
1

DREAM: Domain-agnostic Reverse Engineering
Attributes of Black-box Model

Rongqing Li ID , Jiaqi Yu ID , Changsheng Li ID , Member, IEEE, Wenhan Luo ID , Senior Member, IEEE,

Ye Yuan ID , Member, IEEE, and Guoren Wang ID

Abstract—Deep learning models are usually black boxes when
deployed on machine learning platforms. Prior works have shown
that the attributes (e.g., the number of convolutional layers) of
a target black-box model can be exposed through a sequence of
queries. There is a crucial limitation: these works assume the
training dataset of the target model is known beforehand and
leverage this dataset for model attribute attack. However, it is
difficult to access the training dataset of the target black-box model
in reality. Therefore, whether the attributes of a target black-box
model could be still revealed in this case is doubtful. In this paper,
we investigate a new problem of black-box reverse engineering,
without requiring the availability of the target model’s training
dataset. We put forward a general and principled framework
DREAM, by casting this problem as out-of-distribution (OOD)
generalization. In this way, we can learn a domain-agnostic meta-
model to infer the attributes of the target black-box model with
unknown training data. This makes our method one of the kinds
that can gracefully apply to an arbitrary domain for model
attribute reverse engineering with strong generalization ability.
Extensive experimental results demonstrate the superiority of our
proposed method over the baselines.

Index Terms—Machine learning, reverse engineering, OOD
generalization

I. INTRODUCTION

IN recent years, machine learning technology has been
widely used in in many tasks such as NLP and areas such

as image classification [1]–[4], natural language processing
[5]–[8], and speech recognition [9], [10]. However, existing
machine learning frameworks are complicated, which requires
substantial computational resources and efforts for users to train
and deploy, especially for the non-expert ones. As a result, with
the benefits of usability, and cost efficiency, Machine Learning
as a Service (MLaaS) has become popular. MLaaS deploys
well-trained machine learning models on cloud platforms,
allowing users to interact with these models via the provided
APIs, making advanced ML capabilities both accessible and
affordable.

Generally speaking, the machine learning service deployed
on the cloud platform is a black box, where users can only
obtain outputs by submitting inputs to the model. The model’s

Rongqing Li, Changsheng Li, Ye Yuan, and Guoren Wang are with the
School of Computer Science and Technology, Beijing Institute of Technology,
Beijing 100081, China (e-mail: lirongqing99@gmail.com; lcs@bit.edu.cn;
yuan-ye@bit.edu.cn; wanggrbit@126.com).

Jiaqi Yu is with the Kuaishou Technology, Beijing, China (e-mail: yuji-
aqi03@kuaishou.com).

Wenhan Luo is with the Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong (e-mail: whluo@ust.hk).

Changsheng Li is the corresponding author.

attributes such as architecture, training set, and training method,
are concealed by the provider. However, a question remains:
is the deployment safe? Once the attributes of a model are
revealed by an adversary, a black-box model becomes a
white-box model, introducing significant security threats. On
one hand, white-box models are more vulnerable to various
types of attacks compared to black-box models such as
adversary example attacks [11]–[15] and model extraction
attacks [16]–[19]. Specifically, adversaries train adversarial
examples on a surrogate model with the intention of transferring
these examples to the target model. Research shows that
the transferability of adversarial samples increases if the the
surrogate architecture is similar to the target model [20]. In this
context, model reverse engineering becomes a powerful tool
for adversaries to select a surrogate model. In addition, model
extraction attacks aims to extract the functionality of a target
black-box model in a surrogate model. Research shows that
better extraction performance is achieved when the surrogate
model closely resembles the target black-box model [21].
Therefore, model reverse engineering can provide significant
insights for selecting the architecture of the surrogate model
for the extraction. On the other hand, intellectual property
is jeopardized. After adversaries reveal the attributes of the
model, they may replicate a model with similar capabilities for
commercial purposes, potentially causing indirect economic
losses.

The work in [22] delves into model reverse engineering
to reveal model attributes, as depicted in the left of Fig. 1.
They first construct a large set of white-box models which
are trained based on the same datasets as the target black-box
model, e.g., the MNIST hand-written dataset [23]. Then, the
outputs of white-box models are obtained through a sequence
of input queries. Finally, a meta-model is trained to learn
a mapping between model outputs and model attributes. For
inference, outputs of the target black-box model are fed into the
meta-model to predict model attributes. The promising results
demonstrate the feasibility of model reverse engineering.

However, a crucial limitation in [22] is that they assume
the dataset used for training the target model to be known in
advance, and leverage this dataset for meta-model learning.

In most application cases, the training data of a target black-
box model is unknown. When the distribution of training data
of the target black-box model is inconsistent with that of the
set of constructed white-box models, the meta-model is usually
unable to generalize well on the target black-box model.

To verify this point, we train three black-box models with the

0000–0000/00$00.00 © 2021 IEEE

ar
X

iv
:2

41
2.

05
84

2v
1 

 [
cs

.L
G

] 
 8

 D
ec

 2
02

4

https://orcid.org/0009-0001-9134-6837
https://orcid.org/0009-0005-8189-8477
https://orcid.org/0000-0001-9789-7632
https://orcid.org/0000-0002-5697-4168
https://orcid.org/0000-0002-0247-9866
https://orcid.org/0000-0002-0181-8379


2

White boxesMNIST Meta
(Outputs, label)

train

Black box

Training

query

outputs
Trained MetaMNIST

Inference

Attributes

(Multi-domain outputs, label)

train

Training

query

outputs

Black-boxUnknown dataset

Inference

Other digit datasets White boxs 

MDGAN

Trained
MDGAN

Previous work DREAM framework

construct construct

construct

Meta

Trained Meta
construct

Attributes

Figure 1. Previous work (left) assumes the dataset used to train the target black-box model is known beforehand, and requires to use the same dataset to
train white-box models. Our DREAM framework (right) relaxes the condition that training data of the target black-box model is no longer required to be
available. Our idea is to cast the task of the black-box model attribute inference into an OOD learning problem.

Random Sketch Photo Cartoon
Training set of black box

0

20

40

60

80

A
ve

ra
ge

d 
A

cc
ur

ac
y

Figure 2. The performance of KENNEN [22] on black-box model trained on
Cartoon, Sketch and Photo dataset [24]. The training set of white-box models
is Cartoon.

same architecture on three different datasets, Photo, Cartoon
and Sketch [24], respectively. Subsequently, we employ the
approach outlined in [22] to train a meta-model using the
white-box models trained specifically on the Cartoon dataset
Then, we utilize the trained meta-model to infer attributes of
the three black-box models.

The results are shown in Fig. 2. The y-axis represents the
average accuracy of reverse engineering for each model attribute
(e.g., activation function, optimizer, etc.). When the training
dataset of black-box models and white-box models are the same
(i.e., Cartoon), the performance reaches about 80%. Otherwise,
it sharply drops to about 40% — close to random guess. This
substantial gap underscores the non-trivial nature of investigate
model reverse engineering, when the training dataset for the
target black-box model is unavailable.

In this paper, we investigate the problem of reverse engi-
neering the attributes of black-box models without requiring
access to the target model’s training data. When the same input
queries are fed to models with the same architecture but trained

on different datasets, the output distributions typically differ.
Therefore, a key point to our problem setting is bridging the
gap between the output distributions of white-box and target
black-box models, given the absence of the target model’s
training data. An ideal meta-classifier should be well trained
based on the outputs of white-box models, and predict well
on outputs of the target black-box model, even if white-box
and black-box models are trained on different types of data.

In light of this, we cast such a problem as an OOD gener-
alization problem, and propose a novel framework DREAM:
Domain-agnostic Reverse Engineering the Attributes of black-
box Model, as shown in the right of Fig. 1. OOD generalization
learning has been widely studied in recent years in the field of
computer vision, and shows powerful performance [25]–[27].
Its goal is to learn a model on data from one or multiple
domains and to generalize well on data from another domain
that has not been seen during training. One kind of mainstream
OOD learning approach is to extract domain-invariant features
from data of multiple different domains, and utilize the domain-
invariant features for downstream tasks [28]–[31]. Returning to
our problem, black-box models deployed on cloud platforms
usually provide the label categories of their outputs. Therefore,
we can collect data of different styles according to the model’s
label space as OOD dataset. This overlap ensures that the
outputs of the white-box models include similar information
with those of the black-box model to some extent. Numerous
white-box models are then trained on this OOD dataset, and
we obtain outputs by querying these models. These outputs
are used as source domains to achieve OOD generalization for
reverse engineering black-box models.

Since the data we concentrate on is related to the outputs
of models, e.g., probability values, how to design an effective
OOD generalization method over this type of data has not
been explored. To this end, we introduce a multi-discriminator
generative adversarial network (MDGAN) to learn domain-
invariant features from the outputs of white-box models trained
on multi-domain outputs. Based on these learned domain-



3

invariant features, we learn a domain-agnostic reverse meta-
model1, which is capable of accurately inferring the attributes
of the target black-box model trained on unknown data.

Our contributions are summarized as follows: 1) We provide
the first study on the problem of domain-agnostic reverse
engineering the attributes of black-box models and cast it as
an OOD generalization problem; 2) We propose a generalized
framework, DREAM, to address the problem of inferring the
attributes of a black-box model with an unknown training
dataset; 3) We constitute the first attempt to explore learning
domain-invariant features from probability outputs, as opposed
to traditional image; 4) We conduct extensive experiments to
demonstrate the effectiveness of our method.

II. RELATED WORKS

Reverse Engineering of Model Attributes. Its goal is
to reveal attribute values of a target model, such as model
structure, optimization method, hyperparameters, etc. Current
research efforts focus on two aspects, hardware [32]–[34] and
software [22], [35]–[37]. The hardware-based methods utilize
information leaks from side-channel [32], [33] or unencrypted
PCIe buses [34] to invert the structure of deep neural networks.
Software-based methods reveal model attributes by machine
learning. [35] steals the trade-off weight of the loss function
and the regularization term. They derive over-determined linear
equations and solve the hyperparameters by the least-square
method. [37] theoretically proves the weight and bias can be
reversed in linear network with ReLU activation. [38] infers
hyperparamters and loss functions of generative models through
the generated images. KENNEN [22] prepares a set of white-
box models and then trains a meta-model to build a mapping
between model outputs and their attributes. It is the most
related work to ours. However, a significant difference is that
KENNEN [22] requires the data used to train the target black-
box model to be given beforehand. Our method relaxes this
condition, i.e., we no longer require the training data of the
target model to be available, which is a more practical problem.

Model Functionality Extraction. It aims to train a clone
model that has similar model functionality to that of the
target model. To achieve this goal, many works have been
proposed in recent years [16], [18], [19], [39]–[42]. [39] uses
an alternative dataset collected from the Internet to query the
target model. [40] assumes part of the dataset is known and then
presents a dataset augmentation method to construct the dataset
for querying the target model. Moreover, data-free extraction
methods [40]–[43] query a target model through data generated
by a generator, without any knowledge about the training data
distribution. Different from the methods mentioned above, our
goal is to infer the attributes of a black-box model, rather than
stealing the model function.

Membership Inference. Its goal is to determine whether
a sample belongs to the training set of a model [44]–[51].
Although inferring model attribute is different from the task
of membership inference, the technique in [22] is similar

1The meta-model is used to infer the attributes of a model, thereby "reverse-
engineering" a black-box model into a white-box model. Hence, we name it
the "reverse meta-model".

to those of membership inference attack. However, as stated
aforementioned, when the domain of training data of the target
black-box model is inconsistent with that of the set of white-
box models, the method is usually unable to generalize well
because of the OOD problem.

Out-of-distribution Generalization. Machine learning mod-
els often suffer from performance degradation during testing
when the distribution of the training data (i.e., the source
domains) differs from the test data distribution (i.e., the target
domain). This is an out-of-distribution (OOD) problem. [25].
One straightforward approach is to leverage data from target
domain to adapt the model trained on the source domains.
This method is known as OOD adaptation, which has been
successfully applied in image and video related tasks [52]–[55].
However, in many application scenarios, data from the target
domain is difficult to obtain. Therefore, OOD generalization
methods are introduced [56]–[60], aiming to train a model
by utilizing data from several source domains so that it can
generalize well to any unseen OOD target domain. Existing
OOD generalization methods mainly fall into three categories:
invariant learning [28]–[30], [61], [62], causal learning [63]–
[66], and stable learning [67]–[70]. Invariant learning seeks
to minimize the differences among source domains to learn
domain-invariant representations. Causal and stable learning
aim to identify causal features linked to ground-truth labels
from the data and filter out features unrelated to the labels. The
former ensures the invariance of existing causal features, while
the latter emphasizes effective features strongly related to labels
by reweighting attention. Since the above methods primarily
focus on images or videos, the design of an effective OOD
learning method for attribute inference of black-box models
has not been explored so far.

III. PROPOSED METHODS

In this section, we first introduce techinical background,
threat model and problem formulation in Sect. III-A. Next,
we describe the overall framework of our proposed DREAM
in Sect. III-B. Subsequently, we delve into each components
of DREAM in Sect. III-C to III-E. Finally, we introduce the
training procedure in Sect. III-F.

A. Preliminaries

We first introduce the background of the KENNEN method.
Based on KENNEN, we present the threat model of the problem
addressed in this paper. Finally, we introduce the problem
formulation.

Background of KENNEN [22]. Given a black-box model
B, model attribute reverse engineering in [22] aims to build a
meta-model Φ : O → Y , where O = B(Q) is the outputs by
querying the black-box model with queries Q, and A is the set
of model attributes including model architecture, optimizer, and
training hyperparameters, etc. Concretely, they first construct a
large set of white-box models F containing different attributes
combinations and train these white-box models based on the
same training data D as that of the target black-box model.
Then outputs O are obtained by querying these white-box
models with a sequence of input image queries Q. Finally, they



4

Generator Domain-
agnostic

Meta-model

𝑶𝟑

Act
Drop
Pool
Ks

Conv
Fc

Opt
Bs
BN

prob

D

cartoon

photo

sketch

Cartoon models 

Photo models 

Sketch models

train

Queries
𝑶𝟐

𝑶𝟏

Fake 
or 

Real𝒛𝟏

𝒛𝟐

𝒛𝟑

Discriminator

fake: 𝒛𝟐 & 𝒛𝟑
real: 𝒛𝟏

real
fake

Fake 
or 

Real

Fake 
or 

Real

Generator

Generator

sample

Dataset Modelset

input Discriminator

fake: 𝒛𝟏 & 𝒛𝟑
real: 𝒛𝟐

Discriminator

fake: 𝒛𝟏 & 𝒛𝟐
real: 𝒛𝟑

Figure 3. An illustration of our DREAM framework. In the left part, we train a large number of white-box models using datasets collected from different styles
(cartoon, photo, and sketch) to construct modelset. Models in the modelset consist of numerous combinations of attributes. Then, we sample queries from each
style of dataset and input them into each white-box model to obtain the multi-domain model’s outputs O. In the right part, we propose a multi-discriminator
GAN to learn domain-invariant features from the outputs of the white-box models. After that, the domain-agnostic reverse meta-model is trained based on
these domain-invariant features. During the inference stage, queries are sent to the black-box model to obtain its outputs. Then, the Generator produces
domain-invariant features, which are input to the domain-agnostic meta-model to infer the attributes of the black-box model.

train a meta-model Φ to build mappings from outputs O to
model attributes Y = {yvk |k = 1...K, v = 1...Nk}, where the
subscript k represents the type of attributes (e.g., Activation,
Dropout), while the superscript v represents the value of the
attributes (e.g., ReLU/Tanh for Activation, Yes/No for Dropout).
At the inference phase, the meta-model takes outputs from the
target model as input and predicts the corresponding attributes.

Threat Model. Following KENNEN, we assume that
attackers are permitted to query the model and can only access
the probability outputs of the model, while attributes such as
model structures and optimizers are unable to access. However,
KENNEN makes a strong assumption that the training dataset of
the model is known. In most cases, obtaining the training dataset
is typically challenging. Therefore, we relax this assumption
and consider a scenario where only the label space of the black-
box model are known. This is a reasonable assumption because
a black-box model deployed on the cloud platform typically
provides information about its functionality and the categories it
can output. Consequently, we can collect data with overlapping
label spaces with the black-box target model. This overlap
ensures that the outputs of the white-box models include similar
information with those of the black-box model to some extent,
thereby assisting in learning informative invariant features for
achieving attributes reverse engineering.

Problem Formulation. As aforementioned, there is a strict
constraint in [22] that they assume the training dataset D of the
target model to be given in advance, and leverage model outputs
O, where the models are trained on D for the learning of meta-
model Φ. It is difficult to access the training data of a target
black-box model, which significantly limits the applications
of [22]. To mitigate this problem, we provide a new problem
setting by relaxing the above constraint, i.e., we no longer
require the training data D of the target black-box model to
be available, but only the label space of the black-box model.
Consequently, we cast this problem as an OOD generalization
problem. To address this, we first collect data {Di}Mi=1 from
M different sources to train the white-box models. Although

these data may contain different styles, all of them include an
overlapping label space with the target black-box model. Then,
the outputs obtained from the white-box models are divided
into M source domains according to the source of the training
data for each model. In addition, the outputs from black-box
model are the target domain. Our goal is to leverage outputs
from source domains to train a domain-agnostic meta model Φ
that can well generalize to the outputs target domain, thereby
enabling it to predict attributes for the target black-box model
B.

B. DREAM Framework

To perform domain-agnostic black-box model attribute
reverse engineering, we cast this problem into an OOD gen-
eralization learning problem, and propose a novel framework
DREAM, as shown in Fig. 3. Our DREAM framework consists
of two parts:

In the left part of Fig. 3, we employ datasets from different
domains to train numerous white-box models with diverse
attributes, thereby constructing modelsets. (please refer to Sect.
IV-A for more details). Next, we sample queries as input to
these models. For each domain, we sample an equal number of
images from the corresponding dataset and concatenate them as
a batch of queries. These queries are sent to models belonging
to the modelsets. The resulting multi-domain outputs {Oi}Mi=1

are fed into the subsequent module of our DREAM framework.
To learn domain-invariant features, we introduce a MDGAN, as
shown in the right part of Fig. 3. MDGAN consists of multiple
discriminators corresponding to different domains and one
generator across multiple domains. The generator is designed
to embed model outputs from different domains as features,
while each discriminator strives to align the learned feature
distributions from other domains with the feature distribution
of the domain it corresponds to. In this way, the generator is
capable of learning domain-invariant features. Based on the
learned domain-invariant features, we further learn a domain-



5

𝑂ଵ

𝑂ଶ

G

zଵ

𝑧ଶ

𝐷ଵ

𝐷ଶ

real or fake

real or fake

Figure 4. An example to illustrate the MDGAN.

agnostic meta-model to infer the attributes of a black-box
model with an unknown domain.

C. Multi-domain Outputs Obtaining

To achieve model reverse engineering, we first need to obtain
the multi-domain outputs of the white-box models. These
outputs serve as features of white-box models’ attributes and
will be used as inputs for the subsequent modules. We sample
an equal number of images from the source dataset, resulting in
queries Q = {qj}Nj=1, where N is the number of total queries.
Subsequently, these queries are fed into the white-box models
F = [f1, f2, ..., fM], where f i represents models from the ith

domain. For each domain i, the models f i produces outputs
{Oi

j}Nj=1 ∈ RN×C , where C is the number of classes in the
dataset. We then concatenate the outputs as an 1-dimensional
vector Oi ∈ RNC . Finally, the multi-domain outputs are derived
as O = {Oi}Mi=1.

D. Multi-Discriminator GAN

After preparing multi-domain outputs, we introduce
MDGAN on the basis of [71]. The objective is to learn domain-
invariant features from these probability outputs of white-box
models trained on different domains.

To better present, we take an example about how MDGAN
works on two domains. As shown in Fig. 4, we have two kinds
of inputs, O1 and O2, from two domains. When feeding them
into the generator G, we can obtain the corresponding features
z1 and z2, respectively. After that, we feed z1 and z2 to the
discriminator D1, where D1 is expected to output a “real" label
for z1 and output a “fake" label for z2. By jointly training G
and D1 based on a min-max optimization, the distribution of
z2 is expected to move towards that of z1. In the meantime, we
also feed z1 and z2 to the discriminator D2. Differently, D2

is expected to output a “real" label for z2 and output a “fake"
label for z1. By jointly training G and D2, the distribution
of z1 is expected to move towards that of z2. In this way, z1

and z2 generated by the generator G become domain-invariant
representations.

Formally, we define G(Oi; θg) : Oi → z. The generator
G sharing with parameter θg across domains maps outputs
Oi from the ith domain into the latent feature zi. After that,
we obtain latent features {zi}Mi=1 of model outputs. We also
define M discriminators {Dj(zi; θid)}Mj=1. Each discriminator
Dj(zi) : zi → [0, 1] outputs a scalar representing the
probability that zi comes from the jth domain. The label

of latent features zi is defined as Real for the discriminator
Dj(zi) when j = i, while False when j ̸= i.

The training goal of Dj is to maximize the log probability
of assigning the correct label to features both from the ith

domain and other domains, while the generator G is trained
against the discriminator to minimize the probability. In other
words, it is a min-max game between the jth discriminator
Dj and generator G with a value function V , formulated as:

min
G

max
Dj

V (Dj , G) = Ex∼Oj [logDj(G(x))]

+
∑
j ̸=i

Ex∼Oi [log(1−Dj(G(x)))].
(1)

During optimizing the min-max adversarial value function
for G and Dj , the generator G can gradually produce latent
features zj from jth domain, which are close to latent features
from other domain. Once G and all D are well trained, G is
able to embed multi-domain model outputs into an invariant
feature space, where each discriminator cannot determine
which domain the outputs are from. Therefore, the latent
features {zi}Mi=1 become domain-invariant features. Note that
our proposed MDGAN does not suffer from mode collapse.
This is because mode collapse is an issue in generative tasks
using GANs, where the model fails to generate diverse patterns
and instead produces only a limited set of modes. In our
approach, the role of generator G in the MDGAN is not to
generate diverse features. Instead, G functions as an encoder,
encoding the model’s outputs from different domains into
invariant features. Therefore, it does not suffer from the problem
of mode collapse.

E. Domain-agnostic Reverse Meta-Model

After obtaining domain-invariant features {zi}Mi=1, we aim
to classify them as model attributes Y through the domain-
agnostic reverse meta-model. Consider there are K types of at-
tributes and each attribute contains Nk possible values, we build
K domain-agnostic reverse meta-models Φ = {ϕ1, ϕ2, ..., ϕK}.
Therefore, the probability pk(z) for the kth attribute is obtained
by:

pk(z) = softmax(ϕk(z)). (2)

Note that the pk(z) is a Nk-dimensional vector that contains
Nk attribute value, and each dimension represents the proba-
bility of the attribute value.

The target is to minimize the cross entropy between the
predicted attributes probability pk(z) and ground-truth of model
attribute values yk:

min
Φ

K∑
k=1

Ez∼{zi}M
i=1

[
−yTk log(pk(z))

]
. (3)

During the inference phase, we input queries to the black-box
model trained from an unknown domain to generate outputs.
These outputs are then embedded as domain-invariant features
by the generator G. Subsequently, the reverse meta-model Φ
classifies these domain-invariant features, achieving domain-
agnostic attributes predictions for the black-box model.



6

Algorithm 1: Training Strategy
Input: Batch size b, learning rate α, β, number of attribute types K, multi-domain model outputs O, trade-off scalar λ
Output: Generator G, meta-model Φ, discriminators {Dj}Mj=1

Initialize: Initialize parameter θg of generator G, parameter θid of discriminators {Dj}Mj=1 and parameter θc of
domain-agnostic meta-model Φ with normal distribution
while difference in training loss Lc of meta-model Φ between two consecutive epochs ≥ ϵ do

Random sample b samples Oi
b from outputs Oi in each domain

for j = 1, ...,M do
Take samples in the jth domain as Real samples X = Oj

b = {x1, x2, ..., xb}
for i = 1, ...,M and j ̸= i do

Take samples in the jth domain as Fake samples X̄i = Oi
b = {x̄1

i , x̄
2
i , ..., x̄

b
i}

end
Update the discriminator Dj by gradient descent:
θjd := θjd − α∇θj

d

{∑b
k=1

[
logDj(G(xk)

]
+
∑

j ̸=i

[∑b
k=1 log(1−Dj(G(x̄k

i )))
]}

end
Construct X∗ = X ∪ X̄ = {x1, x2, ..., xbM} and Z∗ = G(X∗) = {z1, z2, ..., zbM}
Set the corresponding labels as Y ∗ = {y1, y2, ..., ybM}
Calculate gradient of θc and θg by:
gradc = ∇θcLc = ∇θc

{∑K
k=1

∑bM
l=1

[
−ylk

T
log(p(zlk))

]}
gradg = ∇θg,θc

{∑
j ̸=i

∑b
l=1

[
log(1−Dj(G(x̄l

i)))
]
− λ

∑K
k=1

∑bm
l=1

[
ylk

T
log(p(zlk))

]}
Update the meta-model Φ and generator G together:
θc := θc − β · gradc and θg := θg − α · gradg

end

F. Overall Objective and Training Strategy

After introducing all the components, we give the final loss
function based on Eq. 1 and 3 as:

min
G,Φ

max
Dj ,1≤j≤M

V (Dj , G) = Ex∼Oj

[
logDj(G(x))

]
+
∑
j ̸=i

Ex∼Oi

[
log(1−Dj(G(x)))

]
+ λ

K∑
k=1

Ez∼{zi}M
i=1

[
−yTk log(pk(z))

]
.

(4)
where λ is a trade-off parameter.

The training strategy is as follows: we first optimize all
discriminators Di, and then jointly optimize the generator
and the domain-agnostic reverse meta-model. We repeat the
above processes until the algorithm converges. The proposed
optimization strategy is presented in Algorithm 1.

IV. EXPERIMENTS

A. Dataset Construction

Following [22], we construct the modelset by training models
that enumerate all possible attribute values. The details of the
attributes and their values are shown in Table I. There are
a total of K = 9 types of attributes for each model in the
modelsets, which adheres the following scheme: Nc = {2, 3, 4}

Table I
ATTRIBUTES AND THE CORRESPONDING VALUES.

Attribute Values
#Activation (act) ReLU, PReLU, ELU, Tanh

#Dropout (drop) Yes, No

#Max pooling (pool) Yes, No

#Kernel size (ks) 3, 5

#Conv layers (conv) 2, 3, 4

#FC layers (fc) 2, 3, 4

#Optimizer (opt) SGD, ADAM, RMSprop

#Batch size (bs) 32, 64, 128

#Batchnorm (bn) Yes, No

convolution layers, Nf = {2, 3, 4} fully-connected layers 2.
Each convolution layer contains a k×k kernel (k = {3, 5}), an
optional batch normalization, an optional max-pooling, and a
non-linear activation function in sequence. Each fully connected
layer consists of a linear transformation, a non-linear activation,
and an optional dropout in sequence. We set the dropout ratio
to 0.1 in our experiments. When training white-box models,
optimizers are selected from {SGD, ADAM, RMSprop} with

2Not that a model with more layers may be mistakenly classified as an
overtrained model. However, this issue do not exist in practical applications,
because we did not devise an attribute to determine if a model is overtrained. In
practical applications, people tend to deploy models with strong generalization
capabilities rather than overtrained ones. Therefore, to ensure accurate model
reverse engineering, the white-box models we train are not overtrained either.
We select the model that performs best on the validation set as the final
white-box model, thereby ensuring its generalization performance.



7

a batch size 32, 64 or 128, respectively. The statistics of PACS
modelset and MEDU modelset are listed in the Appendix.B
By enumerating all possible model attributes, a total of 5, 184
distinct models can be obtained. In addition, we initialize each
kind of model with random seeds from 0 and 999, yielding
5,184,000 unique models.

We construct PACS modelset and MEDU modelset to
evaluate our method. The details are as follows:

PACS modelset comprises a set of models trained on the
PACS dataset. The PACS dataset is an image dataset that has
been widely used for OOD generalization [24]. We utilize
3 domains, including Photo (1,670 images), Cartoon (2,344
images), and Sketch (3,929 images), and each domain contains
7 kind of classes. For each modelset domain, we randomly
sample and train 5,000, 1,000, and 1,000 from 5,184,000 white-
box models as the training, validation, and testing models,
respectively.

MEDU modelset consists of a set of models trained on
MEDU dataset. MEDU is a hand-written digit recognition
dataset, with 4 domains collected from MNIST [23], USPS
[72], DIDA [73] and EMNIST [74]. Each domain contains
different styles of hand-written digits from 0 to 9. Similar
to PACS modelset, for each modelset domain, we randomly
sample and train 5,000, 1,000, and 1,000 from 5,184,000 white-
box models as the training, validation, and testing models.

B. Implementation Details of DREAM
In the experiment, we set the number of queries N to 100.

We use Adam [75] as the optimizer, where the learning rate
α is set to 10−5 for the generator and discriminators, and the
learning rate β is set to 10−4 for the domain-agnostic meta-
model. The batch size b is set as 100. The trade-off parameter λ
is tuned from {0.001, 0.01, 0.1, 1, 10} based on the validation
set.

In addition, the MDGAN is composed of a generator and
multiple discriminators. The generator consists of two linear
layers with ReLU activation. The dimension of the input layer
of the generator is determined by the query number N and
class category number C. As for the experiment conducted
on MEDU modelset, the input dimension is NC = 1000
(the query number is N = 100, and the number of classes
if C = 10). In the case of the PACS modelset, the input
dimension is 700 (N = 100, C = 7). The output dimensions of
the subsequent two linear layers are 500 and 128, respectively.
Each discriminator consists of three linear layers. The first
two layers employ ReLU as the activation function, while
the last layer utilizes the Sigmoid activation function. The
output dimensions of discriminator layers are 512, 256, and 1
respectively. Additionally, we implement the domain agnostic
meta-models as K = 9 MLPs. Each MLP consists of 3 layers,
and it takes latent features produced by generator G as input.
The output dimensions of the MLP are 128, 64 and Nk. All
experiments are conducted on 4 NVIDIA RTX 3090 GPUs,
PyTorch 1.11.0 platform [76].

C. Baselines
We compare our DREAM with 7 baselines including Random

choice, SVM, KENNEN [22], SelfReg [29], MixStyle [30],

MMD [28] and SD [77]. Additionally, we take four typical
OOD generalization methods—SelfReg, MixStyle, MMD, and
SD—as baselines to validate the effectiveness of our framework
in learning domain-invariant features.

The details of the baseline methods are presented as follows:
SVM. The SVM serves as a baseline, representing a non-

deep learning method. We directly input the multi-domain
probability outputs into SVM classifiers to predict attributes.
We adopt the One-vs-One (OvO) strategy. Specifically, for
an attribute with Nk possible values, we trained a binary
SVM for each pair of attribute values, resulting in a total of
Nk(Nk − 1)/2 SVMs. When classifying a new sample, we
apply all trained SVM classifiers and use a voting mechanism
for each attribute value. The attribute value receiving the most
votes is selected as the final prediction. For 2-valued attributes,
we only need to train a single binary SVM.

KENNEN*. We employ a variant of KENNEN (denoted
as KENNEN* ). It takes fixed queries as input, which is the
same as our approach. We embed the multi-domain probability
outputs into feature space and use MLPs to predict attributes.
Similar to SVM, KENNEN does not differentiate between
outputs from different domains. In addition, to ensure a fair
comparison, the network structure keeps consistent with the
domain-agnostic reverse meta-model in DREAM.

SelfReg, MixStyle, MMD and SD. The approach taken by
SelfReg to learn invariant features involves pulling samples of
similar categories between all domains closer together while
pushing samples of different categories further apart. The
motivation behind MixStyle is based on the observation that
the styles of domain images share significant similarities. In
particular, MixStyle captures style information through the final
layer and performs style mixing at that layer. The MMD adopts
maximum mean discrepancy loss between each two domains.
The SD proposes the Spectral Decoupling method to relieve
the gradient starvation phenomenon during the training of the
network, to boost the performance of OOD generalization. We
embed the multi-domain probability outputs into feature space
and apply the OOD generalization method, SelfReg, MixStyle,
MMD, and SD, respectively to learn invariant features. Then
the learned invariant features are fed into MLPs for predicting
attributes. For a fair comparison, the network structure of MLPs
is consistent with the domain-agnostic reverse meta-model in
DREAM.

We adopt the leave-one-domain-out strategy to split the
source and target domains for PACS and MEDU modelsets.
For each modelset, we take one domain as the target domain
and the rest as source domains in turn. The experiment is run
for 10 trials, and the average results are reported.

D. Comparison with Baselines

Table II and III report the overall performance of different
methods on the PACS modelset and MEDU modelset, respec-
tively. The leftmost column in each table indicates the target
domain (the rest ones are source domains). In this experiment,
we adopt the complete overlap setting, where the label space
of the source domain and target domain is identical. The
performance achieved by our proposed DREAM is better than



8

Table II
ATTRIBUTE CLASSIFICATION ACC. (%) ON PACS MODELSET. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

Photo

SVM 37.80 50.30 54.80 53.60 34.00 36.60 37.00 45.70 58.80 45.40
KENNEN* 39.07 50.68 59.42 61.31 36.18 39.33 37.88 44.16 59.74 47.53

SelfReg 25.58 52.26 54.98 50.18 34.12 35.25 34.61 33.78 50.76 41.28
MixStyle 39.63 53.23 61.83 59.44 35.66 38.75 37.89 43.75 57.09 47.47

MMD 38.88 54.70 60.46 56.54 35.38 36.66 35.66 40.50 61.04 46.65
SD 38.70 51.06 58.86 62.21 35.84 40.05 39.23 44.34 62.12 48.04

DREAM 43.84 59.19 66.09 64.24 39.59 42.04 40.49 47.83 68.12 52.38

Cartoon

SVM 25.80 49.20 50.70 55.80 37.20 38.10 30.80 42.30 65.30 43.91
KENNEN* 32.99 52.50 54.23 56.57 37.19 40.53 33.47 37.17 68.39 45.89

SelfReg 25.97 51.42 56.20 50.03 35.04 35.52 36.09 35.58 56.17 42.44
MixStyle 32.10 50.76 55.44 54.18 36.18 37.87 34.65 38.69 60.26 44.46

MMD 29.56 53.02 54.70 53.82 35.38 36.36 35.98 37.24 57.58 43.75
SD 33.52 54.06 54.12 56.69 36.84 41.02 35.61 36.12 65.12 45.90

DREAM 37.53 55.89 61.18 57.32 38.58 39.60 38.32 45.01 65.16 48.73

Sketch

SVM 23.80 47.60 47.40 45.80 33.80 34.50 31.80 34.30 53.10 39.12
KENNEN* 34.64 50.10 53.07 52.01 34.61 37.11 35.78 37.04 55.27 43.29

SelfReg 27.07 54.32 51.39 53.07 36.99 36.82 35.47 34.17 61.80 43.46
MixStyle 37.78 51.71 54.16 53.60 34.53 36.16 36.36 36.02 59.42 44.42

MMD 31.96 52.94 56.84 52.78 38.18 38.20 36.20 35.92 57.56 44.51
SD 34.82 52.51 56.89 51.21 34.23 38.12 35.91 36.72 54.23 43.85

DREAM 39.71 57.74 64.73 60.79 40.79 40.14 43.54 43.80 72.51 51.53

Table III
ATTRIBUTE CLASSIFICATION ACC. (%) ON MEDU MODELSET. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

MNIST

SVM 45.60 49.40 62.90 59.20 38.80 40.10 35.50 35.00 75.30 49.09
KENNEN* 51.18 50.67 62.99 57.36 38.32 35.84 41.57 35.75 77.87 50.17

SelfReg 28.00 53.57 53.43 50.78 35.97 36.39 35.98 36.23 53.96 42.70
MixStyle 50.27 51.72 62.66 57.32 37.88 36.34 43.11 38.00 82.61 51.10

MMD 44.57 59.67 66.37 57.27 39.63 37.27 42.10 37.60 81.37 51.76
SD 49.60 49.40 62.40 52.30 37.10 36.70 38.90 35.30 81.50 49.24

DREAM 51.01 62.32 64.28 58.39 40.96 38.11 45.37 38.96 81.99 53.49

EMNIST

SVM 40.00 48.70 69.20 51.60 40.20 36.90 35.80 30.10 79.90 48.04
KENNEN* 45.66 51.01 65.26 53.25 40.28 36.35 41.96 36.16 81.30 50.14

SelfReg 27.29 52.83 53.32 52.85 33.68 35.05 35.26 35.32 53.74 42.15
MixStyle 43.68 51.35 67.87 57.15 42.50 39.30 42.10 38.79 82.46 51.69

MMD 42.03 58.43 66.27 60.80 40.80 38.67 40.00 39.97 84.00 52.33
SD 43.60 48.90 59.20 60.10 44.50 35.10 43.60 33.80 88.80 50.84

DREAM 45.55 64.98 74.16 60.71 44.45 42.45 47.37 41.03 91.00 56.86

DIDA

SVM 45.00 47.80 54.60 45.50 29.40 37.60 43.30 36.50 63.70 44.82
KENNEN* 42.73 52.06 55.27 52.02 34.89 38.90 38.98 36.27 54.97 45.12

SelfReg 26.31 54.29 53.23 52.33 34.96 35.72 36.49 35.39 59.11 43.09
MixStyle 45.26 52.32 55.91 51.39 34.22 38.70 38.31 38.03 57.44 45.73

MMD 39.00 59.20 59.63 55.93 35.93 38.33 37.93 37.50 54.40 46.43
SD 46.50 51.80 52.70 51.90 34.90 45.30 42.70 36.80 59.50 46.92

DREAM 49.63 64.50 59.30 57.13 39.52 44.59 42.09 40.19 59.68 50.74

USPS

SVM 43.40 50.50 47.60 52.50 30.30 32.30 41.00 36.60 49.40 42.62
KENNEN* 43.38 50.88 51.41 53.19 36.35 35.59 36.66 34.56 55.62 44.18

SelfReg 26.81 52.16 55.46 52.47 36.18 36.43 36.53 35.90 55.34 43.03
MixStyle 41.05 53.80 50.49 52.93 35.26 33.68 36.92 34.75 59.34 44.25

MMD 39.33 55.87 52.67 53.23 39.20 34.33 35.90 36.90 60.73 45.35
SD 41.90 50.40 58.00 52.30 33.10 35.30 36.60 34.30 61.60 44.83

DREAM 42.34 58.72 58.58 54.41 37.90 37.81 40.42 38.36 63.39 47.99

that of all baselines in terms of the average accuracy of model
attributes. For individual attribute, our method outperforms
other methods in most cases. DREAM demonstrates superior
performance compared to KENNEN and SVM. This suggests
that, in situations where the training dataset of the target
black-box model is unknown, utilizing our proposed MDGAN
for learning invariant features, instead of directly inputting
the outputs from the source domain into the meta-model
for attribute prediction, results in enhanced generalization.
DREAM also outperforms four OOD generalization methods,
which highlights the superior capability of the proposed
MDGAN in learning domain-invariant features from probability

outputs compared to other baselines.

E. Application Value of Model Reverse Engineering

To show the application value of our method, we conduct
a model extraction experiment. We adopt a popular model
extraction method MAZE [41], where model structures are
"Same to the victim", "Random", or "Inferred by DREAM".
As shown in Table IV, The performance of model extraction
using the architecture "Inferred by DREAM" significantly
outperforms that achieved with a random architecture (62.81%
vs. 45.88%). Moreover, its performance closely approaches
that obtained when employing the "Same as the victim"



9

Table IV
ACCURACY OF MODEL EXTRACTION USING DIFFERENT EXTRACTION MODEL STRUCTURES. THE EXTRACTION MODEL STRUCTURES ARE "SAME TO THE

VICTIM", "RANDOM", OR "INFERRED BY DREAM".

Dataset Victim Model Architecture of the Extraction Model
#Same to Victim #Random #Inferred by DREAM

MNIST 86.43%(1.00×) 68.46%(0.79×) 45.88%(0.53×) 62.81%(0.73×)

20 10 0 10 20

5

0

5

10

15 cartoon
photo
sketch_test

DREAM

15 10 5 0 5 10
20
15
10

5
0
5

10
15 cartoon

photo
sketch_test

MMD

15 10 5 0 5 10 15

10
5
0
5

10
15
20

cartoon
photo
sketch_test

MixStyle

10.07.5 5.0 2.50.0 2.5 5.0 7.510.0
10

8
6
4
2
0
2
4 cartoon

photo
sketch_test

SelfReg

Figure 5. T-SNE visualization of features of different domains produced by DREAM, MMD, MisStyle and SelfReg on PACS modelset.
Table V

MODEL ATTRIBUTE CLASSIFICATION ACCURACY (%) ON S OF PACS MODELSET. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE,
RESPECTIVELY. DREAM* IS THE RESULT OF DOMAIN SHIFT SCENARIO, TRAINED WITH ONLY FIVE CLASSES (EXCEPT DOG AND ELEPHANT), WHILE THE

BLACK-BOX MODEL IS TRAINED BY WHOLE SEVEN CLASSES IN PACS DATASET.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

Sketch

SVM 23.80 47.60 47.40 45.80 33.80 34.50 31.80 34.30 53.10 39.12
KENNEN* 34.64 50.10 53.07 52.01 34.61 37.11 35.78 37.04 55.27 43.29

SelfReg 27.07 54.32 51.39 53.07 36.99 36.82 35.47 34.17 61.80 43.46
MixStyle 37.78 51.71 54.16 53.60 34.53 36.16 36.36 36.02 59.42 44.42

MMD 31.96 52.94 56.84 52.78 38.18 38.20 36.20 35.92 57.56 44.51
SD 34.82 52.51 56.89 51.21 34.23 38.12 35.91 36.72 54.23 43.85

DREAM 39.71 57.74 64.73 60.79 40.79 40.14 43.54 43.80 72.51 51.53
DREAM* 42.24 55.68 61.82 58.34 39.55 38.39 38.51 41.39 74.39 50.03

Table VI
ATTRIBUTE INFERENCE ACCURACY (%) OF REVERSE ENGINEERING. THE SOURCE DOMAINS ARE OUTPUTS OF PHOTO AND SKETCH MODEL. THE TARGET

DOMAIN IS OUTPUTS OF CIFAR MODEL. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

CIFAR

SVM 33.91 49.85 51.87 50.45 36.43 36.23 33.80 41.78 58.73 43.67
KENNEN* 38.65 56.71 56.21 56.71 36.73 39.35 41.68 44.30 63.57 48.21

SelfReg 39.46 52.17 60.44 55.60 38.65 40.46 47.12 47.53 61.45 49.21
MixStyle 41.78 53.48 57.52 53.18 36.93 41.68 43.59 46.72 63.98 48.76

MMD 40.46 60.54 59.54 57.32 37.94 43.49 48.84 50.25 67.00 51.71
SD 39.05 53.78 57.92 56.51 36.23 41.78 41.47 50.76 67.31 49.42

DREAM 45.11 62.36 61.35 61.76 41.88 45.41 47.53 49.85 75.88 54.57

architecture for model extraction (62.81% vs. 68.46%). The
rationale behind above results lies in the fact that extraction
performance improves when the structure of the extracted
model closely aligns with that of the victim, as discussed in
[21]. The proximity of the extracted model to the victim model
in terms of structure and complexity enhances the likelihood
of capturing identical patterns and information present in the
victim model.

F. Visualization of Generated Feature Space

To further verify the effectiveness of our method, we utilize
t-SNE [78] to visualize samples in the feature space learned by
the generator G of our framework. The visualization is carried
out on PACS modelset. We take C (cartoon) and P (photo) as
source domains to train white-box models, and use S (sketch)

as the unseen target domain to the train black-box model. In
this experiment, we adopt the complete overlap setting. As
shown in Fig. 5, we observe the features from sources and target
domain are spread in the feature space for MMD, MixStyle and
SelfReg method. However, DREAM can embed samples from
both the source domains and target domain into an invariant
feature space, which demonstrates the superiority of DREAM.

G. Experiment on Domain Shift Scenario

1) We conduct class shift experiment on PACS modelset. In
this experiment, we exclude the "dog" and "elephant" classes
among 7 classes for each source domain while constructing
white-box models, while the target domain remain all 7 classes.
As shown in Table V, the average accuracy of DREAM*



10

Table VII
MODEL ATTRIBUTE CLASSIFICATION ACCURACY (%) ON P OF PACS MODELSET USING DIFFERENT TRAINING AND TESTING ATTRIBUTE COMBINATIONS.

RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 25.00 50.00 50.00 50.00 33.33 33.33 33.33 33.33 50.00 39.81

Photo

SVM 34.20 51.70 48.50 56.10 35.70 36.50 37.60 40.50 64.60 45.04
KENNEN* 37.36 53.12 57.79 59.66 38.94 35.93 37.92 41.71 63.91 47.37

SelfReg 26.08 52.35 53.89 52.70 35.11 33.84 37.46 36.42 50.99 42.09
MixStyle 35.98 54.31 57.35 57.43 37.14 35.51 39.31 42.07 57.84 46.33

MMD 38.67 57.16 61.49 58.73 40.65 39.14 38.69 41.06 71.48 49.67
SD 38.70 51.06 58.86 62.21 35.84 40.05 39.23 44.34 62.12 48.04

DREAM 43.84 59.19 66.09 64.24 39.59 42.04 40.49 47.83 68.12 52.38
DREAM** 39.68 57.61 64.48 60.79 40.78 40.10 43.54 43.80 72.42 51.47

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60
No

rm
al

iz
ed

 A
cc

ur
ac

y
#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg
1k 2k 3k 4k 5k 6k 7k 8k 9k

Size of Training set
0

15

30

45

60

No
rm

al
iz

ed
 A

cc
ur

ac
y

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

1k 2k 3k 4k 5k 6k 7k 8k 9k
Size of Training set

0

15

30

45

60

No
rm

al
ise

d 
Ac

cu
ra

cy

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

Figure 6. Performance against size of training set on PACS modelset. From left to right, normalized accuracies in the P split, C split and S split are shown,
respectively.

reaches 50.03%. Although DREAM* experiences a slight
decrease in accuracy compared to DREAM due to domain
shift, it still outperforms other baselines.

2) We conduct experiments in situations where domains are
quite different, and number of classes between domains are
different. We first train white-box models using the Sketch
and Cartoon datasets. The outputs of these white-box models
serve as the source domains for training DREAM. We then
utilized data from CIFAR10 and CIFAR100 to train black-
box models. The trained DREAM infers attributes based on
the black-box model outputs. The source domains (Sketch
and Cartoon) comprise 7 classes, while the target domain
(CIFAR10/100) contains 110 classes. We use all 7 classes as the
label space for the source domains. For the target domain’s label
space, we select the 5 classes that overlap between the source
and target domains (namely: dog, elephant, house, horse, and
person). This ensures a overlapping label space, but different
number of classes between source and target domains. The
experimental results are listed in Table VI, which demonstrate
that DREAM still outperforms Random, KENNEN, as well as
state-of-the-art OOD generalization approaches. This indicates
that our method is effective when domains are quite different,
as well as when the number of classes differs between domains.

3) We investigate the shift scenario where white-box models
used for training meta-model and the black-box model to
be inferred have completely different attribute combinations.
As mentioned in Sect. IV-A, there are a total of 5, 184
combinations of model attributes. We randomly select 3, 000,
1, 000, and 1, 000 models for the training, validation, and
testing sets, respectively, ensuring that none of the models share
identical attribute combinations. We adopt the complete overlap

setting. The resulting model is denoted as DREAM**. As
demonstrated in Table VII, DREAM** consistently outperforms
other baselines under this setting. Consequently, the shift caused
by attribute combinations does not significantly impact its
overall performance.

H. Analysis

We analyse the size of modelset and the training data amount.
We adopt the complete overlap setting in these two experiments.

Analysis of Size of Modelset. We further study the
performance of our method against the size of the PACS
modelset. As shown in Fig. 6, we observe that the performance
slightly fluctuates from the size of 1K to 5K, and does not
consistently increase when the size increases. We suspect it
can be attributed to the difficulty of our problem for domain-
agnostic attribute inference of the black-box model, and the
nature of the OOD problem, i.e., the noise level increases as
the size of the model set increases. It is worth studying further.

Analysis of Training Data Amount. We analyze the
impact of amount of training samples on reverse engineering
performance. We train white-box models using 25%, 50%, 75%,
and 100% of PACS training data, respectively. We then apply
our proposed DREAM method to perform reverse engineering
on these models. The results are presented in Fig. 7. We observe
as the amount of data increases, the performance improves, and
the performance levels off when the amount of data reaches
75%.

I. Reverse Engineering on Model with Larger Attribute Space

We design a larger model attribute space for model attribute
inference, as shown in Table VIII. Specifically, we



11

25% 50% 75% 100%
Data Amount

0

10

20

30

40

50

60
A

ve
ra

ge
d 

A
cc

ur
ac

y
Source: Sketch, Cartoon     Target: Photo

25% 50% 75% 100%
Data Amount

0

10

20

30

40

50

60

A
ve

ra
ge

d 
A

cc
ur

ac
y

Source: Sketch, Photo     Target: Cartoon

25% 50% 75% 100%
Data Amount

0

10

20

30

40

50

60

A
ve

ra
ge

d 
A

cc
ur

ac
y

Source: Cartoon, Photo     Target: Sketch

100 150 200 250 300 350 400
Size of Training set

0

15

30

45

60

No
rm

al
ise

d 
Ac

cu
ra

cy

#act
#drop
#pool
#ks
#conv
#fc
#opt
#bs
#bn
Avg

Figure 7. Performance on data amount for reverse engineering.

Table VIII
LARGER ATTRIBUTES SPACE OF CNN ARCHITECTURE.

Attribute Values

#Activation (act) ReLU, PReLU, ELU, Tanh, GeLU

#Dropout (drop) Yes, No

#Max pooling (pool) Yes, No

#Kernel size (ks) 3, 4, 5, 6, 7, 8, 9

#Conv layers (conv) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

#FC layers (fc) 2, 3, 4, 5, 6, 7, 8

#Optimizer (opt) SGD, ADAM, RMSprop

#Batch size (bs) 32, 64, 128

#Batchnorm (bn) Yes, No

Table IX
ATTRIBUTES SPACE OF VISION TRANSFORMER ARCHITECTURE.

Attribute Values

#Activation (act) ReLU, PReLU, ELU, Tanh, GeLU

#Dropout (drop) Yes, No

#Patch size (ps) 2, 4, 8, 16

#Transformer layers (n_trans) 2, 3, 4, 5, 6, 7, 8, 9,10

#Feedforward layers (n_ff) 2, 3, 4

#Attention heads (n_heads) 1, 2, 4, 6, 8, 12

#Optimizer (opt) SGD, ADAM, RMSprop

#Batch size (bs) 16, 32, 64

Table X
MODEL ATTRIBUTE INFERENCE ACCURACY (%) ON OUTPUTS OF SKETCH MODELS WITH A LARGER ATTRIBUTE SPACE. THE SOURCE DOMAINS ARE

OUTPUTS OF PHOTO AND CARTOON MODELS. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #pool #ks #conv #fc #opt #bs #bn
Random 20.00 50.00 50.00 14.29 10.00 14.29 33.33 33.33 50.00 30.58

Sketch

SVM 36.32 58.74 60.91 17.39 10.80 17.18 54.53 35.70 69.24 40.09
KENNEN* 35.29 64.61 68.31 19.75 15.33 20.99 62.45 39.40 69.34 43.94

SelfReg 37.86 62.65 66.98 20.37 16.46 21.91 66.87 39.09 66.56 44.31
MixStyle 35.91 60.80 66.77 19.14 17.49 19.75 64.81 40.43 67.59 43.63

MMD 36.52 64.61 68.72 19.96 15.64 19.24 68.93 38.89 70.37 44.76
SD 35.08 65.43 65.33 20.06 15.95 21.50 63.99 39.40 67.39 43.79

DREAM 40.53 66.77 68.93 25.51 20.68 24.79 69.34 44.75 72.94 48.25

• Add "GeLU" activation function to the "#Activation"
attribute space.

• Expand "#Kernel size" attribute space from {3, 5} to
{3, 4, 5, 6, 7, 8, 9}

• Expand "#Conv layers" attribute space from {2, 3, 4} to
{2, 3, 4, 5, 6, 7, 8, 9, 10}

• increase "#FC layers" attribute space from {2, 3, 4} to
{2, 3, 4, 5, 6, 7, 8}.

The outputs of models trained on the Photo and Cartoon datasets
serve as the source domains in this experiment, whereas those
trained on the Sketch dataset function as the target domain.
We adopt the complete overlap setting in this experiment. The
results presented in Table X demonstrate that our method
continues to outperform the baseline methods.

J. Reverse Engineering on Vision Transformer Architecture

In addition to performing attribute inference on CNN
architecture, we extend our approach to Vision Transformer
(ViT) architecture. The Vision Transformer (ViT) applies the
Transformer architecture, originally used in natural language
processing, to images. Specifically, it divides an image into
several patches and uses a Transformer to extract features from
the image [79]. We design an attribute space for the Vision
Transformer architecture, as shown in Table IX. #Patch size =
k means that each input image is divided into patches of size
k ∗ k, which are used as the input to the ViT. Additionally,
we include the number of #Transformer layers, #Feedforward
layers, and numbers of #Attention heads in the attribute space.
In this experiment, we also use outputs from models trained
on the Photo and Cartoon datasets as the source domains,
and outputs from models trained on the Sketch dataset as



12

Table XI
MODEL ATTRIBUTE INFERENCE ACCURACY (%) ON OUTPUTS OF SKETCH MODELS. THE SOURCE DOMAINS ARE OUTPUTS OF PHOTO AND CARTOON

MODELS. THE ARCHITECTURE IS VISION TRANSFORMER. RED AND BLUE INDICATE THE BEST AND SECOND BEST PERFORMANCE, RESPECTIVELY.

Target
Domain

Method Attributes Avg#act #drop #ps #n_trans #n_ffn #n_head #opt #bs
Random 20.00 50.00 25.00 11.11 33.33 16.67 33.33 33.33 27.85

Sketch

SVM 25.31 52.47 45.27 14.20 37.45 25.31 46.30 41.98 36.03
KENNEN* 28.40 64.20 53.29 16.26 43.83 25.51 51.03 54.32 42.10

SelfReg 28.19 65.64 40.74 17.08 51.65 29.84 42.39 59.47 41.87
MixStyle 25.51 59.88 46.91 15.43 45.47 26.75 45.47 54.73 40.02

MMD 27.57 56.38 53.29 18.93 48.56 29.84 39.09 56.58 41.44
SD 29.84 59.47 56.38 17.28 45.06 28.19 43.83 53.29 41.67

DREAM 34.36 68.93 54.73 20.37 49.79 31.28 57.00 61.11 47.20

the target domain. The complete overlap setting is adopted.
The experimental results, listed in Table XI, indicate that our
method is capable of effectively performing attribute inference
for Vision Transformer models, outperforming other baseline
methods.

V. LIMITATIONS AND FUTURE WORKS

DREAM requires training white-box models with numerous
attribute combinations to ensure the performance of reverse
engineering, which costs significant computational resources.
For instance, when constructing the PACS modelset, each
model requires approximately 5 minutes of training time.
Consequently, the total training time for 13,000 models (10,000
for training, 2,000 for validation, and 1,000 for testing) amounts
to roughly 45 GPU-days. To reduce these costs, one plausible
approach is to leverage fewer white-box models for reverse
engineering. Considering the relationships among attributes,
we can design a multi-task learning method, where reverse
engineering each attribute is treated as a task, to maintain the
performance in the future.

VI. CONCLUSION

In this paper, we studied the problem of domain-agnostic
reverse engineering towards the attributes of the black-box
model with unknown traning dataset, and cast it as an OOD
generalization problem. We proposed a generalized framework,
DREAM, which can predict the attributes of a black-box
model with an unknown domain, and explored to learn domain-
invariant features from probability outputs in the scenario of
black-box attribute inference. Extensive experimental results
demonstrated the effectiveness of our method.

ACKNOWLEDGEMENT

This work was supported by the NSFC under Grants
62122013, U2001211. This work was also supported by the
Innovative Development Joint Fund Key Projects of Shandong
NSF under Grants ZR2022LZH007.

REFERENCES

[1] A. Iscen, A. Fathi, and C. Schmid, “Improving image recognition
by retrieving from web-scale image-text data,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 19 295–19 304.

[2] X. Ding, Y. Zhang, Y. Ge, S. Zhao, L. Song, X. Yue, and Y. Shan,
“Unireplknet: A universal perception large-kernel convnet for audio video
point cloud time-series and image recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 5513–5524.

[3] X. Zhou and O. Wu, “Implicit counterfactual data augmentation for deep
neural networks,” arXiv preprint arXiv:2304.13431, 2023.

[4] C. Li, R. Li, Y. Yuan, G. Wang, and D. Xu, “Deep unsupervised active
learning via matrix sketching,” IEEE Transactions on Image Processing,
vol. 30, pp. 9280–9293, 2021.

[5] Y.-C. Lin, S.-A. Chen, J.-J. Liu, and C.-J. Lin, “Linear classifier:
An often-forgotten baseline for text classification,” in Proceedings
of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), A. Rogers, J. Boyd-Graber, and
N. Okazaki, Eds. Toronto, Canada: Association for Computational
Linguistics, Jul. 2023, pp. 1876–1888. [Online]. Available: https:
//aclanthology.org/2023.acl-short.160

[6] E. Tanwar, S. Dutta, M. Borthakur, and T. Chakraborty, “Multilingual
llms are better cross-lingual in-context learners with alignment,” in Pro-
ceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2023, pp. 6292–6307.

[7] Y. Zhu, Y. Ye, M. Li, J. Zhang, and O. Wu, “Investigating annotation
noise for named entity recognition,” Neural Computing and Applications,
vol. 35, no. 1, pp. 993–1007, 2023.

[8] L. Yang, H. Chen, Z. Li, X. Ding, and X. Wu, “Give us the facts:
Enhancing large language models with knowledge graphs for fact-
aware language modeling,” IEEE Transactions on Knowledge and Data
Engineering, 2024.

[9] M. Mulimani and A. Mesaros, “Class-incremental learning for multi-
label audio classification,” in ICASSP 2024 - 2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024,
pp. 916–920.

[10] A. Axyonov, D. Ryumin, D. Ivanko, A. Kashevnik, and A. Karpov,
“Audio-visual speech recognition in-the-wild: Multi-angle vehicle cabin
corpus and attention-based method,” in ICASSP 2024 - 2024 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2024, pp. 8195–8199.

[11] X.-C. Li, X.-Y. Zhang, F. Yin, and C.-L. Liu, “Decision-based adversarial
attack with frequency mixup,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 1038–1052, 2022.

[12] J. Li, T. Xie, L. Chen, F. Xie, X. He, and Z. Zheng, “Adversarial
attack on large scale graph,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 1, pp. 82–95, 2021.

[13] H. Chang, Y. Rong, T. Xu, W. Huang, H. Zhang, P. Cui, X. Wang, W. Zhu,
and J. Huang, “Adversarial attack framework on graph embedding models
with limited knowledge,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 5, pp. 4499–4513, 2022.

[14] H. Liu, B. Ji, J. Yu, S. Li, J. Ma, Z. Yi, M. Du, M. Li, J. Liu, and
Z. Mo, “A more context-aware approach for textual adversarial attacks
using probability difference-guided beam search,” IEEE Transactions on
Knowledge and Data Engineering, 2023.

[15] J. Wu and J. He, “A unified framework for adversarial attacks on multi-
source domain adaptation,” IEEE Transactions on Knowledge and Data
Engineering, 2022.

[16] A. Yan, R. Hou, H. Yan, and X. Liu, “Explanation-based data-free model
extraction attacks,” World Wide Web, vol. 26, no. 5, pp. 3081–3092,
2023.

[17] J. Beetham, N. Kardan, A. S. Mian, and M. Shah, “Dual student networks

https://aclanthology.org/2023.acl-short.160
https://aclanthology.org/2023.acl-short.160


13

for data-free model stealing,” in The Eleventh International Conference
on Learning Representations, 2022, pp. 1–12.

[18] N. Carlini, D. Paleka, K. D. Dvijotham, T. Steinke, J. Hayase, A. F.
Cooper, K. Lee, M. Jagielski, M. Nasr, A. Conmy et al., “Stealing part
of a production language model,” in Forty-first International Conference
on Machine Learning. PMLR, 2024, pp. 5680–5705.

[19] Y. Zhao, X. Deng, Y. Liu, X. Pei, J. Xia, and W. Chen, “Fully exploiting
every real sample: Superpixel sample gradient model stealing,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 24 316–24 325.

[20] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in International Conference
on Learning Representations, 2017, pp. 1–14.

[21] Z. Sha, X. He, N. Yu, M. Backes, and Y. Zhang, “Can’t steal? cont-steal!
contrastive stealing attacks against image encoders,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 16 373–16 383.

[22] S. J. Oh, M. Augustin, B. Schiele, and M. Fritz, “Towards reverse-
engineering black-box neural networks,” in 6th International Conference
on Learning Representations, 2018, pp. 1–20.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and
artier domain generalization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5542–5550.

[25] Z. Shen, J. Liu, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui,
“Towards out-of-distribution generalization: A survey,” arXiv preprint
arXiv:2108.13624, 2021.

[26] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain generaliza-
tion: A survey,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022.

[27] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng,
and S. Y. Philip, “Generalizing to unseen domains: A survey on domain
generalization,” IEEE transactions on knowledge and data engineering,
vol. 35, no. 8, pp. 8052–8072, 2022.

[28] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization with
adversarial feature learning,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 5400–5409.

[29] D. Kim, Y. Yoo, S. Park, J. Kim, and J. Lee, “Selfreg: Self-supervised
contrastive regularization for domain generalization,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
9619–9628.

[30] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Domain generalization with
mixstyle,” in ICLR, 2021.

[31] B. Li, Y. Wang, S. Zhang, D. Li, K. Keutzer, T. Darrell, and H. Zhao,
“Learning invariant representations and risks for semi-supervised domain
adaptation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 1104–1113.

[32] M. Yan, C. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn dnn architectures,” in USENIX Security
Symposium, 2020.

[33] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proceedings
of the 55th Annual Design Automation Conference, 2018, pp. 1–6.

[34] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes attack: Steal dnn models
with lossless inference accuracy.” in USENIX Security Symposium, 2021,
pp. 1973–1988.

[35] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine learning,”
in 2018 IEEE symposium on security and privacy (SP). IEEE, 2018,
pp. 36–52.

[36] D. Rolnick and K. Kording, “Reverse-engineering deep relu networks,”
in International Conference on Machine Learning. PMLR, 2020, pp.
8178–8187.

[37] V. Asnani, X. Yin, T. Hassner, and X. Liu, “Reverse engineering of
generative models: Inferring model hyperparameters from generated
images,” arXiv preprint arXiv:2106.07873, 2021.

[38] M. M. Rahman, C. Fookes, M. Baktashmotlagh, and S. Sridharan,
“Correlation-aware adversarial domain adaptation and generalization,”
Pattern Recognition, vol. 100, p. 107124, 2020.

[39] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing
functionality of black-box models,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4954–
4963.

[40] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in

Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[41] S. Kariyappa, A. Prakash, and M. K. Qureshi, “Maze: Data-free model
stealing attack using zeroth-order gradient estimation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 13 814–13 823.

[42] W. Wang, X. Qian, Y. Fu, and X. Xue, “Dst: Dynamic substitute
training for data-free black-box attack,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
14 361–14 370.

[43] W. Wang, B. Yin, T. Yao, L. Zhang, Y. Fu, S. Ding, J. Li, F. Huang, and
X. Xue, “Delving into data: Effectively substitute training for black-box
attack,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 4761–4770.

[44] Y. He, S. Rahimian, B. Schiele, and M. Fritz, “Segmentations-leak:
Membership inference attacks and defenses in semantic image segmen-
tation,” in European Conference on Computer Vision. Springer, 2020,
pp. 519–535.

[45] S. Rezaei and X. Liu, “On the difficulty of membership inference attacks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 7892–7900.

[46] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramèr,
“Membership inference attacks from first principles,” in 2022 IEEE
Symposium on Security and Privacy (SP), 2022, pp. 1897–1914.

[47] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri,
“Enhanced membership inference attacks against machine learning
models,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 3093–3106.

[48] Y. Liu, Z. Zhao, M. Backes, and Y. Zhang, “Membership inference
attacks by exploiting loss trajectory,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp. 2085–2098.

[49] M. Bertran, S. Tang, A. Roth, M. Kearns, J. H. Morgenstern, and S. Z.
Wu, “Scalable membership inference attacks via quantile regression,”
Advances in Neural Information Processing Systems, vol. 36, pp. 314–330,
2024.

[50] J. Dubiński, A. Kowalczuk, S. Pawlak, P. Rokita, T. Trzciński, and
P. Morawiecki, “Towards more realistic membership inference attacks
on large diffusion models,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2024, pp. 4860–4869.

[51] T. Matsumoto, T. Miura, and N. Yanai, “Membership inference attacks
against diffusion models,” in 2023 IEEE Security and Privacy Workshops
(SPW). IEEE, 2023, pp. 77–83.

[52] G. Mattolin, L. Zanella, E. Ricci, and Y. Wang, “Confmix: Unsupervised
domain adaptation for object detection via confidence-based mixing,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 423–433.

[53] Y. Wang, J. Yin, W. Li, P. Frossard, R. Yang, and J. Shen, “Ssda3d:
Semi-supervised domain adaptation for 3d object detection from point
cloud,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 3, 2023, pp. 2707–2715.

[54] D. Mekhazni, M. Dufau, C. Desrosiers, M. Pedersoli, and E. Granger,
“Camera alignment and weighted contrastive learning for domain adap-
tation in video person reid,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2023, pp. 1624–1633.

[55] P. Wei, L. Kong, X. Qu, Y. Ren, Z. Xu, J. Jiang, and X. Yin, “Unsuper-
vised video domain adaptation for action recognition: A disentanglement
perspective,” Advances in Neural Information Processing Systems, vol. 36,
pp. 17 623–17 642, 2024.

[56] A. Dayal, V. KB, L. R. Cenkeramaddi, C. Mohan, A. Kumar, and
V. N Balasubramanian, “Madg: Margin-based adversarial learning for
domain generalization,” Advances in Neural Information Processing
Systems, vol. 36, pp. 58 938–58 952, 2024.

[57] K.-Y. Lin, J.-R. Du, Y. Gao, J. Zhou, and W.-S. Zheng, “Diversifying
spatial-temporal perception for video domain generalization,” Advances
in Neural Information Processing Systems, vol. 36, pp. 56 012–56 026,
2024.

[58] Z. Zhang, B. Wang, D. Jha, U. Demir, and U. Bagci, “Domain
generalization with correlated style uncertainty,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2024,
pp. 2000–2009.

[59] P. Wang, Z. Zhang, Z. Lei, and L. Zhang, “Sharpness-aware gradient
matching for domain generalization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
3769–3778.



14

[60] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang, “Mixstyle neural networks for
domain generalization and adaptation,” International Journal of Computer
Vision, vol. 132, no. 3, pp. 822–836, 2024.

[61] F. Zhou, Z. Jiang, C. Shui, B. Wang, and B. Chaib-draa, “Domain
generalization via optimal transport with metric similarity learning,”
arXiv preprint arXiv:2007.10573, 2020.

[62] S. Hu, K. Zhang, Z. Chen, and L. Chan, “Domain generalization
via multidomain discriminant analysis,” in Uncertainty in Artificial
Intelligence. PMLR, 2020, pp. 292–302.

[63] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, “Invariant risk
minimization,” arXiv preprint arXiv:1907.02893, 2019.

[64] E. Creager, J.-H. Jacobsen, and R. Zemel, “Environment inference for
invariant learning,” in International Conference on Machine Learning.
PMLR, 2021, pp. 2189–2200.

[65] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang,
R. Le Priol, and A. Courville, “Out-of-distribution generalization via risk
extrapolation (rex),” in International Conference on Machine Learning.
PMLR, 2021, pp. 5815–5826.

[66] D. Mahajan, S. Tople, and A. Sharma, “Domain generalization using
causal matching,” in International Conference on Machine Learning.
PMLR, 2021, pp. 7313–7324.

[67] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning via sample
reweighting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 5692–5699.

[68] K. Kuang, R. Xiong, P. Cui, S. Athey, and B. Li, “Stable prediction with
model misspecification and agnostic distribution shift,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 4485–4492.

[69] X. Zhang, P. Cui, R. Xu, L. Zhou, Y. He, and Z. Shen, “Deep stable
learning for out-of-distribution generalization,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 5372–5382.

[70] K. Kuang, P. Cui, S. Athey, R. Xiong, and B. Li, “Stable prediction
across unknown environments,” in Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, 2018,
pp. 1617–1626.

[71] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[72] J. Hull, “A database for handwritten text recognition research,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 5,
pp. 550–554, May 1994, conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

[73] H. Kusetogullari, A. Yavariabdi, J. Hall, and N. Lavesson, “Dida: The
largest historical handwritten digit dataset with 250k digits,” https://
github.com/didadataset/DIDA/, accessed: 2021-06-13.

[74] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[76] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[77] M. Pezeshki, O. Kaba, Y. Bengio, A. C. Courville, D. Precup, and
G. Lajoie, “Gradient starvation: A learning proclivity in neural networks,”
Advances in Neural Information Processing Systems, vol. 34, pp. 1256–
1272, 2021.

[78] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[79] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

Rongqing Li received the B.E. degree in Computer
Science and Technology from Beijing University
of Technology (BJUT) in 2021. He is currently
pursuing the Ph.D. degree with the School of Com-
puter Science and Technology, Beijing Institute of
Technology (BIT), China. He has published several
top conferences and journals, including IEEE TIP,
NeurIPS, KDD and IROS. His research interests
include AI security and autonomous driving.

Jiaqi Yu received the master degree in Computer
Science and Technology from Beijing Institute of
Technology (BIT) in 2023. He is currently work-
ing at Kuaishou Technology as a recommendation
algorithm engineer. His research interests include
recommendation system, computer vision and graph
neural network.

Chengsheng Li received the B.E. degree from the
University of Electronic Science and Technology
of China (UESTC) in 2008 and the Ph.D. degree
in pattern recognition and intelligent system from
the Institute of Automation, Chinese Academy of
Sciences, in 2013. During his Ph.D., he once stud-
ied as a Research Assistant with The Hong Kong
Polytechnic University from 2009 to 2010. He is
currently a Professor with the Beijing Institute of
Technology. Before joining the Beijing Institute of
Technology, he worked with IBM Research, China,

Alibaba Group, and UESTC. He has more than 90 refereed publications in
international journals and conferences, including IEEE TPAMI, IJCV, TIP,
TKDE, NeurIPS, ICLR, ICML, PR, CVPR, AAAI, IJCAI, CIKM, MM, and
ICMR. His research interests include machine learning, data mining, and
computer vision. He won the National Science Fund for Excellent Young
Scholars in 2021.

Wenhan Luo is currently an Associate Professor with
the Hong Kong University of Science and Technology.
Previously, he worked as an Associate Professor at
Sun Yat-sen University. Prior to that, he worked as
a research scientist for Tencent and Amazon. He
has published over 90 papers in top conferences and
leading journals, including ICML, NeurIPS, CVPR,
ICCV, ECCV, ACL, AAAI, ICLR, TPAMI, IJCV,
TIP, etc. He also has been area chair, reviewer,
senior PC member and Guest Editor for several
prestigious journals and conferences. His research

interests include several topics in computer vision and machine learning, such
as image/video synthesis, and image/video quality restoration. He received the
Ph.D. degree from Imperial College London, UK, 2016, M.E. degree from
Institute of Automation, Chinese Academy of Sciences, China, 2012 and B.E.
degree from Huazhong University of Science and Technology, China, 2009.

Ye Yuan received the B.S., M.S., and Ph.D. de-
grees in computer science from Northeastern Uni-
versity in 2004, 2007, and 2011, respectively. He
is currently a Professor with the Department of
Computer Science, Beijing Institute of Technology,
China. He has more than 100 refereed publications
in international journals and conferences, including
VLDBJ, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE TRANS-
ACTIONS ON KNOWLEDGE AND DATA ENGI-
NEERING,SIGMOD, PVLDB, ICDE, IJCAI, WWW,

and KDD. His research interests include graph embedding, graph neural
networks, and social network analysis. He won the National Science Fund for
Excellent Young Scholars in 2016.

Guoren Wang received the B.S., M.S., and Ph.D.
degrees in computer science from Northeastern
University, Shenyang, in 1988, 1991, and 1996,
respectively. He is currently a Professor with the
School of Computer Science and Technology, Beijing
Institute of Technology, Beijing, where he has been
the Dean since 2020. He has more than 300 refereed
publications in international journals and conferences,
including VLDBJ, IEEE TRANS-ACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, SIGMOD, PVLDB, ICDE, SIGIR, IJCAI, WWW, and
KDD. His research interests include data mining, database, machine learning,
especially on highdimensional indexing, parallel database, and machine learning
systems. He won the National Science Fund for Distinguished Young Scholars
in 2010 and was appointed as the Changjiang Distinguished Professor in 2011.

https://github.com/didadataset/DIDA/
https://github.com/didadataset/DIDA/

	Introduction
	Related Works
	Proposed Methods
	Preliminaries
	DREAM Framework
	Multi-domain Outputs Obtaining
	Multi-Discriminator GAN
	Domain-agnostic Reverse Meta-Model
	Overall Objective and Training Strategy

	Experiments
	Dataset Construction
	Implementation Details of DREAM
	Baselines
	Comparison with Baselines
	Application Value of Model Reverse Engineering
	Visualization of Generated Feature Space
	Experiment on Domain Shift Scenario
	Analysis
	Reverse Engineering on Model with Larger Attribute Space
	Reverse Engineering on Vision Transformer Architecture

	Limitations and Future Works
	Conclusion
	References
	Biographies
	Rongqing Li
	Jiaqi Yu
	Chengsheng Li
	Wenhan Luo
	Ye Yuan
	Guoren Wang


