1 + 1

µ

)
+ 1
]√

aNn

1 +λ
+

r∑
l=J+1

λ∗
l I(J < r) +

J∑
l=r+1

λ∗
r+1I(J > r) + 0I(J = r)

√
N

 .
This together with (EC.18) and Theorem 3 proves the results for Π̃−Π0.

□



ec12 e-companion to Kong et al.: Data Synchronization at High Frequencies

Figure EC.1 Relative error as a function of tuning parameters µ, λ, and η.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

R
e

la
ti
v
e

 e
rr

o
r 

(R
E

)

10-3 Relative error vs. 

N=20, 1min

N=50, 1min

N=120, 1min

N=100, 0.5min

N=100, 1min

N=100, 5min

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10-3

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti
v
e

 e
rr

o
r 

(R
E

)

10-3 Relative error vs. 

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1

2

3

4

5

6

7

8

9

R
e

la
ti
v
e

 e
rr

o
r 

(R
E

)

10-4 Relative error vs. 

Note. The relative error is calculated according to (6). The vertical dotted line in each panel indicates the parameter
value that minimizes the error.

EC.2. Additional Simulation
In this subsection, we show the results of another tuning parameter selection in the main text, based
on the relative error, as in Figure EC.1.

The analysis based on relative errors yields conclusions that are largely consistent with those
derived from absolute errors. This consistency across different error metrics further underscores the
robustness of our findings and the stability of the method with respect to its tuning parameters.

EC.3. Additional Empirical Analysis
EC.3.1. Factors

In this subsection, we further evaluate the economic implications of different imputation methods by
constructing and analyzing a high-frequency return factor. Specifically, we extract the first principal
component (the “market factor”) from the imputed intraday return matrices and compute its cumu-
lative performance over time, excluding overnight returns. Figure EC.2 plots the cumulative return
of this factor, derived from data imputed by four different methods (NN, PI, LI, RT), across three
sampling frequencies. As expected, the first latent factor captures a significant portion of the total
variation under all imputation methods.

The results for the 1-minute frequency reveal substantial performance discrepancies among the
methods. The factor constructed from our NN-imputed data yields the highest cumulative return
over the 15-year sample period. In contrast, the factor derived from the PI method performs the
worst. The performance gap is economically significant: the cumulative return of the top-performing
factor (NN) exceeds that of the worst-performing factor (PI) by more than 30%.

At lower frequencies (5-minute and 10-minute), the performance gap between the NN, PI, and
LI methods narrows considerably. This is consistent with our earlier findings that the distorting
effects of price staleness are less severe in lower-frequency data. However, the factor derived from the
RT method continues to exhibit markedly inferior performance. This is attributable to the inherent
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Figure EC.2 Normalized cumulative factor returns for intraday returns.
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drawback of the RT scheme, which discards a vast amount of valid price information by subsampling
to a sparse, synchronized time grid, thereby compromising the quality of the extracted factor.

EC.3.2. Additional Beta Results
Building on our initial analysis using a 15-minute estimation window, we now conduct a series
of robustness checks by re-estimating the spot betas for Mettler-Toledo International (MTD) and
Verizon Communications (VZ) using 5-minute (Figures EC.3 and EC.4) and 10-minute (Figures
EC.5 and EC.6) windows. This multi-window approach allows us to directly examine the practical
implications of the bias-variance trade-off discussed in Bollerslev et al. (2024) and to verify the
stability of our core conclusions. The findings strongly reaffirm our initial results and provide deeper
insights into the properties of the estimation methods.

Our initial analysis revealed that the “previous-tick” method, which generates stale prices, produces
artificial zero-beta estimates. The robustness checks demonstrate that this is not an idiosyncratic
issue tied to a 15-minute window but a fundamental flaw of the method. Comparing the “price
staleness” plots across windows (Figures EC.3, EC.4, and the original 15-minute plot) reveals that the
problem of zero betas for the less-liquid MTD becomes more severe as the estimation window shrinks.
In the 5-minute window (Figure EC.3), there are visibly more instances where the beta estimate
collapses to zero than in the 10- or 15-minute windows. This is perfectly logical: the probability of
a stock not trading is higher over a 5-minute interval than a 15-minute one. This confirms that the
zero-beta phenomenon is a direct, mechanical consequence of price staleness, as first explored in early
literature by Scholes and Williams (1977). Across all window sizes, the statistical inference from the
price-staleness method remains unreliable.

As expected from theory, the spot beta estimates become smoother as the window size k increases.
The 5-minute beta paths (Figure EC.4) are visibly “noisier” and have wider confidence intervals,
reflecting higher variance from using fewer observations. The 10-minute paths (Figure EC.5) are
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Figure EC.3 Spot beta for the presence of price staleness.
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Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 5-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

smoother, and the original 15-minute paths are the smoothest of all, reflecting lower estimation
variance. This is the classic bias-variance trade-off in action. Despite the differences in variance, the
underlying economic narrative remains remarkably consistent across all windows for the our method.

The consistency of our findings across different temporal resolutions greatly strengthens our con-
clusions about intraday risk dynamics, a topic of growing interest (e.g., Andersen et al. 2021). The
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Figure EC.4 Spot beta for the absence of price staleness.

Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 5-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

general intraday shapes of the beta paths, especially on the most volatile days, are preserved across
the 5, 10, and 15-minute horizons. This suggests that the primary intraday risk fluctuations for these
stocks occur at a frequency that is well-captured even by a 15-minute window. A shorter window
like 5 minutes provides a more granular view but confirms the same broader patterns, increasing our
confidence that these are genuine features of the market and not artifacts of a specific window choice.
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Figure EC.5 Spot beta for the presence of price staleness.
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Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 10-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

This analysis provides practical guidance. For assets where theory or observation suggests very

high-frequency changes in risk exposure, a smaller k (like 5 minutes) might be preferable, despite

higher variance. For assets with smoother risk profiles or for analyses focused on broader intraday

trends, a larger k (like 15 minutes) can provide a clearer signal by reducing noise. The fact that
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Figure EC.6 Spot beta for the absence of price staleness.
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Note. This figure plots the estimated spot betas of Mettler-Toledo International (MTD) and Verizon Communications
(VZ) against the SPY. The betas are estimated using 1-minute price data over 10-minute rolling windows, along with
their corresponding 90% confidence intervals. The analysis covers the two-week period of high market volatility from
March 5, 2020, to March 18, 2020. The p-value reported in each panel corresponds to a test of the functional null
hypothesis that the entire spot beta process for a given day is equal to zero (H0 : βt = 0 for all t).

our conclusions hold across this range indicates the robustness of both the underlying economic
phenomena and our methodology itself.

The comprehensive robustness analysis confirms and strengthens our initial findings. We have
shown that the flaws of the “price staleness” method are systematic, while the robust estimation
procedure provides stable and economically meaningful results that are not sensitive to the specific
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choice of the estimation window. This demonstrates the power and reliability of the framework
proposed by Bollerslev et al. (2024), providing a credible tool for uncovering the rich, dynamic nature
of systematic risk at high frequencies, even under the most extreme market conditions.


