
DINO-WM: WORLD MODELS ON PRE-TRAINED
VISUAL FEATURES ENABLE ZERO-SHOT PLANNING

Gaoyue Zhou1∗, Hengkai Pan1, Yann LeCun1,2, Lerrel Pinto1

1Courant Institute, New York University, 2Meta-FAIR

ABSTRACT

The ability to predict future outcomes given control actions is fundamental for
physical reasoning. However, such predictive models, often called world models,
have proven challenging to learn and are typically developed for task-specific solu-
tions with online policy learning. We argue that the true potential of world models
lies in their ability to reason and plan across diverse problems using only passive
data. Concretely, we require world models to have the following three properties:
1) be trainable on offline, pre-collected trajectories, 2) support test-time behavior
optimization, and 3) facilitate task-agnostic reasoning. To realize this, we present
DINO World Model (DINO-WM), a new method to model visual dynamics with-
out reconstructing the visual world. DINO-WM leverages spatial patch features
pre-trained with DINOv2, enabling it to learn from offline behavioral trajectories
by predicting future patch features. This design allows DINO-WM to achieve ob-
servational goals through action sequence optimization, facilitating task-agnostic
behavior planning by treating desired goal patch features as prediction targets. We
evaluate DINO-WM across various domains, including maze navigation, tabletop
pushing, and particle manipulation. Our experiments demonstrate that DINO-WM
can generate zero-shot behavioral solutions at test time without relying on expert
demonstrations, reward modeling, or pre-learned inverse models. Notably, DINO-
WM exhibits strong generalization capabilities compared to prior state-of-the-art
work, adapting to diverse task families such as arbitrarily configured mazes, push
manipulation with varied object shapes, and multi-particle scenarios.

1 INTRODUCTION

Robotics and embodied AI has seen tremendous progress in recent years. Advances in imitation
learning and reinforcement learning has enabled agents to learn complex behaviors across diverse
tasks Lee et al. (2024); Zhao et al. (2023); Ma et al. (2024); Hafner et al. (2024); Hansen et al.
(2024); Agarwal et al. (2022); Haldar et al. (2024). Despite this progress, generalization remains a
major challenge Zhou et al. (2023). Existing approaches predominantly rely on policies that, once
trained, operate in a feed-forward manner during deployment—mapping observations to actions
without any further optimization or reasoning. Under this framework, successful generalization
inherently requires agents to possess solutions to all possible tasks and scenarios once training is
complete, which is only possible if the agent has seen similar scenarios during training Brohan et al.
(2023b;a); Reed et al. (2022); Etukuru et al. (2024). However, it is neither feasible nor efficient to
learn solutions for all potential tasks and environments in advance.

Instead of learning the solutions to all possible tasks during training, an alternate is to fit a dynamics
model on training data and optimize task-specific behavior during runtime. These dynamics models,
also called world models Ha & Schmidhuber (2018), have a long history in robotics and control Sut-
ton (1991); Todorov & Li (2005); Williams et al. (2017). More recently, several works have shown
that world models can be trained on raw observational data Hafner et al. (2019; 2024); Micheli et al.
(2023); Robine et al. (2023); Hansen et al. (2024). This enables flexible use of model-based op-
timization to obtain policies as it circumvents the need for explicit state-estimation. Despite this,
significant challenges still remain in it use for solving general-purpose tasks.

∗Corresponding author. gz2123@nyu.edu

1

ar
X

iv
:2

41
1.

04
98

3v
1 

 [
cs

.R
O

] 
 7

 N
ov

 2
02

4



Figure 1: We present DINO-WM, a method for training visual models by using pretrained DINOv2 embed-
dings of image frames (a). Once trained, given a target observation oT , we can directly optimize agent behavior
by planning through DINO-WM using model-predictive control (b). The use of pretrained embeddings signif-
icantly improves performance over prior state-of-the-art world models (c).

To understand the challenges in world modeling, let us consider the two broad paradigms in learning
world models: online and offline. In the online setting, access to the environment is often required
so data can be continuously collected to improve the world model, which in turn improves the
policy and the subsequent data collection. However, the online world model is only accurate in the
cover of the policy that was being optimized. Hence, while it can be used to train powerful task-
specific policies , it requires retraining for every new task even in the same environment . Instead
in the offline setting, the world model is trained on an offline dataset of collected trajectories in the
environment, which removes its dependence on the task specificity given sufficient coverage in the
dataset. However, when required to solve a task, methods in this domain require strong auxiliary
information to overcome the lack of dense coverage on the task-specific domain. This auxiliary
information can take the form of expert demonstrations Pathak et al. (2018), structured keypoints Ko
et al. (2023); Wen et al. (2024), access to pretrained inverse models Du et al. (2023); Ko et al. (2023)
or dense reward functions , all of which reduce the generality of using offline world models. The
central question to building better offline world models is if there is alternate auxiliary information
that does not compromise its generality?

In this work, we present DINO-WM, a new and simple method to build task-agnostic world models
from an offline dataset of trajectories. DINO-WM models the dynamics of world on compact
embeddings of the world, rather than the raw observations themselves. For the embedding, we use
pretrained patch-features from the DINOv2 model, which provides both a spatial and object-centric
representation prior. We conjecture that this pretrained representation enables robust and consistent
world modeling, which relaxes the necessity for task-specific data coverage. Given these visual
embeddings and actions, DINO-WM uses the ViT architecture to predict future embeddings. Once
this model is trained, planning to solve tasks is constructed as visual goal reaching, i.e. to reach
a future desired goal given the current observation. Since the predictions by DINO-WM are high
quality (see Figure 4), we can simply use model-predictive control with inference-time optimization
to reach desired goals without any without any extra information during testing.

DINO-WM is experimentally evaluated on four environment suites spanning maze navigation, slid-
ing manipulation, and particle manipulation tasks. Our experiments reveal the following findings:

• DINO-WM produce high-quality future world modeling that can be measured by improved visual
reconstruction from trained decoders. On LPIPS metrics for our hardest tasks, this improves upon
prior state-of-the-art work by 56% (See Section 4.7).

• Given the latent world models trained using DINO-WM, we show high success for reaching arbi-
trary goals on our hardest tasks, improving upon prior work by 45% on average (See Section 4.3).

• DINO-WM can be trained across environment variations within a task family (e.g. different
maze layouts for navigation or different object shapes for manipulation) and achieve higher rates
of success compared to prior work (See Section 4.5).

2



Code and models for DINO-WM will be open-sourced to ensure reproducibility and videos of
policies are made available on our project website: https://dino-wm.github.io.

2 RELATED WORK

We build on top of several works in building world models, optimizing them, and using compact
visual representations. For conciseness, we only discuss the ones most relevant to DINO-WM.

Model-based Learning: Learning from models of dynamics has a rich literature spanning the fields
of control, planning, and robotics Sutton (1991); Todorov & Li (2005); Astolfi et al. (2008); Holkar
& Waghmare (2010); Williams et al. (2017). Recent works have shown that modeling dynamics
and predicting future states can significantly enhance vision-based learning for embodied agents
across various applications, including online reinforcement learning Hafner et al. (2024); Micheli
et al. (2023); Hansen et al. (2024); Robine et al. (2023), exploration Mendonca et al. (2021; 2023a);
Sekar et al. (2020), planning Finn & Levine (2017); Ebert et al. (2018); Hafner et al. (2019), and
imitation learning Pathak et al. (2018). Several of these approaches initially focused on state-space
dynamics Deisenroth & Rasmussen (2011); Chua et al. (2018); Lenz et al. (2015); Nagabandi et al.
(2019), and has since been extended to handle image-based inputs, which we address in this work.
These world models can predict future states in either pixel space Finn & Levine (2017); Ebert et al.
(2018); Ko et al. (2023); Du et al. (2023) or latent representation space Yan et al. (2021). Predicting
in pixel space, however, is computationally expensive due to the need for image reconstruction and
the overhead of using diffusion models . On the other hand, latent-space prediction is typically tied
to objectives of reconstructing images Hafner et al. (2019; 2024); Micheli et al. (2023), which raises
concerns about whether the learned features contain sufficient information about the task. Moreover,
many of these models incorporate reward prediction Hafner et al. (2024); Micheli et al. (2023);
Robine et al. (2023), or use reward prediction as auxiliary objective to learn the latent representation
Hansen et al. (2024; 2022), inherently making the world model task-specific. In this work, we aim
to decouple task-dependent information from latent-space prediction, striving to develop a versatile
and task-agnostic world model capable of generalizing across different scenarios.

Generative Models as World Models: With the recent excitement of large scale foundation mod-
els, there have been initiatives on building large-scale video generation world models conditioned on
agent’s actions in the domain of self-driving Hu et al. (2023), control Yang et al. (2023); Bruce et al.
(2024), and general-purpose video generation Liu et al. (2024). These models aim to generate video
predictions conditioned on text or high-level action sequences. While these models have demon-
strated utility in downstream tasks like data augmentations, their reliance on language conditioning
limits their application when precise visually indicative goals need to be reached. Additionally, the
use of diffusion models for video generation makes them computationally expensive, further re-
stricting their applicability for test-time optimization techniques such as MPC. In this work, we aim
to build a world model in latent space rather than in the raw pixel space, which enables more precise
planning and control.

Pretrained Visual Representations: Significant advancements have been made in the field of
visual representation learning, where compact features that capture spatial and semantic information
can be readily used for downstream tasks. Pre-trained models like ImageNet pre-trained ResNet He
et al. (2016), I-JEPA Assran et al. (2023), and DINO Caron et al. (2021); Oquab et al. (2024) for
images, as well as V-JEPA Bardes et al. (2024) for videos, and R3M Nair et al. (2022), MVP Xiao
et al. (2022) for robotics have allowed fast adaptation to downstream tasks as they contain rich spatial
and semantic information. While many of these models represent images using a single global
feature, the introduction of Vision Transformers (ViTs) Dosovitskiy et al. (2021) has enabled the
use of pre-trained patch features, as demonstrated by DINO Caron et al. (2021); Oquab et al. (2024).
DINO employs a self-distillation loss that allows the model to learn representations effectively,
capturing semantic layouts and improving spatial understanding within images. In this work, we
leverage DINOv2’s patch embeddings to train our world model, and demonstrate that it serves as a
versatile encoder capable of handling multiple precise tasks.

3

https://dino-wm.github.io


at at+1 aT−1

zt−k

zt ̂zt+1 ̂zt+2 ̂zT

p θ p θ p θ

DINOv2

ot−k⋯
ot

⋯

⋯

DINOv2

Planning loss

og

zg

Actions optimized at test-time

⋯

Figure 2: Architecture of DINO-WM. Given observations ot−k:t, we optimize the sequence of actions at:T−1

to minimize the predicted loss to the desired goal og . All forward computation is done in the latent space z.
Here pθ indicates DINO-WM’s dynamics model, which is used for making future predictions.

3 DINO WORLD MODELS

Overview and Problem formulation: Our work follows the vision-based control task framework,
which models the environment as a partially observable Markov decision process (POMDP). The
POMDP is defined by the tuple (O,A, p), whereO represents the observation space, andA denotes
the action space. The environment’s dynamics are modeled by the transition distribution p(ot+1 |
o≤t, a≤t), which predicts future observations based on past actions and observations.

In this work, we aim to learn task-agonstic world models from pre-collected offline datasets, and
use these world models to perform visual reasoning and control at test time. At test time, our system
starts from an arbitrary environment state and is provided with a goal observation in the form of an
RGB image, in line with prior works Wu et al. (2020); Ebert et al. (2018); Mendonca et al. (2023b),
and is asked to perform a sequence of actions a0, ..., aT such that the goal state can be achieved. This
approach differs from world models used in online reinforcement learning (RL) where the objective
is to optimize rewards for a fixed set of tasks at hand Hafner et al. (2024); Hansen et al. (2024),
or from text-conditioned world models, where goals are specified through text prompts Du et al.
(2023); Ko et al. (2023).

3.1 DINO-BASED WORLD MODELS (DINO-WM)

We model the dynamics of the environment in the latent space. More specifically, at each time step
t, our world model consists of the following components:

Observation model: zt ∼ encθ(zt | ot)
Transition model: zt+1 ∼ pθ(zt+1 | zt−H:t, at−H:t)

Decoder model (optional for visualization): ôt ∼ qθ(ot | zt)

where the observation model encodes image observations to latent states zt, and the transition model
takes in a history of past latent states of length H . The decoder model takes in a latent zt, and
reconstruct the image observation ot. We use θ to denote the parameters of these models. Note that
our decoder is entirely optional, as the training objectives for the decoder is independent for training
the rest part of the world model. This eliminates the need to reconstructing images both during
training and testing, which reduces computational costs compared to otherwise coupling together
the training of the observational model and the decoder, as in Hafner et al. (2024); Micheli et al.
(2023).

DINO-WM models only the information available from offline trajectory data in an environment,
in contrast to recent online RL world models that also require task-relevant information, such as
rewards Hansen et al. (2022; 2024); Hafner et al. (2020), discount factors Hafner et al. (2022);
Robine et al. (2023), and termination conditions Hafner et al. (2024); Micheli et al. (2023).

3.1.1 OBSERVATION MODEL

With the goal of learning a generic world model across many environments and the real world, we
argue that the observation model should 1) be task and environment independent, and 2) contain

4



rich spatial information which is crucial in navigation and manipulation tasks. Contrary to previous
works where the observation model is always learned for the task at hand Hafner et al. (2024), we
argue instead that it is not always possible for world models to learn an observation model from
scratch when facing a new environment, as perception is a general task that can be learned from
the large corpus of internet data. Therefore, we choose the out-of-the-box pre-trained DINOv2
model as our world model’s observation model, as it has been shown to excel at object detection,
semantic segmentation, and depth estimation tasks which require substantial spatial understanding.
The observation model is kept frozen throughout both training and testing time. At each time step t,
it encodes an image ot to patch embeddings zt ∈ RN×E , where N denotes the number of patches,
and E denotes the embedding dimension. This process is visualized in Figure 2.

3.1.2 TRANSITION MODEL

We adopt the ViT Dosovitskiy et al. (2021) architecture for the transition model as it is a natural
choice for processing patch features. However, a few modifications are required to the architecture
to allow for additional conditioning on proprioception and controller actions.

Our transition model takes in a history of past latent states zt−H:t−1 and actions at−H:t−1, where
H is a hyperparameter denoting the context length of the model, and predicts the latent state at next
time step zt. To properly capture the temporal dependencies, where the world state at time t should
only depend on previous observations and actions, we implement a causal attention mechanism in
the ViT model, enabling the model to predict latents autoregressively at a frame level. Specifically,
each patch vector zit for the latent state zt attends to {zit−H:t−1}Ni=1. This is different from past
work IRIS Micheli et al. (2023) which similarly represent each observation as a sequence of vectors,
but autoregressively predict zit at a token level, attending to {zit−H:t−1}Ni=1 as well as {zit}<k

i=1.
We argue that predicting at a frame level and treating patch vectors of one observation as a whole
better captures global structure and temporal dynamics, modeling dependencies across the entire
observation rather than isolated tokens, leading to improved temporal generalization.

To model the effect of the agent’s action to the environment, we condition the world model’s pre-
dictions on these actions. Specifically, we concatenate the K-dimensional action vector, mapped
from the original action representation using a multi-layer perceptron (MLP), to each patch vector
zit for i = 1, . . . , N . When proprioceptive information is available, we incorporate it similarly by
concatenating it to the observation latents, thereby integrating it into the latent states.

We train the world model with teacher forcing. During training, we slice the trajectories in to
segments of length H +1, and compute a latent consistency loss on each of the H predicted frames.
For each frame, we compute

Lpred = ∥pθ (encθ(ot−H:t), ϕ(at−H:t))− encθ (ot+1)∥2 (1)
where ϕ is the action encoder model that can map actions to higher dimensions. Note that our world
model training is entirely performed in latent space, without the need to reconstruct the original
pixel images.

3.1.3 DECODER FOR INTERPRETABILITY

To aid in visualization and interpretability, we use a stack of transposed convolution layers to decode
the patch representations back to image pixels, similar as in Razavi et al. (2019). Given a pre-
collected dataset, we optimize the parameters θ of the decoder qθ with a simple reconstruction loss
defined as:

Lrec = ∥qθ(zt)− ot∥2 , where zt = encθ(ot) (2)
The training of the decoder is entirely independent of the transition model training, offering several
advantages: 1) The quality of the decoder does not affect the world model’s reasoning and planning
capabilities for solving downstream tasks, and 2) During planning, there is no need to reconstruct
raw pixel images, thereby reducing computational costs. Nevertheless, the decoder remains valuable
as it enhances the interpretability of the world model’s predictions.

3.2 VISUAL PLANNING WITH DINO-WM

Arguably, to evaluate the quality of the world model, it needs to be able to allow for downstream rea-
soning and planning. A standard evaluation metric is to perform trajectory optimization at test time

5



Figure 3: We evaluate DINO-WM on 5 environment suites, from left to right: PointMaze, Push-T, Two Room,
Rope Manipulation, and Granular Manipulation.

with these world models and measure the performance. While the planning methods themselves are
fairly standard, it serves as a means to emphasize the quality of the world models. For this purpose,
our world model receives the current observation o0 and a goal observation og , both represented as
RGB images. We formulate planning as the process of searching for a sequence of actions that the
agent would take to reach og . To achieve this, we employ model predictive control (MPC), which
facilitates planning by considering the outcomes of future actions.

We utilize the cross-entropy method (CEM), a stochastic optimization algorithm, to optimize the
sequence of actions at each iteration. The planning cost is defined as the mean squared error (MSE)
between the current latent state and the goal’s latent state, given by

C = ∥ẑT − zg∥2 , where ẑt = p(ẑt−1, at−1), ẑ0 = enc(o0), zg = enc(og).

The MPC framework and CEM optimization procedure is detailed in Appendix A.4.1. Since our
world model is differentiable, a possibly more efficient approach is to optimize this objective through
gradient descent (GD), allowing the world model to directly guide the agent toward a specific goal.
The details of GD are provided in Appendix A.4.2. However, we empirically observe that CEM
outperforms GD in our experiments. We hypothesize this is due to our choice to not constrain
the terrain smoothness of the world model during training, potentially leading to issues with the
gradient. Full results for both planners can be found in Appendix A.4.3.

4 EXPERIMENTS

Our experiments are designed to address the following key questions: 1) Can we effectively train
DINO-WM using pre-collected offline datasets? 2) Once trained, can DINO-WM be used for
visual planning? 3) To what extent does the quality of the world model depend on pre-trained visual
representations? 4) Does DINO-WM generalize to new configurations, such as variations in spatial
layouts and object arrangements? To answer these questions, we train and evaluate DINO-WM
across five environment suites (full description in Appendix A.1) and compare it to a variety of
state-of-the-art world models that model the world both in latent space and in raw pixel space.

4.1 ENVIRONMENTS AND TASKS

We consider five environment suites in our evaluations spanning simple navigation environments
and manipulation environments with varying dynamics complexity. For all environments, the obser-
vation space is RGB images of size (224, 224).

a) Point Maze: A simple 2D point maze navigation environment in the D4RL suite Fu et al.
(2021). A point agent with 2-dimensional action space moves in a U-shape maze. The agent’s
dynamics incorporate physical properties such as velocity, acceleration, and inertia, making the
movement realistic. The objective of the task is to navigate the maze and reach arbitrary goal
locations from arbitrary starting location.

b) Push-T: This manipulation environment was introduced in Chi et al. (2024) to study precise
manipulation. The environment features a pusher agent interacting with a T-shaped block. The
goal is to guide both the agent and the T-block from a randomly initialized state to a known
feasible target configuration within 25 steps. The task requires both the agent and the T to
match the target locations. Unlike previous setups, the fixed green T no longer represents the

6



target position for the T-block but serves purely as a visual anchor for reference. Success requires
precise understanding of the contact-rich dynamics between the agent and the object, making it
a challenging test for visuomotor control and object manipulation. We also introduce a variant
of this where we have multiple object shapes.

c) Wall: This custom 2D navigation environment featuring two rooms separated by a wall with a
door opening. The task requires the agent to navigate from a randomized starting location in one
room to a goal in the other room, which requires the agent to pass through the door. We introduce
a variant of this environment where the positions of the wall and door are randomized to assess
the model’s ability to generalize to novel configurations of familiar environment dynamics.

d) Rope Manipulation: This task is simulated with Nvidia Flex Zhang et al. (2024) and consists
of an XArm interacting with a rope placed on a tabletop. The objective is to move the rope from
an arbitrary start configuration to a specified goal configuration.

e) Granular Manipulation: Granular manipulation uses the same setting as Rope manipulation
and manipulates about a hundred particles to form desired shapes.

4.2 BASELINES

We compare DINO-WM with the following state-of-the-art models commonly used for control:

a) IRIS Micheli et al. (2023): IRIS employs a discrete autoencoder to translate visual inputs into
tokens, and a GPT Transformer that predicts tokens of future observations. It combines these
components to learn policies and value functions through imaginative procedures.

b) DreamerV3 Hafner et al. (2024): DreamerV3 learns a world model to interpret visual inputs
into categorical representation. It predicts future representations and rewards based on given
action and trains an actor-critic policy from its imagined trajectories.

c) TD-MPC2 Hansen et al. (2024) : TD-MPC2 learns a decoder-free world model in latent space
and uses reward signals to optimize the latents. It serves as a strong baseline for reconstruction-
free world modeling.

d) AVDC Ko et al. (2023): AVDC leverages a diffusion model to generate an imagined video
of task execution based on initial observation and a textual goal description. It then estimates
optical flow between frames to capture object movements and generates robot arm commands.

4.3 OPTIMIZING BEHAVIORS WITH DINO-WM

With a trained world model, we study if DINO-WM be used for zero-shot planning directly in the
latent space.

For the PointMaze, Push-T, and Wall environments, we sample 50 initial and goal states to measure
the success rate across all instances. Due to the environment stepping time for the Rope and Granular
environments, we evaluate the Chamfer Distance (CD) on 10 instances for them. In the Granular
environment, we sample a random configuration from the validation set, with the goal of pushing
the materials into a square shape at a randomly selected location and scale.

Table 1: Planning results for offline world models on five control environments.

Model PointMaze PushT Wall Rope Granular
SR ↑ SR ↑ SR ↑ CD ↓ CD ↓

IRIS 0.74 0.32 0.04 1.11 0.37
DreamerV3 1.00 0.04 1.00 2.49 1.05
TD-MPC2 0.00 0.00 0.00 2.52 1.21
Ours 0.98 0.90 0.96 0.41 0.26

As seen in Table 1, on simpler environments such as Wall and PointMaze, DINO-WM is on par
with state-of-art world models like DreamerV3. However, DINO-WM significantly outperforms
prior work at manipulation environments where rich contact information and object dynamics need
to be accurately inferred for task completion. We notice that for TD-MPC2, the lack of reward

7



Figure 4: Openloop rollout of world models trained with various pre-trained encoders on Push-T and Granular
environment. For each trajectory, the model is given the first frame as well as sequence of actions. The world
models performs openloop rollout with these actions, and the images are reconstructed by a pre-trained decoder.
For each environment, the bottom row denotes the ground truth. DINO-WM (Ours) rollouts are bolded and
are visually indistinguishable from the ground truth observations.

Figure 5: Planning visualizations for PointMaze, Push-T, and Granular, on randomly sampled initial and goal
configurations. The task is defined by Start and Goal, denoting the initial and goal observations. Final shows
the final state the system arrives at after planning with each world model. For comparison, we show the best
performing world models DINO CLS and DreamerV3.

signal makes it difficult to learn good latent representations, which subsequently results in poor
performance. Visualizations of some planning results can be found in Figure 5.

8



Figure 6: Training and testing visualizations for WallRandom, PushObj and GranularRandom. Test setups are
highlighted in blue boxes, showcasing unseen configurations for assessing the model’s generalization ability.

4.4 DOES PRE-TRAINED VISUAL REPRESENTATIONS MATTER?

We use different pre-trained general-purpose encoders as the observation model of the world model,
and evaluate their downstream planning performance. Specifically, we use the following encoders
commonly used in robotics control and general perception: R3M Nair et al. (2022), ImageNet pre-
trained ResNet-18 Russakovsky et al. (2015); He et al. (2016) and DINO CLS Caron et al. (2021).
Detailed descriptions of these encoders are in Appendix A.3.

Table 2: Planning results for world models with various pre-trained encoders.

Model PointMaze PushT Wall Rope Granular
SR ↑ SR ↑ SR ↑ CD ↓ CD ↓

R3M 0.94 0.42 0.34 1.13 0.95
ResNet 0.98 0.2 0.12 1.08 0.90
DINO CLS 0.96 0.44 0.58 0.84 0.79
DINOPatch (Ours) 0.98 0.90 0.96 0.41 0.26

In the PointMaze task, which involves simple dynamics and control, we observe that world models
with various observation encoders all achieve near-perfect success rates. However, as the envi-
ronment’s complexity increases—requiring more precise control and spatial understanding—world
models that encode observations as a single latent vector show a significant drop in performance. We
posit that patch-based representations better capture spatial information, in contrast to models like
R3M, ResNet, and DINO CLS, which reduce observations to a single global feature vector, losing
crucial spatial details necessary for manipulation tasks.

4.5 GENERALIZING TO NOVEL ENVIRONMENT CONFIGURATIONS

We would like to measure the generalization capability of our world models not just across different
goals in an environment, but across different environments themselves. For this we construct three
families of environments, where the world model will be deployed in an unseen environment for
unseen goals. Our families of environments consist of WallRandom, PushObj, and GranularRandom
with detailed descriptions in Appendix A.2. Visualizations of training and testing examples are
shown in Figure 6.

From Table 3, we observe that DINO-WM demonstrates significantly better performance in the
WallRandom environment, indicating that the world model has effectively learned the general con-
cepts of walls and doors, even when they are positioned in locations unseen during training. In
contrast, other methods struggle to accurately identify the door’s position and navigate through it.
The PushObj task remains challenging for all methods, as the model was only trained on the four
object shapes, which makes it difficult to infer physical parameters like the center of gravity and iner-
tia precisely. In GranularRandom, the agent encounters fewer than half the particles present during
training, resulting in out-of-distribution images compared to the training instances. Nevertheless,

9



Table 3: Planning results for offline world models on three suites with unseen environment configurations.

Model WallRandom PushObj GranularRandom
SR ↑ SR ↑ CD ↓

IRIS 0.06 0.14 0.86
Dreamerv3 0.76 0.18 1.53
R3M 0.40 0.16 1.12
ResNet 0.40 0.14 0.98
DINO CLS 0.64 0.18 1.36
Ours 0.82 0.34 0.63

Figure 7: Comparison of plans generated by DINO-WM and AVDC, a diffusion-based generative model.

DINO-WM accurately encodes the scene and successfully gathers the particles into a designated
square location with the lowest Chamfer Distance (CD) compared to the baselines, demonstrating
better scene understanding. We hypothesize that this is due to DINO-WM’s observation model
encoding the scene as patch features, making the variance in particle number still within the distri-
bution for each image patch.

4.6 QUALITATIVE COMPARISONS WITH GENERATIVE VIDEO MODELS

Given the prominence of generative video models, it is reasonable to presume that they could read-
ily serve as world models. To investigate the usefulness of DINO-WM over such video generative
models, we compare it with imagined rollouts from AVDC Ko et al. (2023), a diffusion-based gen-
erative model. As seen in Figure 7, we find that the diffusion model trained on benchmarks produce
future images that are mostly visually realistic, however they are not physically plausible as we
can see that large changes can occur in a single timestep of prediction, and may have difficulties in
reaching to the exact goal state. Potentially stronger generative models in the future could alleviate
this issue.

We also compare DINO-WM with a variant of AVDC, where the diffusion model is trained to
generate the next observation ot+1 conditioned on the current observation ot and action at, rather
than generating an entire sequence of observations at once conditioned on a text goal. As detailed in
Appendix A.5, it can be seen that the action-conditioned diffusion model diverges from the ground
truth observations over long-term predictions, making it insufficient for accurate task planning.

4.7 DECODING AND INTERPRETING THE LATENTS

Although DINO-WM operates in latent space and the observation model is not trained with pixel
reconstruction objectives, training a decoder is still valuable for interpreting the model’s predictions.
We evaluate the image quality of predicted futures across all models and find that our approach out-
performs others, even those whose encoders are trained with environment-specific reconstruction
objectives. We show openloop rollout visualizations in Figure 4. This demonstrates the robust-
ness of DINO-WM despite the lack of explicit pixel-level supervision. We report two key metrics:
Structural Similarity Index (SSIM) Wang et al. (2004) and Learned Perceptual Image Patch Simi-
larity (LPIPS) Zhang et al. (2018) on the reconstruction of world models’ predicted future states.

10



SSIM measures the perceived quality of images by evaluating structural information and luminance
consistency between predicted and ground-truth images, with higher values indicating greater sim-
ilarity. LPIPS, on the other hand, assesses perceptual similarity by comparing deep representations
of images, with lower scores reflecting closer visual similarity.

Table 4: Comparison of world models across different environments on LPIPS and SSIM metrics.

LPIPS ↓ SSIM ↑
Method PushT Wall Rope Granular PushT Wall Rope Granular
R3M 0.045 0.0083 0.023 0.08 0.956 0.994 0.982 0.917
ResNet 0.063 0.0024 0.025 0.08 0.950 0.996 0.980 0.915
DinoCLS 0.039 0.004 0.029 0.086 0.973 0.996 0.980 0.912
AVDC 0.046 0.030 0.060 0.106 0.959 0.983 0.979 0.909
Ours 0.007 0.0016 0.009 0.035 0.985 0.997 0.985 0.940

5 CONCLUSION, LIMITATIONS & FUTURE WORK

In this work, we introduce DINO-WM, a simple yet effective technique for modeling visual dy-
namics in latent space without the need for pixel-space reconstruction. We have demonstrated that
DINO-WM captures environmental dynamics and generalizes to unseen configurations, indepen-
dent of task specifications, enabling visual reasoning at test time and generating zero-shot solutions
for downstream tasks through planning. DINO-WM takes a step toward bridging the gap between
task-agnostic world modeling and reasoning and control, offering promising prospects for generic
world models in real-world applications. For limitations, DINO-WM still relies on the availabil-
ity of ground truth actions from agents, which may not always be feasible when training with vast
video data from the internet. Additionally, while we currently plan in action space for downstream
task solving, an extension of this work could involve developing a hierarchical structure that inte-
grates high-level planning with low-level control policies to enable solving more fine-grained control
tasks.

11



ETHICS STATEMENT

This work explores creation of latent world models that can be used for better downstream planning.
While we do not anticipate a potential for current misuse as this particular work, we can imagine
future work that builds on this can lead to impact in robotics. Such potential applications to robotics
open up a potential to misuse, which we acknowledge.

REPRODUCIBILITY STATEMENT

All code, models, and benchmarks produced from this project will be made open-source on our
project website. We also provide thorough textual descriptions of all experimental procedures in
the Appendix. Appendix A.1 describes our environments, data generation, and task definitions.
In Appendix A.4, we outline all the planning optimization methods that we used in this paper.
We provide further comparisons for DINO-WM and using generative models as world models in
Appendix A.5, and additional planning visualizations with DINO-WM in Appendix A.7. Finally,
Appendix A.6 provides the hyperparameters we used for training the world model for reproducing
our experiment results in Section 4.1.

REFERENCES

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision, 2022. URL https://arxiv.org/abs/2211.
07638.

Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
predictive architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15619–15629, 2023.

Alessandro Astolfi, Dimitrios Karagiannis, and Romeo Ortega. Nonlinear and adaptive control with
applications, volume 187. Springer, 2008.

Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
Assran, and Nicolas Ballas. V-JEPA: Latent video prediction for visual representation learning,
2024. URL https://openreview.net/forum?id=WFYbBOEOtv.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

12

https://arxiv.org/abs/2211.07638
https://arxiv.org/abs/2211.07638
https://openreview.net/forum?id=WFYbBOEOtv
https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817


Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bech-
tle, Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sher-
jil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satin-
der Singh, and Tim Rocktäschel. Genie: Generative interactive environments, 2024. URL
https://arxiv.org/abs/2402.15391.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers, 2021. URL https:
//arxiv.org/abs/2104.14294.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
https://arxiv.org/abs/2303.04137.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models, 2018. URL https://
arxiv.org/abs/1805.12114.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning, 2011. URL
https://api.semanticscholar.org/CorpusID:14273320.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Yilun Du, Mengjiao Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Joshua B. Tenenbaum, Dale Schu-
urmans, and Pieter Abbeel. Learning universal policies via text-guided video generation, 2023.
URL https://arxiv.org/abs/2302.00111.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control, 2018. URL
https://arxiv.org/abs/1812.00568.

Haritheja Etukuru, Norihito Naka, Zijin Hu, Seungjae Lee, Julian Mehu, Aaron Edsinger, Chris
Paxton, Soumith Chintala, Lerrel Pinto, and Nur Muhammad Mahi Shafiullah. Robot util-
ity models: General policies for zero-shot deployment in new environments. arXiv preprint
arXiv:2409.05865, 2024.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion, 2017. URL
https://arxiv.org/abs/1610.00696.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021. URL https://arxiv.org/abs/2004.07219.

David Ha and Jürgen Schmidhuber. World models. 2018. doi: 10.5281/ZENODO.1207631. URL
https://zenodo.org/record/1207631.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels, 2019. URL https://arxiv.
org/abs/1811.04551.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination, 2020. URL https://arxiv.org/abs/1912.01603.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with dis-
crete world models, 2022. URL https://arxiv.org/abs/2010.02193.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2024. URL https://arxiv.org/abs/2301.04104.

13

https://arxiv.org/abs/2402.15391
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2303.04137
https://arxiv.org/abs/1805.12114
https://arxiv.org/abs/1805.12114
https://api.semanticscholar.org/CorpusID:14273320
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2302.00111
https://arxiv.org/abs/1812.00568
https://arxiv.org/abs/1610.00696
https://arxiv.org/abs/2004.07219
https://zenodo.org/record/1207631
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1811.04551
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/2010.02193
https://arxiv.org/abs/2301.04104


Siddhant Haldar, Zhuoran Peng, and Lerrel Pinto. Baku: An efficient transformer for multi-task
policy learning, 2024. URL https://arxiv.org/abs/2406.07539.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control, 2022. URL https://arxiv.org/abs/2203.04955.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control, 2024. URL https://arxiv.org/abs/2310.16828.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

KS Holkar and Laxman M Waghmare. An overview of model predictive control. International
Journal of control and automation, 3(4):47–63, 2010.

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shot-
ton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving, 2023.

Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B. Tenenbaum. Learning to act
from actionless videos through dense correspondences, 2023. URL https://arxiv.org/
abs/2310.08576.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H. Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions, 2024. URL https://arxiv.org/
abs/2403.03181.

Ian Lenz, Ross A. Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems, 2015. URL https://api.
semanticscholar.org/CorpusID:10130184.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on back-
ground, technology, limitations, and opportunities of large vision models, 2024. URL https:
//arxiv.org/abs/2402.17177.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models, 2024. URL https://arxiv.org/abs/2310.12931.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discover-
ing and achieving goals via world models, 2021. URL https://arxiv.org/abs/2110.
09514.

Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Alan: Autonomously exploring robotic agents
in the real world, 2023a. URL https://arxiv.org/abs/2302.06604.

Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human videos,
2023b. URL https://arxiv.org/abs/2308.10901.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els, 2023. URL https://arxiv.org/abs/2209.00588.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation, 2019. URL https://arxiv.org/abs/1909.11652.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A uni-
versal visual representation for robot manipulation, 2022. URL https://arxiv.org/abs/
2203.12601.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

14

https://arxiv.org/abs/2406.07539
https://arxiv.org/abs/2203.04955
https://arxiv.org/abs/2310.16828
https://arxiv.org/abs/2310.08576
https://arxiv.org/abs/2310.08576
https://arxiv.org/abs/2403.03181
https://arxiv.org/abs/2403.03181
https://api.semanticscholar.org/CorpusID:10130184
https://api.semanticscholar.org/CorpusID:10130184
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2310.12931
https://arxiv.org/abs/2110.09514
https://arxiv.org/abs/2110.09514
https://arxiv.org/abs/2302.06604
https://arxiv.org/abs/2308.10901
https://arxiv.org/abs/2209.00588
https://arxiv.org/abs/1909.11652
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2203.12601
https://arxiv.org/abs/2304.07193


Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation, 2018.
URL https://arxiv.org/abs/1804.08606.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2, 2019. URL https://arxiv.org/abs/1906.00446.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom
Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Had-
sell, Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022. URL
https://arxiv.org/abs/2205.06175.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions, 2023. URL https://arxiv.org/abs/2303.07109.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge, 2015. URL https://arxiv.org/
abs/1409.0575.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models, 2020. URL https://arxiv.org/
abs/2005.05960.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-optimal feedback
control of constrained nonlinear stochastic systems. In Proceedings of the 2005, American Control
Conference, 2005., pp. 300–306. IEEE, 2005.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
doi: 10.1109/TIP.2003.819861.

Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
trajectory modeling for policy learning, 2024. URL https://arxiv.org/abs/2401.
00025.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M Rehg, Byron Boots, and
Evangelos A Theodorou. Information theoretic mpc for model-based reinforcement learning. In
2017 IEEE international conference on robotics and automation (ICRA), pp. 1714–1721. IEEE,
2017.

Yilin Wu, Wilson Yan, Thanard Kurutach, Lerrel Pinto, and Pieter Abbeel. Learning to manipulate
deformable objects without demonstrations, 2020. URL https://arxiv.org/abs/1910.
13439.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control, 2022. URL https://arxiv.org/abs/2203.06173.

Wilson Yan, Ashwin Vangipuram, Pieter Abbeel, and Lerrel Pinto. Learning predictive representa-
tions for deformable objects using contrastive estimation. In Conference on Robot Learning, pp.
564–574. PMLR, 2021.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators, 2023.

Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Adaptigraph: Material-adaptive graph-based
neural dynamics for robotic manipulation, 2024. URL https://arxiv.org/abs/2407.
07889.

15

https://arxiv.org/abs/1804.08606
https://arxiv.org/abs/1906.00446
https://arxiv.org/abs/2205.06175
https://arxiv.org/abs/2303.07109
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/1409.0575
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/2005.05960
https://arxiv.org/abs/2401.00025
https://arxiv.org/abs/2401.00025
https://arxiv.org/abs/1910.13439
https://arxiv.org/abs/1910.13439
https://arxiv.org/abs/2203.06173
https://arxiv.org/abs/2407.07889
https://arxiv.org/abs/2407.07889


Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. CoRR, abs/1801.03924, 2018. URL http:
//arxiv.org/abs/1801.03924.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual ma-
nipulation with low-cost hardware, 2023. URL https://arxiv.org/abs/2304.13705.

Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle
Hatch, Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, Chelsea Finn, and Abhinav Gupta.
Train offline, test online: A real robot learning benchmark, 2023. URL https://arxiv.
org/abs/2306.00942.

16

http://arxiv.org/abs/1801.03924
http://arxiv.org/abs/1801.03924
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2306.00942
https://arxiv.org/abs/2306.00942


A APPENDIX

A.1 ENVIRONMENTS AND DATASET GENERATION

a) Point Maze: In this environment entroduced by Fu et al. (2021), the task is for a force-
actuated 2-DoF ball in the catesian directions x and y to reach a target goal. The agent’s
dynamics incorporate physical properties such as velocity, acceleration, and inertia, making
the movement realistic. We customize the environment by altering the maze configuration
to test the model’s generalization ability in unseen situations. We generate 2000 fully
random trajectories to train our world models.

b) Push-T: This environment introduced by Chi et al. (2024) features a pusher agent inter-
acting with a T-shaped block. The goal is to guide both the agent and the T-block from
a randomly initialized state to a known feasible target configuration within 25 steps. The
task requires both the agent and the T to match the target locations. Unlike previous setups,
the fixed green T no longer represents the target position for the T-block but serves purely
as a visual anchor for reference. Success requires precise understanding of the contact-rich
dynamics between the agent and the object, making it a challenging test for visuomotor con-
trol and object manipulation. Additionally, we introduce variations by altering the shape
and color of the object to assess the model’s capability to adapt to novel tasks. We generate
a dataset of 18500 samples replayed the original released expert trajectories with various
level of noise and evaluate the model’s performance across all different shapes to assess its
adaptability.

c) Wall: This custom 2D navigation environment features two rooms separated by a wall with
a door. The agent’s task is to navigate from a randomized starting location in one room to
a goal in the other, passing through the door. We present a variant where wall and door
positions are randomized, testing the model’s generalization to novel configurations. For
the fixed wall setting, we train on a fully random dataset of 2000 trajectories each with 50
time steps. For the variant with multiple training environment configurations, we generate
10240 random trajectories.

d) Rope Manipulation: Introduced in Zhang et al. (2024), this task is simulated with Nvidia
Flex Zhang et al. (2024) and consists of an XArm interacting with a soft rope placed on
a tabletop. The objective is to move the rope from an arbitrary starting configuration to a
goal configuration specified at inference time. For training, we generate a random dataset
of 1000 trajectories of 20 time steps of random actions from random starting positions,
while testing involves goal configurations set from varied initial positions, incorporating
random variations in orientation and spatial displacement.

e) Granular Manipulation: This environment uses the same simulation setup as Rope Ma-
nipulation and involves manipulating about a hundred particles to form desired shapes. The
training data consists of 1000 trajectories of 20 time steps of random actions starting from
the same initial configuration, while testing is performed on specific goal shapes from di-
verse starting positions, along with random variations in particle distribution, spacing, and
orientation.

A.2 ENVIRONMENT FAMILIES FOR TESTING GENERALIZATION

1. WallRandom: Based on the Wall environment, but with randomized wall and door positions.
At test time, the task requires navigating from a random starting position on one side of the wall
to a random position on the other side, with non-overlapping wall and door positions seen during
training.

2. PushObj: Derived from the Push-T environment, where we introduce novel block shapes,
including Tetris-like blocks and a ”+” shape. We train the model with four shapes and evaluate
on two unseen shapes. The task involves both the agent and object reaching target locations.

3. GranularRandom: Derived from the Granular environment, where we initialize the scene with
a different amount of particles. The task requires the robot to gather all particles to a square shape
at a randomly sampled location. For this task, we directly take the models that are trained with a
fixed amount of materials used in Section 4.3.

17



Visualizations can be found in Figure 6.

A.3 PRETRAINING FEATURES

a) R3M: A ResNet-18 model pre-trained on a wide range of real-world human manipulation
videos Nair et al. (2022).

b) ImageNet: A ResNet-18 model pre-trained on the ImageNet-1K dataset Russakovsky et al.
(2015).

c) DINO CLS: The pre-trained DINOv2 model provides two types of embeddings: Patch and
CLS. The CLS embedding is a 1-dimensional vector that encapsulates the global information of
an image.

A.4 PLANNING OPTIMIZATION

In this section, we detail the optimization procedures for planning in our experiments.

A.4.1 MODEL PREDICTIVE CONTROL WITH CROSS-ENTROPY METHOD

a) Given the current observation o0 and the goal observation og , both represented as RGB
images, the observations are first encoded into latent states:

ẑ0 = enc(o0), zg = enc(og). (3)

b) The planning objective is defined as the mean squared error (MSE) between the predicted
latent state at the final timestep T and the goal latent state:

C = ∥ẑT − zg∥2 , where ẑt = p(ẑt−1, at−1), ẑ0 = enc(o0). (4)

c) At each planning iteration, CEM samples a population of N action sequences, each of
length T , from a distribution. The initial distribution is set to be Gaussian.

d) For each sampled action sequence {a0, a1, . . . , aT−1}, the world model is used to predict
the resulting trajectory in the latent space:

ẑt = p(ẑt−1, at−1), t = 1, . . . , T. (5)
And the cost C is calculated for each trajectory.

e) The top K action sequences with the lowest cost are selected, and the mean and covariance
of the distribution are updated accordingly.

f) A new set of N action sequences is sampled from the updated distribution, and the pro-
cess repeats until success is achieved or after a fixed number of iterations that we set as
hyperparameter.

g) After the optimization process is done, the first k actions a0, ...ak is executed in the envi-
ronment. The process then repeats at the next time step with the new observation.

A.4.2 GRADIENT DESCENT:

Since our world model is differentiable, we also consider an optimization approach using Gradient
Descent (GD) which directly minimizes the cost by optimizing the actions through backpropagation.

a) We first encode the current observation o0 and goal observation og into latent spaces:
ẑ0 = enc(o0), zg = enc(og). (6)

b) The objective remains the same as for CEM:

C = ∥ẑT − zg∥2 , where ẑt = p(ẑt−1, at−1), ẑ0 = enc(o0). (7)

c) Using the gradients of the cost with respect to the action sequence {a0, a1, . . . , aT−1}, the
actions are updated iteratively:

at ← at − η
∂C
∂at

, t = 0, . . . , T − 1, (8)

where η is the learning rate
d) The process repeats until a fixed number of iteractions is reached, and we execute the first

k actions a0, ..., ak in the enviornment, where k is a pre-determined hyperparameter.

18



A.4.3 PLANNING RESULTS

Here we present the full planning performance using various planning optimization methods. CEM
denotes the setting where we use CEM to optimize a sequence of actions, and execute those actions
in the environment without any correction or replan. Similarly, GD denotes optimizing with gradient
decent and execute all planned actions at once in an open-loop way. MPC denotes allowing replan
and receding horizon with CEM for optimization.

Table 5: Planning results of DINO-WM

PointMaze Push-T Wall Rope Granular

CEM 0.8 0.86 0.74 NA NA
GD 0.22 0.28 NA NA NA
MPC 0.98 0.90 0.96 0.41 0.26

A.5 COMPARISON WITH ACTION-CONDITIONED GENERATIVE MODELS

We compare DINO-WM with a variant of AVDC, where the diffusion model is trained to gener-
ate the next observation ot+1 conditioned on the current observation ot and action at, rather than
generating an entire sequence of observations at once conditioned on a text goal. We then present
openloop rollout results on validation trajectories using this action-conditioned diffusion model,
with visualizations shown in Figure 8. It can be seen that the action-conditioned diffusion model
diverges from the ground truth observations over long-term predictions, making it insufficient for
accurate task planning.

A.6 HYPERPARAMETERS AND IMPLEMENTATION

We present the DINO-WM hyperparameters and relevant implementation repos below. We train
the world models for all environments with the same hyperparameters.

Table 6: Environment-dependent hyperparame-
ters for DINO-WM training

H

PointMaze 3
Push-T 3
Wall 1
Rope 1
Granular 1

Table 7: Shared hyperparameters for DINO-WM
training

Name Value

Image size 224
Optimizer AdamW
Decoder lr 3e-4
Predictor lr 5e-5
Action encoder lr 5e-4
Action emb dim 10
Epochs 100
Batch size 32

• DINOv2: https://github.com/facebookresearch/dinov2
• DreamerV3:https://github.com/NM512/dreamerv3-torch
• AVDC: https://github.com/flow-diffusion/AVDC
• R3M: https://github.com/facebookresearch/r3m/

We base our predictor implementation on https://github.com/lucidrains/
vit-pytorch/.

A.7 ADDITIONAL PLANNING VISUALIZATIONS

We present additional visualizations for planning with DINO-WM. In this setting, all planning
instances share the same initial observations but have different goal observations to demonstrate

19

https://github.com/facebookresearch/dinov2
https://github.com/NM512/dreamerv3-torch
https://github.com/flow-diffusion/AVDC
https://github.com/facebookresearch/r3m/
https://github.com/lucidrains/vit-pytorch/
https://github.com/lucidrains/vit-pytorch/


Figure 8: Openloop rollout on PushT with DINO-WM and action-conditioned AVDC (AVDC-AC). For each
trajectory, the model is given the first frame as well as sequence of actions. The world models performs
openloop rollout with these actions.

DINO-WM’s generalization capabilities in planning. We show trajectory pairs to compare the en-
vironment’s observations after executing a sequence of planned actions with DINO-WM’s imag-
ined trajectories. The left-most column denotes the initial observations, and the right-most shaded
column denotes the goal observations. Each pair of rows represents a planning instance: the top
(shaded) row shows the environment’s observation after executing 25 planned actions, and the bot-
tom row shows the world model’s imagined observations.

20



Figure 9: Trajectories planned with DINO-WM on PushT with the same initial states but different goal states.

21



Figure 10: Trajectories planned with DINO-WM on PointMaze with the same initial states but different goal
states.

22


	Introduction
	Related Work
	DINO World Models
	DINO-based World Models (DINO-WM)
	Observation Model
	Transition Model
	Decoder for Interpretability

	Visual Planning with DINO-WM

	Experiments
	Environments and Tasks
	Baselines
	Optimizing Behaviors with DINO-WM
	Does pre-trained visual representations matter?
	Generalizing to Novel Environment Configurations
	Qualitative comparisons with generative video models
	Decoding and Interpreting the Latents

	Conclusion, Limitations & Future Work
	Appendix
	Environments and Dataset Generation
	Environment families for testing generalization
	Pretraining features
	Planning Optimization
	Model Predictive Control with Cross-Entropy Method
	Gradient Descent: 
	Planning Results

	Comparison with Action-Conditioned Generative Models
	Hyperparameters and implementation
	Additional Planning Visualizations


