
DA-Code: Agent Data Science Code Generation Benchmark
for Large Language Models

Yiming Huang1,2*, Jianwen Luo1,2*, Yan Yu1, Yitong Zhang1, Fangyu Lei1,2,
Yifan Wei1,2, Shizhu He1,2, Lifu Huang3, Xiao Liu4, Jun Zhao1,2, Kang Liu1,2,5†

1 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,
Institute of Automation, Chinese Academy of Sciences,

2 School of Artificial Intelligence, University of Chinese Academy of Sciences,
3 University of California, Davis 4 Microsoft Research Asia

5 Shanghai Artificial Intelligence Laboratory

Abstract

We introduce DA-Code, a code generation
benchmark specifically designed to assess
LLMs on agent-based data science tasks. This
benchmark features three core elements: First,
the tasks within DA-Code are inherently chal-
lenging, setting them apart from traditional
code generation tasks and demanding advanced
coding skills in grounding and planning. Sec-
ond, examples in DA-Code are all based on
real and diverse data, covering a wide range
of complex data wrangling and analytics tasks.
Third, to solve the tasks, the models must uti-
lize complex data science programming lan-
guages, to perform intricate data processing
and derive the answers. We set up the bench-
mark in a controllable and executable envi-
ronment that aligns with real-world data anal-
ysis scenarios and is scalable. The annota-
tors meticulously design the evaluation suite
to ensure the accuracy and robustness of the
evaluation. We develop the DA-Agent base-
line. Experiments show that although the base-
line performs better than other existing frame-
works, using the current best LLMs achieves
only 30.5% accuracy, leaving ample room for
improvement. We release our benchmark at
https://da-code-bench.github.io.

1 Introduction

Data science is pivotal in extracting insights from
data (Wang et al., 2021), fundamentally shaping
decision-making and knowledge discovery. Tradi-
tionally, this field has required high proficiency in
programming and specialized knowledge, which
poses significant barriers to non-experts. However,
the rapid advancement of Large Language Mod-
els (LLMs) (OpenAI, 2023; Anthropic, 2024; Team
et al., 2023) has greatly enhanced their capabilities
in code generation, grounding, and planning. This
raises an intriguing question: Can LLMs become

*Equal contribution.
†Corresponding authors.

Figure 1: DA-Agent tackling an example in DA-Code.

ar
X

iv
:2

41
0.

07
33

1v
2

 [
cs

.C
L

]
 1

1
O

ct
 2

02
4

https://da-code-bench.github.io

autonomous data scientists, capable of independent
decision-making and solving agent data science
problems?

We define the agent data science task as one
that encompasses challenging task, diverse data
source, and complex solution, as shown in Figure
1. First, a code agent task is designed to explore
data and utilize programming techniques to tackle
challenging objectives, rather than simply trans-
lating explicit natural language instructions into
code. Unlike previous benchmarks like DS-1000
(Lai et al., 2023) and Arcade (Yin et al., 2023),
which focus on natural language grounding (Xie
et al., 2022) and transforming instructions into ex-
ecutable code, our approach aligns more closely
with real-world programming scenarios. Second,
the data source is diverse, encompassing a vari-
ety of information and data from real program-
ming scenarios—beyond just a notebook environ-
ment (Yin et al., 2023) or code-completion tasks
(Lai et al., 2023). It includes different data types
such as databases, spreadsheets, documents, code,
and more. Moreover, these resources can be re-
plete with distractions and extraneous information.
Third, for task solutions, data analysts must engage
in a step-by-step thinking and reasoning process
while programming. This involves inspecting data,
writing minimal code, and continuous debugging.
Additionally, they utilize Python, SQL, and Bash,
which are commonly used programming languages
in data science, to complete the tasks.

To achieve this goal, we introduce DA-Code, a
benchmark for evaluating LLM data analysis abil-
ity, with carefully defined task scenarios. DA-Code
contains 500 complex task examples, originating
from real, challenging data analysis tasks, encom-
passing three main categories: data wrangling
(DW), machine learning (ML) and exploratory
data analysis (EDA). It covers the entire data anal-
ysis pipeline. Data wrangling includes a variety
of tasks such as data loading, data cleaning, and
data merging, specifically targeting raw data in
files and databases. EDA aims to gain insights and
analysis using the given information and resources.
It includes a wide variety of data analysis tasks
using programming languages such as SQL and
Python to get insights from data. For ML tasks,
how the model governs the entire ML pipeline is
a promising research direction. Each example in
DA-Code is meticulously designed according to the
standards of the code agent task mentioned above,
ensuring high quality and complexity. We meticu-

lously design an evaluation suite for each example,
and conduct red teaming experiments to validate
the robustness of the evaluations.

DA-Code is inspired by the definitions used in
intercode (Yang et al., 2024b). We create an inter-
active sandbox environment and implement DA-
Code within this setting. This setup allows LLM-
s/Agents to explore the environment and engage
in autonomous reasoning to complete tasks. This
enables researchers to conduct their explorations in
this user-friendly interactive environment. Based
on this setting, we develop a code agent baseline
framework. This is capable of writing Python and
SQL code and can interact with command lines,
databases, and other interfaces. As shown in Fig-
ure 1, for this EDA task, the agent needs to explore
all the resources provided to it, decide which files
to use, write the code, and autonomously complete
the task step by step.

We evaluate multiple state-of-the-art language
models on DA-Code, and the experimental results
indicate that achieving high scores on these tasks
is challenging. For LLMs and LLM-Agents, au-
tonomously completing real and complex data sci-
ence tasks continues to be a significant challenge.
Overall, DA-Code represents an agent data science
benchmark with challenging real-world settings,
providing valuable data resources for current LLM-
agents aspiring to become data scientists.

2 Data Science Agent Task

In this section, we introduce the data science agent
task and categories of tasks for DA-Code.

2.1 Task Definition

The traditional coding task can be represented as:
code = f(C, I)

where code is the result of a function f that trans-
lates contextual information C (environmental fac-
tors, constraints) and specific instructions I (re-
quirements, tasks) into executable code.

In our coding task, interaction with the environ-
ment involves iterative code modification. The fol-
lowing sets are defined: S (state space), A (action
space), O (observation space), C (code space), and
H (history space) defined as H : A× C ×O. The
process can be represented as follows:

Action Generation. The agent takes the mem-
ory mt ∈ H and current state st ∈ S to generate
the next action at+1 ∈ A and the updated code
codet+1 ∈ C. We use the function f∗ : H× S →

Manually Selecting Data Source Rewrite Task or Define New Task

Task Implementation Evaluation Setup Cross Validation and Redteam Test

Real
Complex
Timely
Coding

NYC Parking Data
NYC Taxi Data
NYC Restaurant Data

Rewrite Task

Standardizing color names.you will assign a
consistent gray vehicle_color value by identifying
similar strings that represent the same color ...

Define New Task
Abstract the Instruction

Please clean the vehicle_color
column in NYC Parking Database

Are bikes or taxis faster? Comparing the
average duration of the most popular Citi
Bike routes

Complex instruction

Environment Setting

You need to standardize the `vehicle_color` field
in the `parking_violation` database by updating ...

Evaluation Scripts

Transform the
instruction

Setup in
Environment

• Table-based
• Chart-based
• Text-based

Check the columns in DB

Annotator Double Check

1. Is the task design reasonable?
2. Is the environment setup appropriate?
3. Is the evaluation robust?

Score-function

Figure 2: Annotation pipeline of DA-Code. See the start of Section 3.5 for a detailed description.

A× C to represent this process.
at+1, codet+1 = f∗(mt, st)

Action Execution. The environment then inter-
prets the agent’s actions and code, executing them
on the current state st to update the environment
and obtain the new state st+1. It also returns the
observation ot+1 ∈ O. This process can be repre-
sented by the function g : A× C × S → O × S.

ot+1, st+1 = g(at+1, codet+1, st)

Memory Update. Subsequently, the agent’s
memory mt is updated to mt+1 with the action
at+1, code codet+1, and observation ot+1. This up-
date is constrained by the memory window size k.
If the updated memory length exceeds k, the agent
will discard the earliest memory. This process can
be represented by the function h : H → H.

mt+1 = h(mt ∪ {(at+1, codet+1, ot+1)})
This iterative process allows the agent to con-

tinually adapt and improve its code based on the
evolving historical context until the agent takes
an action that marks the completion of the task or
reaches the maximum time set by the environment.

2.2 Task Categories
DA-Code focuses on data science tasks and cat-
egorizes them into three major categories: data
wrangling, machine learning, and exploratory data
analysis.
Data Wrangling. Data wrangling is the process
of transforming and mapping raw data from one
form into another to prepare it for analysis. It in-
volves cleaning, loading, and transforming raw data
into a more usable format. This can include han-
dling missing values, correcting errors, and merg-
ing datasets from different sources. The goal of

data wrangling is to ensure that the data is consis-
tent and easily accessible for tasks such as analytics,
reporting, or machine learning applications. The
examples are shown in Figure 2 and Figure 4.
Exploratory Data Analysis. Exploratory Data
Analysis is a technique used in data analysis to un-
derstand the main characteristics and get insights
from a dataset. There are many types of EDA tasks,
which require LLMs to use a combination of vari-
ous Python libraries and SQL to complete complex
data analysis tasks. The types of tasks included
in DA-Code are statistical analysis, data manipu-
lation, data insights, and data visualization. The
example in Figure 1 is typical of this type of task.

• Data Manipulation is designed to perform
intricate data operations using SQL and Pan-
das, efficiently processing large datasets. It
primarily focuses on counting, summarizing
data, and refining presentation formats.

• Data Insights focuses on tasks involving real
data and issues encountered in actual scenar-
ios. These problems do not provide clear solu-
tions, necessitating thoughtful consideration
and autonomous decision-making in coding
for data analysis. The results are presented
primarily in tables, or alternatively, in text for-
mat, to address and answer these questions.

• Visualization is similar to the previous cat-
egory, with the unique aspect being that the
results are presented in the form of charts.

• Statistical Analysis typically requires ad-
vanced knowledge of statistics and mathemat-
ics, involving the use of mathematical indica-
tors for analysis.

Benchmark Control.
Exec. Env?

Need
Planning?

#Files
per/ Task Fields # instance # Average lines

of solutions
Evaluation

Method

DS-1000 (Lai et al., 2023) % % 1 Code Completion 1000 3.6 Pass@K
Arcade (Yin et al., 2023) % % 1 Notebook Completion 1078 2.3 Output Match
MLAgentBench (Huang et al., 2023) ✓ ✓ 4.8 ML Project 13 - Evaluation Scripts
DA-Bench (Hu et al., 2024) ✓ % 1 CSV Analysis 257 ∼20 Output Match
DA-Code ✓ ✓ 5.7 Data Analysis Project 500 85 Exec-based Eval

Table 1: Comparisons of several data science code generation benchmarks.

Statistic # Task

Total tasks 500 (100%)
- Data Wrangling 100 (20.0%)
- Machine Learning 100 (20.0%)
- Data Manipulation 73 (14.6%)
- Data Insights 79 (15.8%)
- Visualization 70 (14.0%)
- Statistical Analysis 78 (15.6%)

- Easy Level 105 (22.8%)
- Medium Level 292 (57.3%)
- Hard Level 103 (19.9%)

Table 2: Data Statistics of Examples in DA-Code.

Machine Learning. ML is a crucial data analy-
sis technique, indispensable for automating and en-
hancing decision-making processes. In DA-Code,
we select three foundational task categories: clas-
sification, regression, and clustering, from two
sources: regular dataset tasks and competition
tasks. The reference solutions for these tasks re-
quire the use of corresponding ML algorithms (ex-
cluding deep learning) to complete the tasks.

The details and examples of all task types are
provided in Appendix A.

3 DA-Code

In this section, we describe the statistical informa-
tion and construction pipeline of DA-Code.

3.1 Challenging Tasks and Diverse Data

In Table 1 and 2, we conduct a statistical analysis
where the distribution of tasks among DW, ML,
and EDA is in a 1:1:3 ratio. In contrast, DA-Code
integrates a diverse array of agent tasks across the
entire data science pipeline, covering a broad spec-
trum of task types and data types (Figure 7), and
result formats (such as Tables, Databases, Charts,
Text, etc.). During the annotation process, our ex-
perienced annotators also categorize the difficulty
of each task into three levels: easy, medium, and
hard. Additionally, each example in DA-Code in-
volves multiple files, averaging 5.7 files per task.
This setup more closely mirrors real data analysis
scenarios.

3.2 Complex Solution
As shown in Table 1, we curate solution codes for
each example, requiring an average of 85 lines of
code to complete the tasks. Unlike previous bench-
marks, DA-Code uses a controllable executable en-
vironment to construct complex coding tasks that
require interaction with the environment, planning
and coding to complete tasks. Many tasks require
the use of languages like SQL and Python, which
aligns closely with real-world data science analysis
scenarios.

3.3 Evaluation Suite
We meticulously develop an accompanying evalua-
tion suite that ensures a comprehensive and system-
atic assessment of the LLM-Agent performance on
DA-Code.
Data Standardization. For each data type, we
implement carefully designed scripts to extract
standardized information essential for evaluation.
For tables, we do not compare the entire table
but instead extract specific columns. For charts,
we identify plotting scripts (e.g., plot.py) and use
scripts to extract both numerical data and plotting
parameters, which are then stored in numpy and
JSON formats. For text-based outputs, we parse
them into JSON format for comparison.
Evaluation Configure. The evaluation setup for
each task is customized through a specific configu-
ration, providing flexibility and ease in managing
multiple tasks within the evaluation suite. Each task
is uniquely identified, and necessary evaluation de-
tails, including output files, metrics, and options,
are defined to meet the diverse requirements of dif-
ferent tasks. This structured approach enhances the
efficiency and accuracy of the evaluation process.

3.4 Score Calculation
Building on the evaluation suite, we develop a
scoring methodology to assess LLM-Agent per-
formance across various outputs, including tables,
charts, and machine learning predictions. Each
output type has tailored metrics for comprehensive

evaluation. Detailed scoring processes are provided
in Appendix C.
Table match score. The evaluation of tables in-
volves comparing CSV files or databases, as well as
the JSON format for text-based outputs, by match-
ing two tables. The task instructions clearly specify
the expected format, and the evaluation checks for
an exact match between the task-specified columns
in the predicted table M ′ and the reference table
M . The score is defined as:

Score =

{
1, if M ′ = M

0, otherwise
A perfect match results in a score of 1, while any
discrepancy results in a score of 0.

Chart match score. For chart evaluations, our
script extracts key metadata from the predicted
chart, including both the numerical data D′ and
plot configurations I ′ as specified in the task in-
structions. These components are then compared
with the reference chart’s true values for numerical
data D and plot configurations I . The chart match
score is calculated using the following rule:

Score =

{
1 if D′ = D and I ′ = I

0 otherwise

ML normalized score. For machine learning
tasks, we utilize several standard metrics, includ-
ing F1 Score, MAE, Silhouette Score, etc. Given
the diverse nature of these metrics across different
tasks, we apply a normalization process to map the
original scores onto a 0-1 scale, ensuring consis-
tency and comparability. The normalized score is
computed using the following formula:

Score = min

(
1,max

(
0,

ŝ− Sbaseline

Sbest − Sbaseline

))
Here, ŝ represents the original score, Sbest is the

upper performance limit, and Sbaseline is the lower
bound.

3.5 Annotation Pipeline
We recruit ten annotators who are highly proficient
in data analysis, SQL, and Python to carry out data
collection and annotation. As shown in Figure 2,
the data annotation pipeline consists of the follow-
ing steps:

Manually Selecting Data Source. The data must
come from actual data analysis and engineering
projects. We require the datasets to be genuinely
large and real, not simulated tables or texts. The
data source must meet four principles: (1) real-
world relevance, (2) complexity, (3) timeliness, and

(4) coding intensity. We collect the most recent
data sources from Kaggle, Github, and Other Web
Sources. When collecting data, strive to select
datasets that come with corresponding code and
carefully verify their quality.
Rewrite Task or Define New Task. According
to the definition of data science agent task in Sec-
tion 2, we have two ways to define tasks. The
first method, rewrite task, involves completely re-
defining discovered task resources by transforming
explicit code instructions into abstract agent task
descriptions. The second method requires manu-
ally annotating new tasks based on these discovered
resources. The majority of tasks are derived from
conversions of the first type.
Task Implementation. DA-Code tasks are set
up in a specialized Sandbox environment. The
most critical step involves collecting the necessary
resources for data analysis. The data we gather
is noisy (a task may involve multiple files), and
we ensure that this noisy data serves as the ini-
tial resource. For the examples shown in Figure
2, which originally only involved a few databases,
we create a realistic setting by providing files re-
quired in real tasks, such as “data_standard.md” or
“schema.yml”. The agent needs to extract useful
information from these files to complete the task.
Unlike traditional language grounding tasks, this
process is challenging, requiring decision-making
and reasoning.

Evaluation Setup. Each example’s evaluation
configuration is meticulously designed based on
our evaluation suite, as detailed in Section 3.3.
Cross Validation and Red Team Test. We ask
annotators to perform cross-validation to ensure
each example has a reasonable task design, appro-
priate environment setup, and robust evaluation.
Additionally, they are required to conduct red team
testing to determine if there are any false positives
or false negatives.

4 DA-Agent

To effectively address the challenges of the DA-
Code benchmark, we develop an LLM-based agent,
depicted in Figure 1, which operates within a ver-
satile and robust framework designed for dynamic
interaction and execution with the environment.

4.1 Environment
Inspired by the work of Yang et al. (2024b), the
environment of DA-Agent is built on the Docker

platform, ensuring a consistent and isolated set-
ting crucial for replicable and independent data sci-
ence experiments. This Linux environment comes
equipped with essential data science tools, includ-
ing Python, SQL, Conda, and database engines.

4.2 Action Space
Previous approaches typically define actions in
terms of editing or executing files. However, in
our system, we innovatively combine these stages
into single, streamlined actions that edit and exe-
cute code simultaneously. This approach not only
reduces the complexity of interactions but also min-
imizes the number of steps required, thereby sav-
ing computational resources and enhancing model
comprehension. Our action space is designed to
efficiently manage diverse tasks, encompassing the
following actions:

• Bash(command): Executes single-line bash
commands directly. This enables quick file
and directory manipulation and system com-
mand execution, providing direct interaction
with the operating system.

• Python(save_path, code): Requires path and
code content of the Python code, allowing the
agent to handle complex data processing tasks
and utilize Python’s extensive libraries.

• SQL(file_path, command, output): Exe-
cutes SQL queries by specifying the database
file, SQL command, and the output format.
Results can be saved to a specified file or dis-
played directly.

• Terminate(output): Concludes the task, spec-
ifying the result file or output text. This final
action ensures that results are summarized and
appropriately directed, marking a clear end to
the session.

This diverse range of actions equips the agent
with the capabilities to handle complex tasks across
different environments, making it a versatile tool
in data manipulation and system operations.

4.3 Response Mechanism
Responses of the agent are categorized into these
types based on the system’s feedback to executed
actions:

• Standard Output. The output from suc-
cessfully executed commands, provides direct
feedback or results from the executed actions.

• Error Message. In cases where execution
fails, error messages are generated to aid in
debugging and corrective measures.

• Execution Success without Output. Some
commands execute successfully without pro-
ducing visible output, in which case the sys-
tem simply acknowledges their successful ex-
ecution.

• Unacceptable Action. When the output for-
mat does not match the Action format, or the
action is the same as the last one, please pro-
vide a different action.

• Execution Timeout. The action execution
time has exceeded the time limit.

4.4 Memory Windows
To manage the context for the agent’s operations,
a memory window records the history of actions
taken, constrained by a max history length parame-
ter. This parameter limits the number of previous
steps the agent can recall. If the required context
exceeds this limit, the history is automatically trun-
cated to maintain efficient memory management
and focus on the most recent relevant actions.

5 Experiment and Analysis

In this section, we present the experimental results
and analysis of several LLMs evaluated using our
DA-Agent baseline on DA-Code benchmark.

5.1 Experiment Settings
We experiment with state-of-the-art LLMs from
open-source representatives such as Mixtral-
8x22B (Jiang et al., 2024), DeepseekCoder-V2.5
(Zhu et al., 2024), Qwen2.5-72B-Instruct (Team,
2024) and closed-source ones including Claude-3-
Opus (Anthropic, 2024) and GPT (OpenAI, 2023)
families.

We also compare our DA-Agent with three
widely-used agent frameworks, namely OpenDevin
(OpenDevin Team, 2024), AutoGen (Wu et al.,
2023) and X-Agent (Team, 2023).

For all experiments, we employ a greedy sam-
pling strategy with a maximum step length of 20
and a max history length of up to 15 steps. The
action execution time limitation is 300 seconds.

5.2 Main Results
DA-Agent with Different LLMs. In Table 3, we
compare the performances of DA-Agent based on
advanced LLMs. In Figure 3, we conduct fine-
grained performance statistics for the DA-Code cat-
egories. From the score results, we can conclude
that 1) Existing data agents are far from satisfac-
tory in completing these data science coding tasks.

Model Score Completion
Rate (%)

Avg
Steps

Executable
Code (%)DW ML EDA Easy Medium Hard Total

GPT-4 30.4 48.4 24.6 45.4 27.8 23.4 30.5 99.4 7.3 76.8
GPT-4o 33.3 48.0 21.3 46.2 25.6 21.7 29.1 97.4 6.8 77.7
Claude-3-Opus 29.3 46.8 20.7 44.7 23.8 19.0 27.6 97.7 8.9 75.7
Qwen2.5-72B 24.9 41.8 15.4 31.9 19.4 22.3 22.6 93.8 8.6 72.2
Deepseek-Coder-V2.5 25.1 34.1 14.7 32.8 18.7 14.1 20.7 89.8 7.1 59.0
Mixtral-8x22B 14.8 31.6 10.2 17.6 16.8 8.6 15.4 67.2 11.1 55.1
Deepseek-Coder-33B 9.1 22.1 7.6 12.4 11.3 7.9 10.8 31.9 11.6 49.7

Table 3: Experiments results of some LLMs using DA-Agent baseline. The Completion Rate (%) represents the
proportion of tasks for which the model produces results within 20 steps. #Avg Steps indicates the number of steps
the agent requires to complete these tasks. Executable Code (%) reflects the proportion of code generated by LLMs
that successfully executes.

Machine
Learning

Data InsightData Manipulation

Data
Visualization

Statistical Analysis Data Wrangling

0.1
0.2

0.3
0.4

0.5

GPT-4 Deepseek-Coder GPT-4o QWEN2.5-72b

Figure 3: Detailed performance analysis of DA-Agent
across various categories on DA-Code.

The most advanced model, GPT-4, achieves only
a 30.5% score. 2) Although closed-source models
generate high-performance executable code, they
have a significant gap compared to open-source
LLMs in terms of overall score. 3) We classify task
difficulty into three levels. Experimental results
indicate that model performance decreases with in-
creasing difficulty, validating our grading approach.
4) The models perform poorly on data wrangling
tasks but fare better in machine learning challenges.
This disparity could be linked to the training cor-
pus, as DW and EDA tasks are less common and
more complex to understand.

Different Agent Framework with GPT-4. We
randomly sample 100 tasks from DA-Code to cre-
ate a subset DA-Code-100 for comparison with sev-
eral popular code agents. As shown in Table 4, our
baseline DA-Agent outperforms these established
agents on DA-Code, achieving higher score and
completion rate. However, the overall performance
remains modest, indicating substantial potential

for enhancing coding agent frameworks to better
handle complex data science tasks.

Experiment Setting Overall
Score

Completion
Rate (%)

X-Agent (Team, 2023) 6.7 38.7
AutoGen (Wu et al., 2023) 18.6 78.8
OpenDevin (OpenDevin Team, 2024) 26.2 96.0
DA-Code 31.5 99.5

- w/ Ref. Plan 39.7 97.7
- w/ max history length=10 32.3 98.2
- w/ max history length=5 30.8 95.4

Table 4: Performance comparison of different frame-
works using GPT-4 on DA-Code-100.

5.3 Ablation Study of DA-Agent
Reference Plan. DA-Code aims to assess the
combined abilities of planning and grounding in
LLM-agents. To further investigate the factors af-
fecting model performance, we asked annotators
to annotate the reference plan of DA-Code-100,
as shown in Figure 4. This type of instruction
describes a step-by-step plan for solving a task,
serving as a reference for the LLM Agents. Ta-
ble 4 shows that LLMs improve with a reference
plan, highlighting planning ability as a key perfor-
mance factor. Additionally, annotating reference
plans provides valuable resources for research ex-
ploration.

Max History Length. We investigate the impact
of max history length on the performance of DA-
Agent. As shown in Table 4, using the DA-Code-
100 dataset, the model’s performance shows mini-
mal change with variations.

5.4 Step into Trajectories
Task Completion Efficiency. We examine the
success and incompletion rates across various mod-
els over a sequence of steps, as depicted in Figure 5.

Task Instruction

According to the pre-defined database information, sort the data in
the data folder and load it into the database

read files

Transform data

bikes_df['trip_minutes'] =round(bikes_df['trip_duration'] /60, 2)
bikes_df['trip_hours'] =round(bikes_df['trip_duration']/(60**2),2)
bikes_df['age'] =pd.Timestamp.now().year-bikes_df.birth_year

weather_df['rain'] =weather_df['prcp'].apply(lambdax: 1ifx>0else0).astype(bool)
weather_df['snow'] =weather_df['snow_amt'].apply(lambdax: 1ifx>0else0).astype(bool)
......

Clean data

rides=bikes_df.merge(trip_demo,on=['user_type','birth_year','gender
','age']).sort_values(by='id').reset_index(drop=True)
rides=rides.drop(['user_type','birth_year','gender','age'],axis=1)

starts=rides[['start_station_id','start_station_name','start_statio
n_latitude','start_station_longitude']]
stations = pd.concat([starts,ends]).drop_duplicates()
......

INSERT INTO stations (station_name, latitude, longitude)
VALUES
('Central Station', 40.7128, -74.0060),
......

Load data

A flag indicating whether there was rain on the day ('t' for true, 'f' for false).
A flag indicating whether there was snow on the day ('t' for true, 'f' for false).

Reference Plan
1. Review the predefined schema to identify the tables and columns; note that there
are five tables and record their column names.
2. Check which files are present in the ./data folder.
3. Examine the file information; since there are no minutes and hours information, data
transformation is necessary.
4. Get minutes and hours by the trip_duration.
5. The columns for rain and snow do not match with those in the raw data; type
conversion is required.
6. Merge five months of JC data and compare with the schema to identify any missing
columns.
7. According to the DB schema, create a station table. These already have IDs, so we
just need to create a new table with station id, name, latitude, and longitude.
8. Write SQL insert statements to insert the data into the database.

Figure 4: The task instruction and the corresponding
reference plan of the DA-Code example.

The incompletion rates consistently decrease, par-
ticularly between 5 and 15 steps, which indicates
the complexity of the tasks requiring multiple steps
for resolution. Success rates rise sharply within the
initial 5 to 10 steps before reaching a plateau, even
as incompletion rates continue to decline. This
highlights a fundamental challenge: if an agent
fails to grasp the task’s requirements and come
up with effective solution in the early steps, addi-
tional steps do not necessarily lead to successful
outcomes, underscoring the limited capability of
existing agents in handling complex prolonged task
sequences.

EEEA Pattern. Based on our in-depth analy-
sis of DA-Agent’s task-solving steps using differ-
ent LLMs and the classification of action types
detailed in Table 5. As shown in Figure 6,
we observe a prevalent Exploration-Execution-
Evaluation-Adjustment pattern in the agents’ tra-
jectories, which aligns well with our task scenarios.
At the beginning of the task, barring instances of
action extraction failure, each model tends to pri-
oritize the ”File Viewing” action to explore file
contents and gain an understanding of the environ-
ment. As the task progresses, actions related to
coding, such as invoking Python or executing SQL
queries, become more prevalent. In the later stages
of the task, higher-performing models like GPT-4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Step

0.0

0.2

0.4

0.6

0.8

1.0

In
co

m
pl

et
io

n
Ra

te
 (%

)

Model Performance Over Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

(%
)Success Rate

Incompletion Rate
GPT-4
GPT-4o
Claude-3-opus
Qwen2.5-72B
Deepseek-Coder-V2.5
Mixtral-8x22B
Deepseek-Coder-33B

Figure 5: The success and incompletion rates of various
models over steps. The incompletion rates represent the
proportion of tasks not completed and the success rates
indicate the proportion of tasks successfully completed
within the current step. A task is considered successful
if it scores above zero.

and GPT-4o gradually decrease their file operation-
related actions while increasing actions associated
with debugging, suggesting they may have iden-
tified potential solutions to the problems at hand.
Conversely, models with more varied performance
characteristics, like Deepseek-Coder, continue fo-
cusing on file operations. This suggests these mod-
els may have a less developed ability to compre-
hend and adapt to the task environment effectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Step

0

100

200

300

400

500

Co
un

ts

GPT-4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Step

0

100

200

300

400

500

Co
un

ts

GPT-4o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Step

0

100

200

300

400

500

Co
un

ts

Qwen2.5-72B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Step

0

100

200

300

400

500

Co
un

ts

Deepseek-Coder-33B

File Viewing
File Operating
Data Processing

System Operations
Package Management
SQL Query

SQL Update
SQL Debug
Python

Python Debug
Action Parse Failed
Other

Figure 6: Action type counts of DA-Agent with different
LLMs across steps.

Error Analysis. From our detailed examination
of the DA-Agent’s actions across various models,

we identify several recurring issues that contribute
to errors:

• Hallucination Issues: Agents often make in-
correct assumptions about the environment,
such as presuming file names and directly ex-
ecuting Python or SQL commands without
initial exploration of available files.

• Inability to Follow Instructions: This leads
to many non-standard reply formats and un-
recognizable actions. Some models often start
with non-standard actions but adjust in later
steps.

• Persistent Code Errors: These errors cause
failure to debug and correct issues, leading the
model to become stuck in a debugging loop.

• Misinterpretation of Task Context: Agents
sometimes misinterpret task details, leading to
premature termination and incomplete results.

In conclusion, our findings underscore the cur-
rent limitations of agents in tackling complex data
challenges. This study provides crucial insights
that can direct the enhancement of code agent ca-
pabilities through the development of more robust
and context-aware strategies.

6 Related Work
Code Generation Benchmark As models be-
come increasingly capable, researchers start to
build increasingly difficult and general code gener-
ation benchmarks. Most coding benchmarks (e.g.
SQL-Spider (Yu et al., 2018); Bash - NL2Bash (Lin
et al., 2018); Python - HumanEval (Chen et al.,
2021); Execution-S3Eval (Lei et al., 2023); Compe-
tition code generation (Huang et al., 2024)) frame
the coding problem as a sequence-to-sequence
problem (from instruction to code). DS-1000 (Lai
et al., 2023) and Arcade (Yin et al., 2023) are pi-
oneering works that collected high-quality exam-
ples from communities and proposed correspond-
ing data science to define code generation tasks. In-
tercode (Yang et al., 2024b) was the first to propose
defining code generation tasks in an interactive
environment. SWE-Bench (Jimenez et al., 2023)
proposed numerous repository-level tasks, while
MLAgentBench (Huang et al., 2023) defined auto
machine learning tasks in an interactive environ-
ment. Some researchers have also proposed bench-
marks (Xie et al., 2024; Cao et al., 2024) to explore
the model’s multimodal capabilities in data science
and engineering. ML-Bench (Liu et al., 2023) fo-
cuses on machine learning bash scripts generation.
DA-Bench (Hu et al., 2024) also evaluate agents on

data analysis tasks, however its task setting is not
fully agentic and advanced. Our work focuses on
data science, involving real and challenging tasks
that cover the full pipeline.

Code Agent Method The value of generative
code models and interactive problem solving has
motivated a recent proliferation of work to aug-
ment reasoning capabilities’ of existing language
models (Yao et al., 2022; Shinn et al., 2024; Chen
et al., 2023; Zhang et al., 2022; Wang et al., 2023).
Many agent methods have been proposed to solve
code generation tasks. Direct interaction of agents
with the Linux command line can cause many is-
sues (Yang et al., 2024a). Several works (Yang
et al., 2024b; Huang et al., 2023; Zhang et al., 2024;
Yang et al., 2024a) have designed special actions
to standardize agent operations. OpenDevin (Open-
Devin Team, 2024) is a new agent for solving cod-
ing tasks. It is based on CodeAct (Wang et al.,
2024), a framework that consolidates LLM agents’
actions into a unified code action space. We intro-
duce DA-Agent, a competitive agent framework
designed for solving coding tasks, based on the
DA-Code environment.

7 Conclusion
We introduce DA-Code, a challenging benchmark
designed for agent-based code generation tasks in
data science. This benchmark comprises 500 exam-
ples characterized by diverse data sources, complex
task settings, and an executable environment. We
develop DA-Agent, a robust LLM-Agent baseline,
to tackle this challenging benchmark. However,
experiments reveal that even the most advanced
LLMs perform poorly on DA-Code, achieving only
about a 30.5% score. Future work will focus on 1)
developing a more sophisticated data agent frame-
work, 2) training more effective agents based on
open-source LLMs.

Limitations

DA-Code introduces a challenging benchmark for
agent code generation. The current version presents
the following limitations: While utilizing a substan-
tial amount of data science data to fine-tune LLMs
is meaningful, this approach has not been explored
in this paper. Although this work proposes a gen-
eral benchmark for data science, it warrants more
thorough investigation. In future efforts, we plan
to delve deeper into the performance of fine-tuning
open-source LLMs on DA-Code.

Acknowledgements

This work was supported by the National Key R&D
Program of China (No. 2022ZD0160503) and
the National Natural Science Foundation of China
(No.62376270). This work was also sponsored by
CCF-BaiChuan-Ebtech Foundation Model Fund.

References
Anthropic. 2024. The claude 3 model family: Opus,

sonnet, haiku.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen,
Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong, Han-
chong Zhang, Yuchen Mao, Wenjing Hu, et al. 2024.
Spider2-v: How far are multimodal agents from au-
tomating data science and engineering workflows?
arXiv preprint arXiv:2407.10956.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schaerli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. In The 61st Annual Meeting Of The
Association For Computational Linguistics.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Guoyin
Wang, Xuwu Wang, Jing Su, Jingjing Xu, Ming Zhu,
Yao Cheng, et al. 2024. Infiagent-dabench: Evalu-
ating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec.
2023. Benchmarking large language models as ai
research agents. arXiv preprint arXiv:2310.03302.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong,
Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong Shen,
Chen Lin, Nan Duan, et al. 2024. Competition-level
problems are effective llm evaluators. In Findings of
the Association for Computational Linguistics ACL
2024, pages 13526–13544.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun
Zhao, and Kang Liu. 2023. S3eval: A synthetic, scal-
able, systematic evaluation suite for large language
models. arXiv preprint arXiv:2310.15147.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D Ernst. 2018. Nl2bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018).

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan
Hu, Zengxian Yang, Kaikai An, et al. 2023. Ml-
bench: Large language models leverage open-source
libraries for machine learning tasks. arXiv preprint
arXiv:2311.09835.

OpenAI. 2023. Gpt-4 technical report.

OpenDevin Team. 2024. OpenDevin: An Open
Platform for AI Software Developers as Gener-
alist Agents. https://github.com/OpenDevin/
OpenDevin. Accessed: ENTER THE DATE YOU
ACCESSED THE PROJECT.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor,
and Casey Dugan. 2021. Autods: Towards human-
centered automation of data science. In Proceedings
of the 2021 CHI conference on human factors in
computing systems, pages 1–12.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2609–2634.

http://arxiv.org/abs/2303.08774
https://github.com/OpenDevin/OpenDevin
https://github.com/OpenDevin/OpenDevin
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Executable
code actions elicit better llm agents. arXiv preprint
arXiv:2402.01030.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. 2023. Autogen:
Enabling next-gen llm applications via multi-agent
conversation.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 602–631.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2024.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. arXiv
preprint arXiv:2404.07972.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. 2024a. Swe-agent: Agent computer interfaces
enable software engineering language models.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2024b. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. Advances in Neural Information Process-
ing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
et al. 2023. Natural language to code generation in
interactive data science notebooks. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 126–173.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi
Jin. 2024. Codeagent: Enhancing code genera-
tion with tool-integrated agent systems for real-
world repo-level coding challenges. arXiv preprint
arXiv:2401.07339.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2022.
Planning with large language models for code gener-
ation. In The Eleventh International Conference on
Learning Representations.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

A Task Examples

In this section, we present diverse examples in DA-Code. We have performed a more detailed classification
of tasks into three categories: DW, ML, and EDA, as shown in Figure 7. Data wrangling can be divided
into data cleaning, data loading, and data transformation.

• Data Cleaning: Focuses on enhancing the data’s quality by eliminating errors, imputing missing
values, normalizing data in databases or raw datasets, and resolving inconsistencies to maintain the
accuracy and trustworthiness of the data.

• Data Loading: Entails the consolidation of data from diverse sources into a unified storage system,
loading data according to specified standards and requirements, enabling streamlined access and
consistent analytical practices.

• Data Transformation: Involves reformatting and restructuring data to better suit analytical models
for targeted analysis.

Figure 7: DA-Code task types proportion (Left) and file types proportion (Right)

The EDA category covers a wide range of tasks. In our benchmark, it is divided into Visualization,
Statistical, Data Manipulation, and Data Insights.

• Data Manipulation: Data Manipulation is designed to perform intricate data operations using SQL
and Pandas, efficiently processing large datasets. It primarily focuses on counting, summarizing data,
and refining presentation formats.

• Data Insights: This section focuses on tasks involving real data and issues encountered in actual
scenarios. These problems do not provide clear solutions, necessitating thoughtful consideration
and autonomous decision-making in coding for data analysis. The results are presented primarily in
tables, or alternatively, in text format, to address and answer these questions.

• Visualization: The format of visualization tasks is similar to the previous category, with the unique
aspect being that the results are presented in the form of charts.

• Statistical Analysis: Statistical analysis tasks typically require advanced knowledge of statistics and
mathematics, utilizing mathematical indicators for statistical analysis.

ML tasks are categorized into three types: Classification, Regression, and Clustering. The reference
solutions for these tasks require the use of corresponding ML algorithms to complete the assignments. In
DA-Code, we select three foundational task categories: classification, regression, and clustering, from two
sources: regular dataset tasks and competition tasks.

Regular dataset tasks prioritize real-world applications, emphasizing comprehensive data preprocessing
and feature engineering. Conversely, competition tasks present a heightened challenge, requiring advanced
algorithmic approaches to meet specific performance metrics. In the instructions, the task category is
not directly provided; the model needs to autonomously determine the task’s category, design methods,
and select models accordingly. Additionally, only traditional machine learning algorithms, such as linear
regression and random forests, are permitted, with no deep learning methods allowed. The final outputs
consist of predictions on the test dataset provided.

A.1 Data Wrangling Example
Task Instruction According to the pre-defined database information, transform the data in the data
folder and load it into the database.

Verbose Instruction
1. Review the predefined schema to identify the tables and columns; note that there are five tables and
record their column names.
2. Check which files are present in the ./data folder.
3. Examine the file information; since there are no minutes and hours information, data transformation is
necessary.
4. Get trip_minutes and trip_hours by the trip_duration.
5. The columns for rain and snow do not match with those in the raw data; type conversion is required.
6. Merge five months of JC data and compare with the schema to identify any missing columns.
7. Split the table JC by columns to match it with the database schema.
8. Write SQL insert statements to insert the data into the database.

Environment Settings
|--- DATA_STANDARD.yml
|--- data
| |--- JC-202401-citibike-tripdata.csv
| |--- JC-202402-citibike-tripdata.csv
| |--- JC-202403-citibike-tripdata.csv
| |--- JC-202404-citibike-tripdata.csv
| |--- JC-202405-citibike-tripdata.csv
| `--- newark_airport_2024.csv
|--- database.db
`--- schema.yml

A.2 Machine Learning Task
Task Instruction This is a dataset for a Bank customer data for churn prediction competition, with the
description available in README.md. You are now a contestant in this competition and need to design a
method to predict the data in test.csv according to the competition requirements. Write the results into
submission.csv according to the format of sample_submission.csv.

Verbose Instruction 1. Load the training, testing, and submission datasets from CSV files.
2. Check the dimensions and basic statistics of each dataset, including the number of rows, columns, and
presence of null values.
3. Handle missing values in the datasets using appropriate methods such as imputation or removal.
4. Scale numeric columns to ensure consistent ranges.
5. Encode categorical text features using TF-IDF vectorization to transform them into numerical repre-
sentations.
6. Use a One-hot encoder to encode categorical features to convert them into a format suitable for
machine learning models.
7. Define feature columns for training the model, excluding non-predictive columns.
8. Utilize CatBoostClassifier within a StratifiedKFold cross-validation framework to train and validate
the model, ensuring robustness and performance assessment.
9. Use the trained model to make predictions, and prepare the submission file by mapping predicted
probabilities to the ‘Exited‘ column for submission.

Environment Settings
|--- README.md
|--- Churn_Modelling.csv
|--- train.csv

|--- test.csv
|--- sample_submission.csv

A.3 Exploratory Data Analysis (EDA)

A.3.1 Visualization
Task Instruction Create a stacked horizontal bar chart, which illustrates the average days per order
stage for the top 10 cities by sales. Save the chart as ‘result.png’ with settings from ‘plot.yaml’.

Verbose Instruction
1. Check Available Resources and Current Directory: View the resources provided and examine the
contents of the current directory.
2. Database Content Review: Read what is contained in the database and identify the tables present.
3. Identify Top 10 Cities by Sales: To determine the top 10 cities by sales, join the ‘orders’ and ‘customers’
tables using the ‘customer_id’. Record the names of these cities.
4.Create an SQL query to evaluate order processing times in the top 10 cities by joining the ‘orders’
and ‘customers’ tables using ‘customer_id’. Calculate average durations for key milestones in the order
process and include only orders from these cities, identified possibly via a subquery based on order
volumes. Group and display results by ‘customer_city’, showing averages for each stage.
5. Read Plot Configuration: Load the ‘plot_config.yml’ file to review plotting requirements.
6. Create a Pie Chart of Average Order Processing Times: Prepare a summarized DataFrame, configure
the pie chart with appropriate labels and colors, enhance its aesthetics with a title and legend, and then
save and display the result.

Environment Settings

|--- DATASET_INFO.md
|--- E-commerce.db
`--- plot_config.yml

A.3.2 Data Manipulation
Task Instruction Utilize the Open Food Facts database. Identify the list of ingredients and their
countries of origin, and record the results in the ingredient_origins.csv file.

Verbose Instruction
1. Read in the avocado data. Read the avocado data from a tab-delimited CSV file. Subset the DataFrame
to include only a smaller number of relevant columns.Read in the relevant category tags for avocados
from a text file.
2. Filter avocado data using relevant category tags - Drop rows with null values in the ‘categories_tags’
column. Convert the ‘categories_tags’ column from comma-separated strings to lists. Filter the
DataFrame to keep only rows with relevant category tags.
3. Determine the top origin country for UK avocados. Filter the avocado DataFrame for rows where
‘countries’ equals "United Kingdom". Count and order the unique values in the ‘origins_tags’ column.
Identify the top country of origin for avocados in the UK. Lean up the country string to remove any leading
characters or hyphens.
4. Create a user-defined function for ingredient analysis Create a function called ‘read_and_filter_data()’
that: Takes a filename and a list of relevant categories as arguments.Performs the same steps as above to
read, subset, filter, and analyze the data. Returns the top country of origin for the ingredient.
5. Analyze other ingredients. Use the relevant categories data to determine the top origin countries for
olive oil and sourdough by calling the ‘read_and_filter_data()‘ function

Environment Settings

|--- avocado.csv
|--- ingredient_origins.csv
|--- olive_oil.csv

|--- project_instructions.md
|--- README.md
|--- relevant_avocado_categories.txt
|--- relevant_olive_oil_categories.txt
|--- relevant_sourdough_categories.txt
`--- sourdough.csv

A.3.3 Statistical Analysis
Task Instruction You have a Statistical thinking dataset, with details described in the README.md file.
Calculate 10,000 bootstrap replicates of the variance in annual rainfall at the Sheffield Weather Station.
Divide the data into 50 bins, compute the bin center and corresponding probability density function (PDF)
for each bin. For convenience, convert the variance to units of square centimeters. Save the results to a
file named result.csv, following the template provided in sample_result.csv. (Set the random seed to 42)

Verbose Instruction
1. Bootstrap Helper Functions:
Define a function ‘bootstrap_replicate_1d(data, func)’ to generate a bootstrap replicate of 1D data.
Define another function ‘draw_bs_reps(data, func, size=1)’ to draw multiple bootstrap replicates.
2. Data Preparation:
Read the weather station CSV file considering it is space-delimited and does not have a header.
Assign appropriate column names.
Remove the first several rows if it contains non-numeric data.
Convert the year column to integers and rain column to floats, handling conversion errors gracefully and
dropping any resulting NaN values.
Compute the total annual rainfall by grouping data by year and summing the rain values for each year.
Convert the resulting annual rainfall sums to a NumPy array.
3. Bootstrap Analysis:
Generate 10,000 bootstrap replicates of the variance of annual rainfall using the ‘draw_bs_reps’ function.
Adjust the variance units if needed (e.g., put the variance in units of square centimeters).
4. Probability Density Function (PDF):
Create a histogram of the bootstrap replicates with 50 bins, normalized to represent a PDF.
Calculate the center points for each bin and the corresponding PDF values.
Store the bin centers and PDF values in a DataFrame.
5. Save Results.

Environment Settings

|--- sheffield_weather_station.csv
|--- scandens_beak_depth_heredity.csv
|--- sample_result.csv
|--- mlb_nohitters.csv
|--- frog_tongue.csv
|--- fortis_beak_depth_heredity.csv
|--- finch_beaks_1975.csv
|--- finch_beaks_2012.csv
`--- README.md

A.3.4 Data Insights
Task Instruction What strategies could be implemented at electric vehicle charging stations to better
accommodate the high volume of users and long-duration charging sessions observed at popular locations
and peak times?

Verbose Instruction
1. Access Data Directory: Start by accessing the directory where data files are stored, including CSVs,

documents, and images related to charging sessions.
2. Review Data Quality: Open and review files to check their formats (CSV, JSON, etc.) and data quality.
Identify any missing values or inconsistencies.
3. Load Data: Import necessary files into an SQLite database.
4. Identify Popular Garages: Write a SQL query to count distinct users per garage, focusing on shared
users to determine high-traffic garages.
5. Analyze Peak Times: Develop a SQL query to find peak charging times by analyzing sessions by day
and hour.
6. Calculate Charging Durations: Create a SQL query to calculate average charging durations per user,
focusing on those exceeding specific thresholds.
7. Analyze User Behavior: Identify patterns in long-duration charging by examining frequency and
preferred times.
8. Segment User Data: If applicable, segment data by user type (commercial, personal, shared) to tailor
improvements to different user needs.

Environment Settings
|--- README.md
|--- analysis.md
|--- charging_sessions.csv
|--- historical_usage_2022.csv
|--- forecast_analysis_2023.md
|--- user_feedback_logs.md
|--- pricing_updates.json
`--- maintenance_records

|--- january_2023.txt
|--- february_2023.txt
`--- march_2023.txt

B Experiments Details

This section includes a detailed agent action space in Table 5.

Action Name Action Description

File Viewing The ability to access and review the contents of files, including but not limited
to YAML (.yml) files, CSV (.csv) files, Markdown (.md) files, and text (.txt)
files.

File Operating Performing operations on files such as creating, opening, editing, moving, and
deleting.

Data Processing The manipulation and transformation of data to extract insights or prepare it
for storage and further analysis.

System Operations Tasks related to the maintenance and management of computer systems,
including monitoring performance, configuring settings, and troubleshooting
issues.

Package Management The process of installing, upgrading, configuring, and managing software
packages in an operating system.

SQL Query Executing read operations on databases using Structured Query Language
(SQL) commands to retrieve specific data or summaries.

SQL Update Updating, modifying, or deleting data in a database using SQL commands,
including insert, update, and delete operations.

SQL Debug The process of locating and resolving issues or bugs within SQL scripts or
databases to ensure accurate data manipulation and retrieval.

Python Writing, executing scripts and programs in the Python programming language
for a wide range of applications.

Python Debug Identifying and fixing errors or bugs within Python code to ensure correct
execution and output of Python programs.

Other Activities or tasks that do not fall into the predefined categories, encompassing
a miscellaneous range of actions.

Table 5: Summary of DA-Agent actions with descriptions.

C Evaluation details

C.1 Plot based Evaluation

Currently, existing methods for evaluating data visualizations include analyzing code correctness and
using VLMs to score visualizations. The former relies on understanding the logic and structure of the
code, which may lead to lower accuracy, while the latter has shown poor performance and high costs.
We propose a more reasonable and reliable evaluation method for visualizations. This method involves
embedding scripts into code and executing them to directly obtain data, types, and other information
corresponding to the chart.

Specifically, given the following inputs: chart data d, image metadata J , the code used for generation,
and the corresponding script. By embedding and executing the script within the generating code, we
extract the predicted chart’s metadata Ĵ and data d̂. The score is then calculated as follows:

Score =

{
1 if d = d̂ and J = Ĵ

0 otherwise

Here, if the task does not explicitly restrict the order or scale of the data, d′ and d̂′ are the sorted or
scaled versions of d and d̂. Additionally, j ⊂ J and ĵ ⊂ Ĵ , which are specific pieces of image information
explicitly specified in the instructions, are compared from J and Ĵ , respectively.

C.1.1 Image Information Description

To provide a comprehensive understanding, we will use an example to introduce all the relevant information
involved in data visualization tasks in DA-Code.

Figure 8: Example in data visualization task

figsize "figsize" specifies the shape or dimensions of the image. It determines the width and height of
the plot in inches. In our example, it is set to (10, 6) (not explicitly shown in the image, but set in the
code).

color "color" represents the color scheme used within the graph or visualization. It defines the hues
applied to different data elements for differentiation or emphasis, like blue and orange in the example
above.

graph_title "graph_title" provides the overarching title or caption for the graph. It succinctly summarizes
the purpose or main findings depicted in the visual representation, for example, “Comparison of Animal
Counts in the group”.

legend_title "legend_title" describes the title of the legend, which typically explains the meaning of
different colors or symbols used in the graph. It aids in understanding the data categories or groups
represented, such as “Animal”.

labels "labels" refers to the labels associated with the visualized data points or categories. These labels
provide context for interpreting the data. In the example above, it is “Cat” and “Dog”.

x_label "x_label" indicates the title for the x-axis, representing the horizontal dimension of the graph. It
clarifies what the x-axis measures or represents, e.g., “Group”.

y_label "y_label" represents the title for the y-axis, which denotes the vertical dimension of the graph.
It clarifies what the y-axis measures or represents, e.g., “Count”.

xtick_labels "xtick_labels" refers to the specific labels assigned to individual ticks or points along the
x-axis. These labels provide scale and context to the data points plotted on the x-axis, e.g., “Group 1”,
“Group 2”, “Group 3”, “Group 4”, “Group 5”.

ytick_labels "ytick_labels" represents the specific labels assigned to ticks or points along the y-axis.
Similar to xtick_labels, these labels provide scale and context to the data points plotted on the y-axis, e.g.,
0, 5, 10, 15, 20, 25, 30, 35.

In this example, the task explicitly specifies the bar chart’s colors, graph_title, x_label, xtick_labels,
y_label, legend_title, and labels. Therefore, during evaluation, we will filter out and compare these specific
pieces of information.

C.2 ML Task Evaluation

To achieve consistent evaluation scores across machine learning tasks of varying difficulty levels and
dataset sizes, we normalize evaluation metrics to a scale of 0-1 by setting basic and best bounds. The best
bound is determined by the top solutions in the dataset and the highest-ranked metric in the competition.
The basic bound is established using baseline methods: for classification tasks, the metric of a Proportional
Classifier; for regression tasks, the metric of mean prediction; for clustering tasks, the metric of random
clustering. In competition scenarios, the 80th percentile metric is used to determine the basic bound.

Given the best bound Sbest, the basic bound Sbaseline, and the predicted score ŝ under the corresponding
metric calculation, the scaled score is calculated as follows:

Score = min

(
max

(
ŝ− Sbaseline

Sbest − Sbaseline
, 0

)
, 1

)
This formula ensures that the score is normalized between 0 and 1, adjusting for whether higher or

lower values indicate better performance.
Next, we will introduce the machine learning metrics used in DA-Code for classification, clustering,

and regression tasks.

C.2.1 Classification Tasks
A detailed description of the metrics used in classification tasks, including their definitions and formulas,
is provided below:

Accuracy Accuracy is defined as the proportion of correctly predicted instances out of the total instances:

Accuracy =
Number of correctly predicted instances

Total number of instances

F1 Score The F1 Score is a key evaluation metric for classification tasks, especially with imbalanced
datasets. It is the harmonic mean of precision and recall, balancing the two. The F1 Score is calculated as
follows:

F1 = 2× precision × recall
precision + recall

Precision measures the accuracy of positive predictions, while recall measures the ability to identify all
positive instances.

Logarithmic Loss Logarithmic Loss (LogLoss) is a metric used to evaluate the performance of a
classification model by measuring the accuracy of its predicted probabilities. It penalizes incorrect
predictions, particularly those that are confidently incorrect. To avoid extremes, predicted probabilities
are clipped using the formula max(min(p, 1e− 15), 1− 1e− 15).

LogLoss can be computed in two primary ways:
One method involves averaging each class separately and then aggregating these averages.

LogLoss = − 1

M

M∑
j=1

1

Nj

Nj∑
i=1

yij log(pij)

where M is the number of classes, Nj is the number of samples in class j, yij is a binary indicator (0 or
1) if class label j is the correct classification for sample i, and pij is the predicted probability of sample i
being in class j.

Additionally, the other method involves averaging directly over all predictions without distinction by
class.

LogLoss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij)

where N is the total number of samples, M is the number of classes, yij is a binary indicator (0 or 1) if
class label j is the correct classification for sample i, and pij is the predicted probability of sample i being
in class j.

ROC AUC Score ROC AUC Score (Receiver Operating Characteristic Area Under the Curve) is a
performance metric for binary classification tasks that evaluates the ability of a model to distinguish
between classes. It measures the area under the ROC curve, which plots the true positive rate (sensitivity)
against the false positive rate (1 - specificity) at various threshold settings.

ROC AUC Score =
1

Npos ·Nneg

∑
i∈pos

∑
j∈neg

I(ŷi > ŷj)

where Npos and Nneg are the numbers of positive and negative samples respectively, ŷi and ŷj are the
predicted scores for samples i and j, and I(·) is the indicator function that returns 1 if the condition is
true and 0 otherwise.

Quadratic Weighted Kappa Quadratic Weighted Kappa (QWK) is a metric used to assess the agreement
between two ratings or annotations. It measures the extent of agreement beyond chance, considering both
the magnitude of disagreement and its quadratic impact.

The formula for QWK is:

κ = 1−
∑

i,j wijOij∑
i,j wijEij

where Oij is the observed agreement, Eij is the expected agreement, wij = (i− j)2/(N − 1)2 represents
the squared difference between ratings i and j, and N is the total number of categories.

C.2.2 Clustering Tasks
The evaluation metric used for clustering tasks is introduced below.

Silhouette Score Silhouette score is a metric used to evaluate the quality of clustering in unsupervised
learning. It measures how similar each sample is to its cluster compared to other clusters. The score
ranges from -1 to 1, where a higher value indicates that samples are well-clustered, with tight clusters and
distinct separation between them.

The formula for the Silhouette score for a single sample i is:

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the average distance from sample i to other samples within the same cluster (intra-cluster
distance), and b(i) is the average distance from sample i to samples in the nearest neighboring cluster
(inter-cluster distance).

The overall Silhouette score is the mean of s(i) for all samples in the dataset.

C.2.3 Regression Tasks
The evaluation metrics used for regression tasks are introduced below.

The Coefficient of Determination The coefficient of determination (R2) is used to evaluate the
proportion of variance in the dependent variable that is predictable from the independent variables. It
indicates how well the regression predictions approximate the real data points.

The formula for R2 is:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2

where N is the number of observations, yi is the actual value, ŷi is the predicted value, and ȳ is the
mean of the actual values. An R2 value closer to 1 indicates a better fit of the model to the data.

Root Mean Squared Error Root Mean Squared Error (RMSE) is used to evaluate the accuracy of
regression models by measuring the square root of the average squared differences between predicted and
actual values. It emphasizes larger errors due to squaring the differences.

The formula for RMSE is:

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2

where N is the number of observations, ŷi is the predicted value, and yi is the actual value. Lower RMSE
values indicate better model performance, with a greater penalty for larger errors.

Root Mean Squared Logarithmic Error Root Mean Squared Logarithmic Error (RMSLE) is used
to evaluate the performance of regression models by measuring the logarithmic differences between
predicted and actual values. It is particularly useful when the target variable spans several orders of
magnitude.

The formula for RMSLE is:

RMSLE =

√√√√ 1

N

N∑
i=1

(log(ŷi + 1)− log(yi + 1))2

where N is the number of observations, ŷi is the predicted value, and yi is the actual value.

Mean Absolute Error Mean Absolute Error (MAE) is used to evaluate the accuracy of regression
models by measuring the average magnitude of errors in predictions, irrespective of their direction. It
provides a straightforward measure of the average prediction error.

The formula for MAE is:

MAE =
1

N

N∑
i=1

|ŷi − yi|

where N is the number of observations, ŷi is the predicted value, and yi is the actual value. Lower MAE
values indicate better model performance.

Median Absolute Error Median Absolute Error (MedAE) is used to evaluate the accuracy of regression
models by measuring the median of the absolute differences between predicted and actual values. It
provides a robust metric that is less sensitive to outliers.

The formula for MedAE is:

MedAE = median(|ŷi − yi|)

where ŷi is the predicted value and yi is the actual value. Lower MedAE values indicate better model
performance, with the metric focusing on the central tendency of errors.

Symmetric Mean Absolute Percentage Error Symmetric Mean Absolute Percentage Error (SMAPE)
is used to evaluate the accuracy of regression models by measuring the percentage error between predicted
and actual values, treating over- and under-predictions equally.

The formula for SMAPE is:

SMAPE =
100%

N

N∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

where N is the number of observations, ŷi is the predicted value, and yi is the actual value. Lower
SMAPE values indicate better model performance, with the metric providing a balanced view of relative
prediction errors.

D Prompts of DA-Agent

Following the ReAct (Yao et al., 2022) prompting framework, which guides models in breaking down
complex problems into manageable steps through an iterative chain of reasoning (Reasoning), action
(Action), and observation (Observation) phases, where the current state is observed after each action
before proceeding to the next step of reasoning, we build the DA-Agent. Below, we will introduce the
system messages and actions used within this framework.

D.1 System Prompt

Context
You are a data scientist proficient in analyzing data. You excel at using Bash

commands and Python code to solve data-related problems. You are working
in a Bash environment with all necessary Python libraries installed. If
you need to install additional libraries, you can use the 'pip install'
command. You are starting in the {work_dir} directory, which contains all
the data needed for your tasks. You can only use the actions provided in
the ACTION SPACE to solve the task. The maximum number of steps you can
take is {max_steps}.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ACTION SPACE
{action_prompts}
NOTICE
1. You need to fully understand the action space and its arguments before

using it.↪→

2. You should first understand the environment and conduct data analysis on
the given data before handling the task.↪→

3. You can't take some problems for granted. For example, you should check the
existence of files before reading them.↪→

4. If the function execution fails, you should analyze the error and try to
solve it.↪→

5. For challenging tasks like ML, you may need to verify the correctness of
the method by checking the accuracy or other metrics, and try to optimize
the method.

↪→

↪→

6. Before finishing the task, ensure all instructions are met and verify the
existence and correctness of any generated files.↪→

RESPONSE FROMAT
For each task input, your response should contain:
1. One analysis of the task and the current environment, reasoning to

determine the next action (prefix "Thought: ").↪→

2. One action string in the ACTION SPACE (prefix "Action: ").
EXAMPLE INTERACTION
Observation: ...(the output of last actions, as provided by the environment

and the code output, you don't need to generate it)↪→

Thought: ...
Action: ...

TASK
{task}

D.2 Action Prompts
Bash Action

Bash Action
* Signature: Bash(code="shell_command")
* Description: This action string will execute a valid shell command in the

`code` field. Only non-interactive commands are supported. Commands like
"vim" and viewing images directly (e.g., using "display") are not allowed.

↪→

↪→

* Example: Bash(code="ls -l")

Python Action

Python Action
* Signature: Python(file_path="path/to/python_file"):
```python
executable_python_code
```
* Description: This action will create a python file in the field `file_path`

with the content wrapped by paired ``` symbols. If the file already
exists, it will be overwritten. After creating the file, the python file
will be executed.

↪→

↪→

↪→

* Example: Python(file_path="./hello_world.py"):
```python
print("Hello, world!")
```

SQL Action

SQL Action
* Signature: SQL(file_path="path/to/database_file", command="sql_command",

output="path/to/output_file.csv" or "direct")↪→

* Description: Executes an SQL command on the specified database file. If
`output` is set to a file path, the results are saved to this CSV file; if
set to 'direct', results are displayed directly.

↪→

↪→

* Constraints:
- The database file must be accessible and in a format compatible with

SQLite (e.g., .sqlite, .db).↪→

- SQL commands must be valid and safely formatted to prevent security issues
such as SQL injection.↪→

* Examples:
- Example1: SQL(file_path="data.sqlite", command="SELECT name FROM

sqlite_master WHERE type='table'", output="directly")↪→

- Example2: SQL(file_path="data.db", command="SELECT * FROM users",
output="users_output.csv")↪→

Terminate Action

Terminate Action
* Signature: Terminate(output="literal_answer_or_output_path")
* Description: This action denotes the completion of the entire task and

returns the final answer or the output file/folder path. Make sure the
output file is located in the initial workspace directory.

↪→

↪→

* Examples:
- Example1: Terminate(output="New York")
- Example2: Terminate(output="result.csv")
- Example3: Terminate(output="FAIL")

E Action Trajectory Examples

This section provides action trajectory examples based on DA-Agent framework powered by GPT-4.

Example 1

* Task: This is a dataset titled “The-GitHub-History-of-the-Scala-Language,”
with detailed descriptions provided in the README.md file. I want to know
the number of pull requests made by two users with the nicknames “soc” and
“xeno-by” for each year between 2011 and 2016. Please fill in your
statistical results in the provided template file
pull_requests_by_year_and_author.csv.

↪→

↪→

↪→

↪→

↪→

[Step 1]
* Observation: You are in the folder now.

* Thought: Before I can analyze the data, I need to understand the structure
of the dataset and the contents of the README.md file to know how the data
is organized. I will use the `cat` command to display the contents of the
README.md file.

↪→

↪→

↪→

* Action: Bash(code="cat README.md")
* code: cat README.md

[Step 2]
* Observation: # The-GitHub-History-of-the-Scala-Language
Project Description

Open source projects contain entire development histories - who made changes,

the changes themselves,↪→

and code reviews. In this project, will be challenged to read in, clean up,
and visualize the real-world↪→

project repository of Scala that spans data from a version control system
(Git) as well as a project hosting↪→

site (GitHub). With almost 30,000 commits and a history spanning over ten
years, Scala is a mature language.↪→

Will find out who has had the most influence on its development and who are
the experts.↪→

The dataset includes the project history of Scala retrieved from Git and
GitHub as a set of CSV files.↪→

file = 'src/compiler/scala/reflect/reify/phases/Calculate.scala'

* Thought: The README.md file indicates that the dataset consists of CSV files
containing the project history of Scala from Git and GitHub. However, it
does not specify the exact filenames or their contents. To proceed, I need
to list the files in the current directory to identify the CSV files that
might contain the pull request data.

↪→

↪→

↪→

↪→

* Action: Bash(code="ls -l")
* code: ls -l

[Step 3]
* Observation: total 4972
-rw-r--r-- 1 570063388 500000513 754 Dec 31 1979 README.md
-rw-r--r-- 1 570063388 500000513 4836135 Dec 31 1979 pull_files.csv
-rw-r--r-- 1 570063388 500000513 66 Jun 9 04:13

pull_requests_by_year_and_author.csv
-rw-r--r-- 1 570063388 500000513 242097 Dec 31 1979 pulls.csv
* Thought: There are two CSV files that could contain the pull request data:

`pull_files.csv` and `pulls.csv`. The
`pull_requests_by_year_and_author.csv` file is likely the template I need
to fill in with the statistical results. To determine which CSV file
contains the pull request data and the information about the authors and
dates, I should take a look at the first few lines of each CSV file. I
will start by examining the `pulls.csv` file using the `head` command.

↪→

↪→

↪→

↪→

↪→

↪→

* Action: Bash(code="head pulls.csv")
* code: head pulls.csv

[Step 4]
* Observation: pid,user,date

163314316,hrhino,2018-01-16T23:29:16Z

163061502,joroKr21,2018-01-15T23:44:52Z

163057333,mkeskells,2018-01-15T23:05:06Z

162985594,lrytz,2018-01-15T15:52:39Z

162838837,zuvizudar,2018-01-14T19:16:16Z

162765232,howtonotwin,2018-01-13T04:37:17Z

162643301,hrhino,2018-01-12T14:29:49Z

162256029,mkeskells,2018-01-10T23:20:03Z

162197834,SethTisue,2018-01-10T18:31:25Z

* Thought: The `pulls.csv` file contains the columns `pid`, `user`, and
`date`, which are the pull request ID, the username of the person who made
the pull request, and the date the pull request was made, respectively.
Since the task requires the number of pull requests made by the users
"soc" and "xeno-by" for each year between 2011 and 2016, this file seems
to contain the necessary information. I will now write a Python script to
read this CSV file, filter the data for the two users and the specified
years, and count the number of pull requests per year for each user. Then,
I will fill in the results in the `pull_requests_by_year_and_author.csv`
template file.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

* Action: Python(file_path="./analyze_pulls.py"):
```python
import pandas as pd

# Load the pull requests data
pulls = pd.read_csv('pulls.csv')
# Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

# Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &

(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc',
'xeno-by']))]

↪→

↪→

# Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

# Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

# Merge the results with the template
result = template.merge(pulls_by_year_and_user, how='left', left_on=['year',

'author'], right_on=['date', 'user']).fillna(0)↪→

# Drop the extra columns and save the result
result = result[['year', 'author', 'count']]
result.to_csv('pull_requests_by_year_and_author.csv', index=False)
```
* code: import pandas as pd

Load the pull requests data
pulls = pd.read_csv('pulls.csv')

Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &

(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc',
'xeno-by']))]

↪→

↪→

Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

Merge the results with the template
result = template.merge(pulls_by_year_and_user, how='left', left_on=['year',

'author'], right_on=['date', 'user']).fillna(0)↪→

Drop the extra columns and save the result
result = result[['year', 'author', 'count']]
result.to_csv('pull_requests_by_year_and_author.csv', index=False)

[Step 5]
* Observation: Traceback (most recent call last):
File "/workspace/./analyze_pulls.py", line 19, in <module>
result = template.merge(pulls_by_year_and_user, how='left',

left_on=['year', 'author'], right_on=['date', 'user']).fillna(0)↪→

File "/usr/local/lib/python3.9/site-packages/pandas/core/frame.py", line
10832, in merge↪→

return merge(
File "/usr/local/lib/python3.9/site-packages/pandas/core/reshape/merge.py",

line 170, in merge↪→

op = _MergeOperation(
File "/usr/local/lib/python3.9/site-packages/pandas/core/reshape/merge.py",

line 794, in __init__↪→

) = self._get_merge_keys()
File "/usr/local/lib/python3.9/site-packages/pandas/core/reshape/merge.py",

line 1310, in _get_merge_keys↪→

left_keys.append(left._get_label_or_level_values(lk))
File "/usr/local/lib/python3.9/site-packages/pandas/core/generic.py", line

1911, in _get_label_or_level_values↪→

raise KeyError(key)
KeyError: 'year'

* Thought: The error indicates that the 'year' column is not present in the
template file, which means I cannot merge on this column. I need to check
the contents of the `pull_requests_by_year_and_author.csv` template file
to understand its structure and correct the merge operation accordingly.

↪→

↪→

↪→

* Action: Bash(code="cat pull_requests_by_year_and_author.csv")
* code: cat pull_requests_by_year_and_author.csv

[Step 6]
* Observation: date,soc,xeno-by

2011,,

2012,,

2013,,

2014,,

2015,,

2016,,

* Thought: The template file `pull_requests_by_year_and_author.csv` has
columns for 'date', 'soc', and 'xeno-by', with the 'date' column
representing the year. The error occurred because I tried to merge on a
'year' column that does not exist in the template. Instead, I should use
the 'date' column for merging. I need to adjust the Python script to
correctly merge the data based on the 'date' column and fill in the counts
for 'soc' and 'xeno-by' in their respective columns.

↪→

↪→

↪→

↪→

↪→

↪→

* Action: Python(file_path="./analyze_pulls.py"):
```python
import pandas as pd

# Load the pull requests data
pulls = pd.read_csv('pulls.csv')

# Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

# Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &
(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc', 'xeno-by']))]

# Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

# Pivot the result to have years as rows and users as columns
pivot_table = pulls_by_year_and_user.pivot(index='date', columns='user',

values='count').reset_index().fillna(0)↪→

# Rename the columns to match the template file
pivot_table.columns = ['date', 'soc', 'xeno-by']

# Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

# Merge the results with the template
result = template.merge(pivot_table, on='date', how='left').fillna(0)

# Drop the extra columns and save the result
result = result[['date', 'soc', 'xeno-by']]
result.to_csv('pull_requests_by_year_and_author.csv', index=False)
```
* code: import pandas as pd

Load the pull requests data
pulls = pd.read_csv('pulls.csv')

Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &

(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc',
'xeno-by']))]

↪→

↪→

Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

Pivot the result to have years as rows and users as columns
pivot_table = pulls_by_year_and_user.pivot(index='date', columns='user',

values='count').reset_index().fillna(0)↪→

Rename the columns to match the template file
pivot_table.columns = ['date', 'soc', 'xeno-by']

Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

Merge the results with the template
result = template.merge(pivot_table, on='date', how='left').fillna(0)

Drop the extra columns and save the result
result = result[['date', 'soc', 'xeno-by']]
result.to_csv('pull_requests_by_year_and_author.csv', index=False)

[Step 7]
* Observation: Traceback (most recent call last):
File "/workspace/./analyze_pulls.py", line 28, in <module>
result = result[['date', 'soc', 'xeno-by']]

File "/usr/local/lib/python3.9/site-packages/pandas/core/frame.py", line
4108, in __getitem__↪→

indexer = self.columns._get_indexer_strict(key, "columns")[1]
File "/usr/local/lib/python3.9/site-packages/pandas/core/indexes/base.py",

line 6200, in _get_indexer_strict↪→

self._raise_if_missing(keyarr, indexer, axis_name)
File "/usr/local/lib/python3.9/site-packages/pandas/core/indexes/base.py",

line 6252, in _raise_if_missing↪→

raise KeyError(f"{not_found} not in index")
KeyError: "['soc', 'xeno-by'] not in index"

* Thought: The error indicates that the columns 'soc' and 'xeno-by' are not
found in the merged result, which suggests that the pivot operation did
not produce these columns. This could be because the pivot operation did
not find any data for these users in the specified years, or because the
pivot operation was not performed correctly. I need to ensure that the
pivot operation creates the columns for 'soc' and 'xeno-by' even if there
are no pull requests for them in the data. I will modify the script to
handle cases where there are no pull requests for these users by
explicitly adding these columns if they are missing after the pivot
operation.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

* action: Python(file_path="./analyze_pulls.py"):
```python
import pandas as pd
# Load the pull requests data
pulls = pd.read_csv('pulls.csv')

# Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

# Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &

(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc',
'xeno-by']))]

↪→

↪→

# Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

# Pivot the result to have years as rows and users as columns, filling missing
values with 0↪→

pivot_table = pulls_by_year_and_user.pivot(index='date', columns='user',
values='count').fillna(0).reset_index()↪→

# Ensure that 'soc' and 'xeno-by' columns exist, adding them if they don't
if 'soc' not in pivot_table:

pivot_table['soc'] = 0
if 'xeno-by' not in pivot_table:

pivot_table['xeno-by'] = 0
# Rename the columns to match the template file
pivot_table.rename(columns={'date': 'date'}, inplace=True)

# Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

# Merge the results with the template
result = template.merge(pivot_table, on='date', how='left').fillna(0)

# Save the result
result.to_csv('pull_requests_by_year_and_author.csv', index=False)
```
* code: import pandas as pd

Load the pull requests data
pulls = pd.read_csv('pulls.csv')

Convert the date column to datetime
pulls['date'] = pd.to_datetime(pulls['date'])

Filter the data for the years 2011-2016 and for the users 'soc' and 'xeno-by'
filtered_pulls = pulls[(pulls['date'].dt.year >= 2011) &

(pulls['date'].dt.year <= 2016) & (pulls['user'].isin(['soc',
'xeno-by']))]

↪→

↪→

Group by year and user, then count the number of pull requests
pulls_by_year_and_user =

filtered_pulls.groupby([filtered_pulls['date'].dt.year,
'user']).size().reset_index(name='count')

↪→

↪→

Pivot the result to have years as rows and users as columns, filling missing
values with 0↪→

pivot_table = pulls_by_year_and_user.pivot(index='date', columns='user',
values='count').fillna(0).reset_index()↪→

Ensure that 'soc' and 'xeno-by' columns exist, adding them if they don't
if 'soc' not in pivot_table:

pivot_table['soc'] = 0
if 'xeno-by' not in pivot_table:

pivot_table['xeno-by'] = 0

Rename the columns to match the template file
pivot_table.rename(columns={'date': 'date'}, inplace=True)

Load the template file
template = pd.read_csv('pull_requests_by_year_and_author.csv')

Merge the results with the template
result = template.merge(pivot_table, on='date', how='left').fillna(0)

Save the result
result.to_csv('pull_requests_by_year_and_author.csv', index=False)
[Step 8]
* observation: ./analyze_pulls.py executed successfully. No output.

* thought: The Python script has executed successfully without any errors,
which means the `pull_requests_by_year_and_author.csv` file should now be
filled with the correct data. I will now check the contents of the updated
CSV file to ensure that the data has been filled in as expected.

↪→

↪→

↪→

* action: Bash(code="cat pull_requests_by_year_and_author.csv")
* code: cat pull_requests_by_year_and_author.csv

[Step 9]
* observation: date,soc_x,xeno-by_x,soc_y,xeno-by_y
2011,0.0,0.0,12.0,20.0
2012,0.0,0.0,44.0,271.0
2013,0.0,0.0,117.0,123.0
2014,0.0,0.0,20.0,60.0
2015,0.0,0.0,24.0,3.0
2016,0.0,0.0,21.0,0.0

* thought: The output shows that the merge operation has created additional
columns with suffixes `_x` and `_y`. This is likely because the merge
operation found columns with the same name in both dataframes and
automatically added suffixes to differentiate them.

↪→

↪→

↪→

I need to adjust the script to ensure that the merge operation does not create
these additional columns and that the data is correctly placed under the
'soc' and 'xeno-by' columns as specified in the template.

↪→

↪→

* action : Python(file_path="./fix_csv.py"):
```python
import pandas as pd

# Load the CSV file that needs fixing
data = pd.read_csv('pull_requests_by_year_and_author.csv')

# We only need the 'date' column and the counts for 'soc' and 'xeno-by'
# The correct counts are in the columns with suffix '_y'
# Rename '_y' columns to remove the suffix and drop '_x' columns
data.rename(columns={'soc_y': 'soc', 'xeno-by_y': 'xeno-by'}, inplace=True)
data.drop(columns=['soc_x', 'xeno-by_x'], inplace=True)

# Save the corrected data back to the CSV file
data.to_csv('pull_requests_by_year_and_author.csv', index=False)
```
* code: import pandas as pd

Load the CSV file that needs fixing
data = pd.read_csv('pull_requests_by_year_and_author.csv')

We only need the 'date' column and the counts for 'soc' and 'xeno-by'
The correct counts are in the columns with suffix '_y'
Rename '_y' columns to remove the suffix and drop '_x' columns
data.rename(columns={'soc_y': 'soc', 'xeno-by_y': 'xeno-by'}, inplace=True)
data.drop(columns=['soc_x', 'xeno-by_x'], inplace=True)
Save the corrected data back to the CSV file
data.to_csv('pull_requests_by_year_and_author.csv', index=False)

[Step 10]
* observation: ./fix_csv.py executed successfully. No output.

* thought: The script to fix the CSV file has been executed successfully. Now,
I should check the contents of the `pull_requests_by_year_and_author.csv`
file again to confirm that the data is now correctly formatted according
to the template.

↪→

↪→

↪→

* action: Bash(code="cat pull_requests_by_year_and_author.csv")
* code: cat pull_requests_by_year_and_author.csv

[Step 11]
* observation: date,soc,xeno-by
2011,12.0,20.0
2012,44.0,271.0
2013,117.0,123.0
2014,20.0,60.0
2015,24.0,3.0
2016,21.0,0.0

* thought: The contents of the `pull_requests_by_year_and_author.csv` file
now correctly show the number of pull requests made by the users "soc" and
"xeno-by" for each year between 2011 and 2016. The task is complete, and I
can now provide the path to the updated CSV file as the final output.

↪→

↪→

↪→

* action: Terminate(output="pull_requests_by_year_and_author.csv")
* code:

	Introduction
	Data Science Agent Task
	Task Definition
	Task Categories

	DA-Code
	Challenging Tasks and Diverse Data
	Complex Solution
	Evaluation Suite
	Score Calculation
	Annotation Pipeline

	DA-Agent
	Environment
	Action Space
	Response Mechanism
	Memory Windows

	Experiment and Analysis
	Experiment Settings
	Main Results
	Ablation Study of DA-Agent
	Step into Trajectories

	Related Work
	Conclusion
	Task Examples
	Data Wrangling Example
	Machine Learning Task
	Exploratory Data Analysis (EDA)
	Visualization
	Data Manipulation
	Statistical Analysis
	Data Insights

	Experiments Details
	Evaluation details
	Plot based Evaluation
	Image Information Description

	ML Task Evaluation
	Classification Tasks
	Clustering Tasks
	Regression Tasks

	Prompts of DA-Agent
	System Prompt
	Action Prompts

	Action Trajectory Examples

