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Abstract

Advances in artificial intelligence (AI) present significant risks and opportunities, requiring
improved governance to mitigate societal harms and promote equitable benefits. Current
incentive structures and regulatory delays may hinder responsible AI development
and deployment, particularly in light of the transformative potential of large language
models (LLMs). To address these challenges, we propose developing the following three
contributions: (1) a large multimodal text and economic-timeseries foundation model
that integrates economic and natural language policy data for enhanced forecasting and
decision-making, (2) algorithmic mechanisms for eliciting diverse and representative
perspectives, enabling the creation of data-driven public policy recommendations, and (3) an
AI-driven web platform for supporting transparent, inclusive, and data-driven policymaking.

1 Introduction

As advances in artificial intelligence continue to reshape our world, humanity must grapple with new forms of risk
and opportunity. Concerns abound regarding rogue AI—whether arising from malicious human actors or from
autonomous agents themselves [Juric et al., 2020, Bengio et al., 2024] —as well as the transformative power that AI
confers on corporate and state competitors [Khan, 2019, Harraf and Ghura, 2021, Haner and Garcia, 2019, Morris
et al., 2024]. While technical work on alignment and safety is essential, it only succeeds insofar as we can ensure
that those who control AI systems use them responsibly. Yet our current incentive structures — shaped heavily
by short-term profit motives and often insufficiently guided by longer-term societal well-being [Szczepanski,
2019, Acemoglu and Restrepo, 2022, Zajko, 2022, Dhar, 2020, Wang et al., 2024] — hinder effective governance.
Regulation often lags behind until an immediate negative event occurs. In light of the recent advancements in scaling
LLMs, regulatory lag poses considerable societal risk [Hendrycks et al., 2023, Turchin and Denkenberger, 2020].

Improving our institutional capacities-both for thoughtful regulation and for productive application of advanced
AI—is crucial [Zhang et al., 2024]. Rapid, data-driven policy interventions are needed not only to mitigate
existential risks but also to ensure that the coming shift to an AI-driven economy yields broadly shared benefits.

We believe one promising avenue is to harness and repurpose emerging AI methods—especially “foundation
models”—to assist policymakers directly. As AI grows more capable, open-source models aligned with public
welfare can help guide regulation and inform evidence-based policy decisions. By developing these tools
transparently and collaboratively, we can avoid profit-driven biases and build trust with both policymakers and
the public [Osterloh and Rota, 2004]. We have thus taken this approach, believing that progress made in the
private sector can be turned towards public benefit, enabling timely, data-driven policies that safeguard vulnerable
populations and the commons through the open-source and academic community.

A critical component of this vision is the development of a specialized “time-series LLM.” In our context, this
refers to a large language model that integrates macroeconomic and microeconomic time-series data—such
as GDP, inflation rates, and legislative histories—with textual information like policy documents and news.
Such a model can forecast economic indicators, predict policy impacts, and support scenario analysis with
enhanced accuracy. By combining textual reasoning with temporal, quantitative forecasting [Liu et al., 2024b,
Williams et al., 2024], we can obtain a richer understanding of how policy choices shape economic and social
outcomes. This capability will be paired with a “value elicitation” mechanism to discern public preferences and
an LLM-based public policy generator to propose policies aligned with these values.

Together, these components can strengthen the policymaking process and open new approaches toward effective,
inclusive governance. We have structured ourselves as an open-source effort in pursuit of these capabilities
and encourage all motivated or interested in navigating these challenges for collective benefit to participate; we
warmly welcome additional contributors over the coming months.
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Figure 1: A broad overview of the system’s workflow. The AI Legislator first collects user values and policy
objectives from user interactions mediated by the policy interface (arrow 1) and transmits them to both the Policy
Interface and the Economics Transformer (arrow 2). The Economics Transformer also receives macroeconomic
time-series data from the Federal Reserve, and uses these inputs to generate forecasts, informing the effect of
policies on various macroeconomic indicators like GDP over time. These forecasts, along with the proposed
policies, are then routed back to the Policy Interface (arrow 3), where policymakers, researchers, and the public
can interact with, refine, and better understand policy.

2 Project Overview

Our initiative, led by Humanity Unleashed, a 501(c)3 nonprofit, unites numerous independent researchers -
academics, students, and nonprofit staff - into a large-scale, open-source collaboration. By organizing the proposed
research into multiple subprojects with more conventionally sized teams and supporting them through a nonprofit
framework, we overcome the traditional coordination challenges faced by academia. This approach fosters rapid,
iterative progress and supports the eventual integration of all subcomponents into a functional prototype — a
cooperative AI policymaking platform capable of garnering public trust and support.

The integrated platform will feature the following components:

Economics Transformer: A multimodal time-series language model trained on macroeconomic and
microeconomic data, coupled with legislative and event information, capable of forecasting economic outcomes
and quantifying uncertainty. This goes beyond classical models (e.g., DSGE [Christiano et al., 2018]) and provides
richer, data-driven insights on policy impacts.

AI Legislator: A mechanism that first elicits user values via a carefully designed questionnaire and hierarchical
Bayesian modeling and then generates policy proposals that reflect these values. This ensures output policies
have broad, bipartisan appeal while considering nuanced public preferences.

Policy Interface: A unified, user-friendly interface that enables policymakers, researchers, and the public to
interact with these tools. Through open-source release of code, datasets, and benchmarks, we invite the broader
community to refine, extend, and evaluate these models.

By leveraging a nonprofit setting and academic collaboration, we align incentives toward public benefit rather
than profit. Our 2024-2025 roadmap includes completing team organization, data gathering, model development,
and iterative refinements, culminating in machine learning conference submissions in mid 2025 and the public
release of our integrated tool in late 2025.

In summary, we aim to advance the state of AI-assisted policymaking. Our contributions will establish open-source
baselines, benchmarks, and a principled method for integrating time-series economic forecasting with LLM-based
value elicitation and policy generation. Ultimately, we seek to demonstrate a constructive, transparent, and
inclusive approach to using AI in support of governance, social welfare, and long-term societal resilience.

For the remainder of the report, we provide an in-depth overview of each component pictured in Figure 1: the
Economics Transformer (Section 3), the AI Legislator (Section 4), and the Policy Interface (Section 5). We
conclude with discussing a subproject which will study the societal impact of LLMs within the United States
economy in Section 6, concerning key implications of our project initiative.

3 Economics Transformer:
Enhancing LLMs for Predicting Policy Impacts on Multivariate Time Series

The Economics Transformer is designed to predict multivariate time series in the context of a proposed policy
or event given in the form of natural language. Central to our approach is leveraging existing LLMs by
fine-tuning them to predict multivariate time series while retaining their language understanding capabilities.
This project is divided into several subprojects—data collection, model architecture, scaling laws, and evaluation
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frameworks—to tackle the distinct challenges involved in training the Economics Transformer. We motivate
each of these subprojects below.

Data Collection. To support the development of the Economics Transformer, we will curate a dataset comprising
paired (policy, time series) examples that reflect the dynamics of economic variables in response to specific
policies or events. Although numerical economic time-series and other relevant textual data (eg. economic news,
policy announcements, reports, etc.) are readily available from public sources, it is less clear how to effectively
integrate data across these two modalities and establishing meaningful pairings that reinforce a strong causal
connection between the natural language context and time series data. More details about our approach for data
collection is given in Section 3.1.

Model Architecture. Approaches such as those in [Requeima et al., 2024, Williams et al., 2024] have
demonstrated that leveraging pretrained LLMs in zero-shot settings with time series and text can produce
reasonable results for context-driven forecasting. Although this is a reasonable baseline, developing novel
architectures can introduce a beneficial inductive bias for our downstream use case. Designing such an architecture
includes joint encoders to manage the multimodal and multivariate nature of the input, along with components
which ensure the Economics Transformer produces output distributions quantifying the uncertainty of its
predictions. In Section 3.2 we outline our proposed approach for the general underlying model architecture.

Scaling Laws. In line with prior work on fitting neural scaling laws to model performance based on parameters,
compute, and dataset size [Kaplan et al., 2020, Edwards et al., 2024] we aim to study how performance in
multimodal time-series and language settings is influenced by these factors. Specifically, we aim to investigate
the potentially distinct effects of the two modalities and assess how dataset quality influences downstream
performance. Further details on our considerations for the scaling laws of multimodal time-series language
models and our planned investigation into hyperparameter transfer approaches are provided in Section 3.3.

Evaluation Frameworks. For evaluation, we will focus on benchmark datasets that reflect real-world
macroeconomic forecasting challenges. Instead of relying on canonical datasets that may not be policy-relevant
(e.g., generic traffic or weather datasets), we will concentrate on macroeconomic and finance-related benchmarks
such as exchange rate forecasting [Godahewa et al., 2021] and hold-out sets from the Federal Reserve Bank of
St. Louis Time Series (FRED) dataset [National Renewable Energy Laboratory, 2011]. Recognizing potential
concerns about pretrained LLMs’ prior exposure to these datasets as well as the need for unified frameworks to
evaluate language model capabilities [Gao et al., 2024, Lambert et al., 2024], we similarly plan on releasing a live
benchmarking leaderboard which stays up-to-date with the latest FRED-MD dataset and allows for performance
comparisons across traditional methods and novel approaches. More details are given in Section 3.4.

3.1 Data Collection for the Economic Transformer

This project aims to create a comprehensive, multimodal dataset encompassing numerical economic time-series
and long-form textual policy data. By addressing the limitations of existing datasets, this work will enable
innovative insights into policy evaluation and economic forecasting.

Economic research and policymaking rely on robust datasets to analyze trends, simulate interventions, and
evaluate outcomes. However, we identify significant limitations within existing datasets:

• Fragmentation: Numerical and textual data are often silo-ed, making it difficult to perform cross-modal
analyses.

• Limited Coverage: Many datasets lack generalization, instead focusing on specific regions, industries,
or time periods.

• Lack of Contextualization: Textual narratives and long-form policy documents, which provide critical
context, are rarely integrated with numerical time-series data

Our proposed dataset will fill these gaps by collecting, cleaning, and harmonizing economic time-series data
across modalities, ensuring greater accessibility and usability. The significance of this work lies in its ability
to bridge the gap between fragmented economic datasets and integrate them with textual policy datasets. This
requires the dataset to have the following two key components.

Numerical Economic Time-Series Data: This component will aggregate structured numerical data from publicly
available sources such as central banks, government agencies, and international organizations. Examples include
GDP, unemployment rates, inflation indices, trade balances, and market indicators.

• Granularity: Inclusion of data at multiple levels (e.g., country, regional, and sectoral levels).

• Historical Coverage: A focus on extending time horizons to provide historical context for long-term
analysis.

Long-Form Economic/Policy Textual Data: This component will focus on in-depth policy documents, white
papers, and research reports.
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• Topic Classification: Tagging documents with economic themes, such as taxation, monetary policy,
or trade agreements.

• Historical Coverage: Emphasis on the inclusion of diverse policies from all political administrations.

The proposed dataset will be constructed through the use of established public repositories such as the Federal
Reserve Economic Data (FRED), and the GDELT Event Database.

To allow for the forecasting of economic time-series given a natural language policy, our approach will temporally
align textual and time series data, synchronizing policy events with corresponding economic metrics based on
timestamps or event markers.

Temporal Alignment: Standardize timestamps across numerical and textual data to enable temporal pairing
across modalities. This involves mapping each piece of text x and time series segment y to a common time index
t: A : (xt,yt) ∀t∈T , where T is the set of all time indices [Baltrusaitis et al., 2019].

Event-Based Alignment: Align data around significant events, such as policy enactments, using event indicator
functions:

E(t)=

{
1, if an event occurs at time t
0, otherwise.

(1)

This allows the model to focus on the periods where interactions between modalities are most critical [Poria et al.,
2018].

3.2 Novel Architecture Explorations: Foundation Model for Multi-Modal Time Series Tasks

Project Summary This research project aims to develop an innovative foundation model for practical
time series analysis, including forecasting Cao et al. [2020, 2021, 2023b], Niu et al. [2022, 2023], anomaly
detection [Zhao et al., 2020], causal inference [Zhang et al., 2022, Cao et al., 2023a, Huang et al., 2024] and
physics informed generation [Meng et al., 2022, Griesemer et al., 2024, Xiao et al., 2023], addressing critical
limitations in current approaches. Towards this end, our proposal has two key directions: firstly, we will develop
a novel fine-tuning approach that integrates multivariate time series analysis capabilities into existing large
language models, effectively harnessing their innate ability to process and understand textual data. Specifically,
we propose to modify Time-LLM [Jin et al., 2024], a model designed to handle time series with textual context,
to perform multimodal, multivariate probabilistic forecasting. Secondly, we will propose Continuous-Valued
Transformer (CVT) model which extends recent advancements in transformer architectures and diffusion models
to handle continuous-valued time series data alongside textual information. By incorporating a novel Diffusion
Loss function and adaptive temporal resolution mechanisms, the CVT model promises to capture complex
temporal dependencies across various scales and modalities. The significance of this work lies in its potential
to revolutionize time series analysis across multiple domains, enhancing decision-making processes in AI-driven
policymaking platforms and improving forecasting accuracy in critical sectors.

Background and Objectives The primary question this project addresses is: How can we develop a foundation
model for multivariate time series that effectively integrates with large pre-trained models while optimizing for
accuracy, multimodal capabilities, uncertainty quantification, and counterfactual generation? This question is
crucial due to the ubiquity of time series data across various domains and the increasing need for models that
can handle complex, multimodal data [Jia et al., 2024]. In fields such as finance, healthcare, and climate science,
the ability to accurately predict and interpret temporal patterns while leveraging textual information can lead
to groundbreaking insights and improved decision-making. The question is both interesting and challenging
due to several factors: aligning different data modalities without losing their specific characteristics, developing a
tokenization method that preserves both global and local temporal information, capturing complex inter-temporal
and cross-feature dependencies while maintaining computational efficiency, and balancing discrete time series
representation with continuous modeling.

Specifically, time series foundation models face significant challenges in effectively representing complex, multi-
dimensional temporal data while preserving both local and global information [Das et al., 2023, Woo et al., 2024,
Talukder et al., 2024, Yue et al., 2022, Ansari et al., 2024, Rasul et al., 2024a]. The integration of time series analysis
with textual information, inspired by the success of large language models (LLMs) such as LLaMA [Touvron et al.,
2023] and ChatGPT-4 [OpenAI, 2023], presents additional technical challenges. Current approaches struggle
to effectively process and combine these disparate data types while maintaining their unique characteristics. There
is a need for novel multimodal architectures that can seamlessly handle both numerical time series and associated
textual data. Such architectures must address several key technical requirements: (1) Developing a unified represen-
tation that preserves the temporal structure of time series and the semantic content of text, (2) Designing attention
mechanisms that can capture dependencies both within and across modalities, (3) Creating training objectives that
balance the learning of temporal patterns and textual understanding, (4) Ensuring the model’s ability to generalize
across different time scales and data distributions. Addressing these technical challenges is essential for creating
a versatile foundation model capable of advanced time series analysis in conjunction with textual data processing.
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Research Direction 1: Fine-Tuning LLMs for Multimodal Ability Time-LLM has demonstrated the effec-
tiveness of reprogramming large language models for time series forecasting, outperforming traditional time series
models in certain univariate forecasting tasks [Jin et al., 2024]. However, Time-LLM processes each variate dimen-
sion individually during patch embedding, leading to a loss in cross-variate dependencies crucial for multivariate
forecasting. Our research addresses this limitation by proposing two distinct approaches to modifying Time-LLM:

I. Incorporating Cross-Variate Information in Patch Embedding: Similar to UniTST [Liu et al., 2024c], this
approach combines patches into a 2D tensor that spans both temporal and variate dimensions. Linear projection
with positional embeddings is applied on the tensor to generate 2D token embeddings, which are then flattened
into a 1D token matrix compatible with Time-LLM’s reprogramming layer.

II. Capturing Cross-Variate Information During Reprogramming: Inspired by Crossformers [Zhang
and Yan, 2023] and CARD [Xue et al., 2024], this approach replaces the cross-attention mechanism in the
reprogramming layer with two-stage attention, which individually captures and accumulates temporal and
cross-variate dependencies without modifying the patches.

Research Direction 2: Designing Time Series Multimodal Model Our research aims to revolutionize the field
of time series analysis by developing a state-of-the-art foundation model that addresses current limitations while
leveraging the power of transformers and integrating textual information. The proposed approach builds upon recent
advancements such as TEMPO [Cao et al., 2024a], TimeDiT [Cao et al., 2024b] and MAR [Li et al., 2024], extend-
ing their capabilities to create a more versatile and powerful model for time series processing. In this proposal, we
propse the Continuous-Valued Transformer (CVT) to operate directly on the continuous time series domain. This
approach overcomes the limitations of discrete tokenization methods, which have been a significant bottleneck in
applying transformer architectures to time series data. The CVT employs a continuous embedding layer that maps
input time series values to a high-dimensional continuous space, preserving the richness and nuance of the original
data while enabling transformer-style processing. A key component of our model is the "Diffusion Loss" function,
which replaces the traditional categorical cross-entropy loss used in discrete approaches. This loss function draws
inspiration from diffusion models but is tailored for efficient training within the transformer framework. It models
continuous probability distributions for each time step using a mixture of Gaussians, allowing for multi-modal
predictions that capture the inherent uncertainty in probabilistic time series forecasting. To handle the complexities
of multivariate time series, we implement an adaptive temporal resolution mechanism that allows the model to auto-
matically adjust its focus on different time scales within the input sequence. This is particularly crucial for dealing
with time series data that exhibit patterns at various frequencies, from high-frequency trading data to slow-moving
economic indicators. Our multi-modal CVT model architecture features modality-specific encoders for time series
and text, based on our enhanced TEMPO model and LLaMA (or similar large language models) respectively. The
fusion encoder shares weights across modalities, further encouraging alignment in the shared embedding space.

Specifically, to effectively integrate language and time series data, we turn towards joint encoding techniques
that map both modalities into a shared latent space; specifically, multimodal autoencoders with modality-specific
encoders to transform language data x and time series data y into unified representations: z=f lang

enc (x)=f ts
enc(y).

In this setup, f lang
enc and f ts

enc are encoders for the language and time series data, respectively, both producing the same
latent representation z∈Rdz [Ngiam et al., 2011]. This shared latent space captures common features and correla-
tions between the modalities, enabling the model to learn intricate relationships between policy texts and economic
indicators. To analyze the relationship of each modality’s affect on the other, we will employ a cross-modal
attention mechanism to allow the model to dynamically focus on relevant features across both modalities. Within
the transformer architecture, we compute attention scores between modality-specific queries, keys, and values.

3.3 Scaling Laws for Multimodal Time-Series Language Models

Current work often treats time series data in isolation, leaving gaps in understanding how different modalities
(like natural language and time series) impact model performance when integrated [Liu et al., 2024a]. The scaling
goals are twofold: first, to establish how increasing data, compute, and model size influences performance in
multimodal settings; and second, to examine how the proportion of different modalities within a dataset affects
forecasting accuracy and optimal hyperparameters. Previous research [Aghajanyan et al., 2023] indicates that
evaluation loss in multimodal models is influenced by the complexity of combining different datasets and the
additional computational demands this entails. This relationship for two modalities can be expressed as

L(N,Di,Dj)=

[
L(N,Di)+L(N,Dj)

2

]
−Ci,j+

Ai,j

Nαi,j
+

Bi,j

|Di|+|Dj |βi,j
,

where L(N,Di,Dj) is the evaluation loss for model parameters N and datasets Di and Dj , Ci,j represents the
information gain from combining datasets, Ai,j and Bi,j are constants related to model complexity and data,
and αi,j and βi,j are scaling exponents [Aghajanyan et al., 2023]. For time series models, the evaluation loss

often follows a power-law scaling relationship, L(A)=
(

A
A0

)−B0

, where A is the scaling factor (such as data
size, compute, or model size), and A0 and B0 are normalization and fitting constants [Edwards et al., 2024].
To determine how these two metrics will interact, this project will use a transformer model [Vaswani et al.,
2023] and various multimodal time series datasets like TIME-MMD [Liu et al., 2024a] and FRED [National
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Renewable Energy Laboratory, 2011]. Initial steps involve encoding time series data for use in the transformer,
experimenting with encoding methods like vector quantization [Rasul et al., 2024b] and a direct mapping from
the continuous time series data to a transformer’s continuous representation of space, and then determining the
optimal relationship between compute, data, and model size when using time series data to minimize prediction
errors. The project will also investigate the optimal composition of modalities within datasets and fine-tune
hyperparameters using approaches like π-tuning [Wu et al., 2023] and µ-P transfer [Yang et al., 2021]. By
optimizing resource allocation across data amount and type, number of model parameters, and compute; this
project aims to achieve more optimal multimodal prediction performance with fewer resources, making prediction
feasible for larger domains and datasets through saving much in compute resources .

3.4 DBITS: Dynamic Benchmarking of Indicator Time Series

Project Description. To inform policymakers to make better policies, we need better forecasts of economic
indicators (e.g., GDP). A proposed solution for this is a multimodal time series forecasting transformer, but there
is no way to dynamically evaluate this compared to more traditional models in real-time. This proposal aims to
create a live benchmarking leaderboard for economic time series models. Having a live leaderboard with different
evaluation filters and a history of relative performance to point out trends will help researchers develop better
models for predicting economic indicators where changes in culture and politics can make a significant impact
on trends in the data as better time series models for economic indicators can be made through ensemble methods
such as bagging and boosting from having a reliable ranking of models in different contexts.

This continually updating live leaderboard will be realized by creating a new open-source hosted code repository
that will automatically scrape the latest FRED-MD dataset in real time [McCracken and Ng, 2016], run the
appropriate evaluations (evals) for all the models, and display their rankings on a continually updating basis
with the option to select different evaluation filters. This solution will also have the ability to upload a model
via uploading a script that the server can use to run evals.

Background and Technical Need The current state-of-the-art for time series leaderboards is the OpenTS leader-
board [Qiu et al., 2024] which benchmarks various time series models and serves as a great foundation for our own
new live leaderboard as it also incorporates a static snapshot of the FRED-MD dataset. However, it does not update
in real-time automatically [Qiu et al., 2024]. For the OpenTS leaderboard there is currently significant overhead for
people looking to compare the performance of different time series models as they would have to setup their own
copy of the leaderboard to get live results and/or add their own models [Qiu et al., 2024]. This requires both time
and expertise in terms of software development as well as the necessary supporting infrastructure to host and deploy
a local version of the backend. Another recent leaderboard is GIFT from Salesforce AI where they allow users to
select different horizons for the ranking [Aksu et al., 2024]. However, they too like OpenTS are not updated as soon
as the data is changed in real-time, do not show any history of the performance of different models and require that
users themselves run the evaluations on models manually in order to update the leaderboard [Aksu et al., 2024].

Development Overview For this project, we focus on the development of a FRED-MD [McCracken and Ng, 2016]
pipeline to serve as the foundation of a continual source of data to be used on a recurring basis for updated testing.

To provide a standardized input interface for models to integrate into the leaderboard platform, we developed a
schema for each script meant to test a model’s forecasting. In addition to basic metadata regarding model name, type,
etc, it specifies the appropriate dimensions of data frame for input into training/testing the model and the appropriate
dimensions of the forecast output. The purpose of this standardization is to provide a unified interface for model
testing. To store the model evaluations, we utilized Supabase, an open source platform. Model evaluations, once
generated, are uploaded, and stored for aggregation and comparison, which is displayed via the frontend.

We utilized Next.js and Tailwind CSS to construct a user accessible leaderboard that allows for comparison
across models in a straightforward manner, incorporating all of the evaluation needs that we require. In particular,
we were able to implement rolling window analysis. This in sum allows for visualizing relative performance
of models compared to each other, and to fully encapsulate the performance metrics we had previously set out.

MVP Implementation For our MVP, we implemented evaluations for forecasting on different horizons
(F=12,24,36,48,60 months), a rolling forecasting strategy, and a look-back window of 96 months. For our
non-foundation models, we make API calls to Nixtla’s MLForecast [Nixtla, 2021] and StatsForecast [Garza
et al., 2022] libraries to train and forecast on our dataset.

We created a fully functional, MVP version of the dynamic leaderboard by implementing the frontend and the
aforementioned steps, allowing comparison across models with different time horizons, and rolling forecast
evaluations. We compare an initial set of 8 models: historical average, LightGBM [Ke et al., 2017], ETS
[Hyndman and Athanasopoulos, 2021], TimesFM [Das et al., 2024], random forest [Breiman, 2001], nlinear
[Zeng et al., 2023], linear, and linear regression approaches.

Next Steps Based on a quick glance of our preliminary data, we have demonstrated variation across contexts
(variation across time horizons for the models of interest and interesting differentiation for the various time
horizon intervals) and seemingly significant trends in the relative performance of models over time in history,
but we will have to do more formal statistical analysis to prove this significance.
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With this framework, our next step is to swap in more interesting datasets in addition to FRED-MD. For example,
FRED-QD focuses on quarterly macroeconomic data (e.g., GDP, consumption, investment) [McCracken and
Ng, 2021], and FRED-SD explores smaller subcategories like industrial production and housing [Bokun et al.,
2023]. Beyond the FRED family of datasets, additional sources like polling markets or prediction markets, can
be valuable and are an untapped source of insight . This would necessitate the development of additional scripts
for scraping new data sources. Specific examples include Kalshi Prediction Markets [Beckhardt, no date] and
ALFRED, which tracks revisions to past data points (e.g., updated GDP figures) [Stierholz, no date].

4 AI Legislator:
Eliciting Human Preferences for Creation of AI-Generated Policies

The AI Legislator builds on the foundations laid by the Economic Transformer, integrating insights from
multimodal time-series modeling and textual data analysis to understand the impacts of policy, establishing a
framework for data-driven policymaking. The AI Legislator ensures that policy generation is grounded in both
quantitative economic forecasting and qualitative stakeholder values. By simulating diverse perspectives, it seeks
to bridge ideological divides and enhance effective governance.

4.1 Value Elicitation Framework for AI Policymaking: A Simulation-Based Approach

This project will develop a framework for eliciting human values at scale to inform AI-driven policymaking. It
builds on Park et al. [2024] simulation of 1,052 individuals, achieving 85% accuracy in replicating their survey
responses, and uses this simulated environment to refine methods for capturing human moral and political
preferences. The framework applies hierarchical Bayesian modeling, Moral Foundations Theory [Graham
et al., 2013], and optimal transport methods to represent and aggregate diverse values. By producing structured,
empirically validated representations of values, the system can guide automated policy generators toward solutions
that align with a broad range of stakeholder preferences.

Objectives and Expected Significance

Effective AI policymaking requires accurately representing and integrating human values into decision-making.

Key challenges:

• Capturing value heterogeneity across diverse populations at scale

• Reconciling conflicting moral frameworks to produce actionable policy guidance

• Translating elicited values into formal constraints that inform automated policy generation

Background and Technical Need

Traditional methods for eliciting values, such as surveys or interviews, often face biases and cognitive overload,
leading to inconsistent aggregate profiles. Park et al. [2024] addressed this by using generative agents to simulate
human attitudes and behaviors with measurable fidelity, enabling systematic refinement of elicitation techniques.

Our approach leverages the following key methodologies:

Strategic Query Design: Aggregates value distributions into collective representations adaptively based on
prior answers. Hierarchical Bayesian Modeling: Models values at global, domain-specific, and individual
levels, refining accuracy with fewer queries. Moral Foundations Theory: Six core dimensions (Care/Harm,
Fairness/Cheating, Loyalty/Betrayal, Authority/Subversion, Sanctity/Degradation, and Liberty/Oppression)
provide a structured basis for queries and interpretation.

Strategic Query Design:

The system uses active learning to select queries that maximize information gain about users’ moral foundations.
Instead of generic questions, it employs targeted modalities such as binary policy choices (e.g., “Do you prefer
stringent AI oversight or a permissive innovation environment?”), resource allocation tasks (e.g., “Distribute
100 points among economic growth, equity, and AI safety”), and moral dilemmas or scales (e.g., “Should AI
prioritize individual freedom over collective welfare? Likert 1–7 scale”).

These queries, linked to moral dimensions like Liberty/Oppression or Fairness/Cheating, enable efficient updates
of user-specific value parameters. Over multiple iterations, the hierarchical Bayesian model converges on a stable
moral profile for each user.

Hierarchical Bayesian Modeling: The model operates across three layers:

• Global Layer: Captures universal moral dimensions as priors informed by Moral Foundations Theory
[Graham et al., 2013].

• Domain Layer: Adjusts these priors for specific policy contexts (e.g., data privacy in AI regulation).
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• Individual Layer: Personalizes the distribution to the individual respondent. If responses indicate
strong emphasis on Fairness, the model shifts that user’s distribution accordingly.

Using a posterior update rule, the model refines its estimates with each query, improving accuracy and efficiency:

P (θuser |rq)=
P (rq |θuser)P (θuser)

P (rq)
,

where θuser represents the user’s value parameters and rq is the observed response. By applying this rule iteratively,
the system refines its estimates of a user’s moral foundations with each query.

Moral Foundations Contextualization: Moral Foundations Theory [Graham et al., 2013] provides a structured basis
for categorizing and interpreting responses across six core dimensions. This grounding ensures psychological
validity and enhances clarity and reliability in inferred moral constructs, e.g., linking privacy vs. security debates
to Authority/Subversion and Liberty/Oppression dimensions.

Integration with Policy Generator

The elicited values feed directly into the AI policy generator, serving as constraints or weights to align policies
with identified moral priorities. For example, value profiles favoring fairness lead to policies promoting equity,
while preferences for innovation may result in looser regulations with safety measures.

By integrating value elicitation into policymaking, the system identifies conflicts early and flags them for
stakeholder deliberation. Simulations of demographic subgroup responses help policymakers anticipate potential
unintended consequences.

Timeline and Phases of Work

1. Foundation Development: Implement the hierarchical Bayesian model using Moral Foundations Theory as
a baseline. Develop initial sets of queries corresponding to the six moral dimensions and create a simple prototype
to demonstrate how value outputs guide a basic policy generator.

2. Simulation and Validation: Deploy the elicitation framework on the agent population from Park et al. [2024]
to evaluate the accuracy and consistency of inferred values. Validate against known ground truths, adjust the
query design and updating mechanisms, and conduct small-scale trials to verify stability of posterior distributions
and reduction in uncertainty.

3. Integration and Scaling: Finalize integration with the policy generator and optimize for real-world deployment
to larger, more diverse populations. Pilot the framework in controlled settings to ensure practicality and reliability.

Broader Implications

This framework provides a systematic method for incorporating diverse moral perspectives into policymaking,
enabling the creation of more inclusive policies. Its grounding in Moral Foundations Theory improves
interpretability, helping policymakers understand the moral rationale behind policy outcomes. Future research
could expand this approach to other domains, explore additional moral dimensions, or enhance statistical
techniques for finer-grained value elicitation.

4.2 Policy Generation for AI Legislator

This project aims to build an LLM-based policy generator that assists policymakers in addressing complex issues us-
ing simulated human perspectives for evaluation. It will take as input a policy issue or query along with a distribution
over values from the Value Elicitation project, and produce actionable, contextually-informed policy recommenda-
tions by leveraging inten decomposition, knowledge retrieval, simulated personas, and advanced language models.

Policy Generation Workflow.

1. Policy Issue and Intent Decomposition: Policy issues retrieved from the frontend are translated into
actionable goals via Intent Decomposition. A High-level policy intent H is parsed into actionable steps
A=Decompose(H,Context), where the context includes relevant data D retrieved from the Knowledge Base
[Dzeparoska et al., 2023].

2. Knowledge Base and Context Retriever: The Context Retriever sources relevant information from static
and dynamic Knowledge Bases. This contextual injection ensures the Core LLM operates with domain-relevant,
and up-to-date information.

3. Core LLM & Policy Generation: Using pretrained models (4o-mini, 4o) prompt engineering, and in later
phases Retrieval-Augmented Generation (RAG), the LLM integrates contextual data to draft policies, where
the policy P is generated as P =CoreLLM(Q,D), with Q representing the query and D the retrieved context.

4. Policy Validation and Refinement: The policy P is then assessed for feasibility, realism, and bipartisan appeal.
Specifically, there should be three phases here:

Phase 1: Persona Querying assesses demographic support Sp(P ) and legislative feasibility Sl(P ) through
predefined personas, where the total score is calculated as Stotal(P )=αSp(P )+βSl(P ). Phase 2: Transition
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to Agentic Framework later in the development Representative and Mediator Agents are introduced for deeper
refinement [Wang et al., 2023], updating scores as S(P,Gi)→S(P,Gi)+∆S(P,Gi).

5. Output Formatting and Delivery: Finalized policies are formatted into human-readable and API-ready
outputs via the Policy Output Formatter and delivered to users through the frontend.

6. Fine-Tuning: Offline and periodic instruction tuning aligns models with policy goals, addressing gaps via
data augmentation methods such as SMOTE and NLP-AUG [Chawla et al., 2002].

Broader Impacts. This sub-project fosters civic engagement by integrating diverse perspectives into policy
decisions, building trust in governance, and promoting economic welfare. Its methodologies for demographic
simulation and feedback refinement align with Humanity Unleashed’s mission to advance collaborative, AI-driven
governance.

5 Infrastructure for an AI-Driven Policy Interface

Alongside model development to support policymaker decision-making, we aim to create a platform that enhances
user accessibility to U.S. legislative data (Section 5.1). Interactions on this platform will then be integrated with
the AI Legislator and Economics Transformer, enabling AI-driven policy generation and allowing users to have
access to these inference capabilities (Section 5.2).

5.1 Frontend Interface

Project Summary: Our methodology combines the principles of Human-Computer Interaction (HCI) and
advanced AI techniques like natural language processing (NLP) to create a user-centric platform that enhances the
accessibility of U.S. legislative data. We will take a comprehensive, phased approach consisting of a user-centric
design analysis, HCI integrations with a prototype, iterative usability testing, usability evaluation, and deployment.
This will guide the development and iterative refinement of our platform, ensuring it effectively meets user
expectations, reduces barriers to civic engagement, and access to legislative information.

Objectives and Expected Significance: This project addresses two crucial questions in civic technology:

1. How can we democratize complex legislative information, making it easily accessible to the public?

2. How can we leverage emerging generative AI capabilities to enhance and empower the democratic
process instead of weakening it?

Background and Technical Needs: Current platforms like congress.gov Library of Congress [2024] and gov-
track.us GovTrack.us [2024] offer valuable legislative data but the interfaces are overwhelming, hindering public
engagement. The main challenges include poor user experience, limited AI-driven text simplification, and a lack of
user-centered design. While past efforts have focused on backend data management, our approach applies recent
HCI insights to redesign the presentation of legislative content. By leveraging NLP models, we aim to simplify bill
language, making it clear and accessible, thereby filling a critical gap in civic engagement. Rezan and Karim [2022]

Research Description: Our project aims to modernize legislative platforms like congress.gov and govtrack.us
by combining user-centered design principles, Human-Computer Interaction (HCI) methodologies, and AI-driven
tools. The result will be a user-friendly, accessible interface that democratizes access to legislative information,
simplifies complex language, and fosters civic engagement.

Phase 1: User-Centered Design Analysis: Users that we envision finding this platform very useful may include
policy think tanks, public policy students and engaged citizens of the United States. To ensure our platform
addresses real user needs, we will begin with a thorough user-centered design analysis in collaboration with the
product architecture team:

Phase 2: HCI Integration and AI-Driven Text Simplification: Using insights from Phase 1, we will design an
intuitive interface with Figma, following HCI principles and the GOMS model Harrison et al. [2007] to optimize
user interactions. Key features likely include:

• Value Elicitation Interface: Helps users understand where they lie on the political spectrum by
answering a series of political questions.

• Policy Generator: Allows users to input topics or upload files for AI-generated policy drafts.

• Toolbar and Modular UI: Offers quick access to bill summaries, definitions, and translation tools.
Pushpakumar et al. [2023]

• Conversational Agent: Simplifies legislative language in real time, appealing to younger audiences.
Kunigonyte and Kolev [2021] Myers and Rosson [1992]

• NLP Simplification: Provides plain-language explanations of legal texts using advanced transformer
models. Jens and Nyarko [2023]
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Phase 3: Iterative Testing: Wireframes and prototypes will be refined through user feedback, focusing on usability
metrics like task completion time and user satisfaction to address design flaws. Lechmann and Buschek [2018]

Phase 4: Usability Evaluation: We will employ the System Usability Scale (SUS), a ten-question survey
measuring ease of use and satisfaction. Brooke [1996] We will also use NASA TLX to conduct interviews to
assess cognitive workload and gather data for persona creation. Group [n.d.]

Phase 5: Final Testing and Deployment: Large-scale testing will be conducted through a human data
campaign using a platform such as Prolific or Amazon Mechanical Turk. This approach will assess accessibility,
performance, and user engagement, ensuring that the platform effectively meets diverse needs. We will use
models like feedback loops will refine the design, setting a new benchmark for transparent and accessible civic
tech interfaces. This approach integrates user-centered design, HCI insights, and AI-driven tools to create a
transformative platform that simplifies legislative information and enhances public engagement.

Figure 2: Policy Generator Model Frontend Mock-Up. Figure 3: Value Elicitation Model Frontend Mock-Up.

Broader Impacts of the Proposed Work: The outcomes of our work have the potential to shape future civic tech
design standards, advocating for simpler and more inclusive interfaces for public information. The system could
be adapted internationally, providing accessible legislative data across diverse political contexts and fostering
global democratic participation. Additionally, our research on NLP simplification models has the promise to
enhance educational technologies, bridging comprehension gaps in complex areas such as law and policy.

5.2 Backend Implementation

This project aims to develop a robust and scalable backend system that seamlessly integrates the Policy Frontend,
AI Legislator and Economics Transformer components within the Humanity Unleashed platform. This integration
aims to facilitate AI-driven policy generation by enabling efficient data exchange, processing, and real-time
interactions among system components. Furthermore, we will collect and store user-provided demographics
information, policy preferences, and policy proposals as training data for the AI Legislator.

Related Works: Related works to this project include: - govtrack.us, an open-source platform which tracks the
activities of the US Congress, including bills and votes, legislators, and policies pertaining to personalized issues
(GovTrack.us [2024]). - api.congress.gov, the official federal tool for obtaining bills in congress, their status,
and legislator information (Library of Congress [2023]). - isidewith.com, a platform used by more than 80 million
politically engaged citizens, which allows people to weigh in on political issues and show them which politicians
share the most similar views (isidewith.com [2024]).

API Design and Implementation: The primary task is to develop a standardized API enabling actions such
as authentication, database queries, and model inference. A consistent API schema ensures interoperability across
components like the Economics Transformer and AI Legislator, which may have distinct input/output formats
and performance profiles Hmue et al. [2024]. Prior work in microservices architecture has shown that well-defined
interfaces and asynchronous communication patterns can simplify integration and maintenance at scale. Such
approaches reduce coupling and facilitate incremental upgrades without disrupting the entire system Nugroho
et al. [2022]. The backend must process large volumes of policy data and support concurrent user interactions,
necessitating efficient data handling, indexing, caching, and load balancing. As demonstrated by research in
database design for microservices, NoSQL databases are effective in handling unstructured or semi-structured
data at scale, ensuring rapid response times and robustness under heavy load Soni and Jyotinagar [2023].

Database Implementation: The second critical responsibility is to implement a database to store user-related data.
Optimizing the data pipeline is another challenge, as it must efficiently handle data ingestion, processing, storage,
and retrieval. This includes managing multimodal inputs such as text and documents, both structured and unstruc-
tured. The backend should provide mechanisms for data validation, transformation, and normalization to ensure
consistency and accuracy. Data handling for multimodal inputs necessitates flexible storage solutions. NoSQL
databases like MongoDB are preferred for their ability to handle unstructured data (Soni and Jyotinagar [2023]).
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User and Data Security: Security and transparency are also critical considerations. The backend must implement
robust authentication and authorization mechanisms to protect sensitive policy data and user information.
Ensuring data integrity and compliance with relevant regulations in our areas of operation is essential (Yu [2016]).
Transparency in data processing and decision-making processes of AI components must be maintained to build
user trust. Additionally, users must provide clear consent for the usage of their data in our models and be allowed
to remove their data from our platform, to the best of our ability.

Technical Implementation

The proposed backend architecture adopts a microservices approach, utilizing FastAPI as the core framework
for API development due to its high performance, ease of use, and support for asynchronous operations Nugroho
et al. [2022]. An API gateway will be implemented to act as a single entry point for all client requests, routing
them to the appropriate microservices. This gateway will handle tasks such as authentication, rate limiting, and
request validation.

API Gateway Design Using FastAPI: The API gateway will be built using FastAPI, leveraging its asynchronous
capabilities to handle a high volume of concurrent requests efficiently. It will expose RESTful endpoints adhering
to the OpenAPI 3.0 specification, ensuring standardization and ease of integration with other components. The
gateway will implement middleware for logging, error handling, and security checks.

Database Schema for Policy Storage: For data persistence, MongoDB will serve as the primary database due
to its flexibility in handling unstructured and semi-structured data. The database schema will include collections
for users, policies, economic data, legislative information, and logs. Policies will be stored with fields such as
policy_id, title, content, author_id, timestamps, and metadata. Indexing strategies will be employed
to optimize query performance on frequently accessed fields.

Real-Time Data Processing Pipelines: To handle real-time data processing, an event-driven architecture will be
adopted. Message brokers like RabbitMQ or Apache Kafka will facilitate asynchronous communication between
services. For example, when a new policy proposal is submitted, an event will be published to a queue, triggering
the Economics Transformer and AI Legislator services to process the data. This decouples services and enhances
scalability.

Security Implementation

JWT-Based Authentication: Authentication will be managed using JSON Web Tokens (JWT), providing
stateless and secure user authentication. Upon successful login, the system will issue a JWT containing user
identity and role claims. JWT tokens will be securely generated using strong encryption algorithms (e.g., HS256
or RS256) and will include expiration times and claims to prevent token reuse and tampering. Secure storage
of secret keys and regular key rotation policies will be enforced.

Role-Based Access Control: Role-Based Access Control (RBAC) will be implemented to manage authorization,
defining roles such as admin, legislator, analyst, and general user, each with specific permissions. Sensitive end-
points will enforce authorization checks based on user roles. Access control checks will be implemented at the API
gateway and service levels to ensure only authorized users can access certain endpoints or perform specific actions.

Data Encryption Standards: Data in transit will be secured using HTTPS with TLS 1.2 or higher (Diyora and
Savani [2024]). Sensitive data at rest in the database will be encrypted using field-level encryption or full-disk
encryption where appropriate. Encryption keys will be managed securely using key management services (e.g.,
AWS KMS or Azure Key Vault).

User Data Privacy: There is no comprehensive federal law governing the handling of political data. Political
parties can collect voter data without explicit consent, purchase commercial data to enhance voter profiles, store
data indefinitely, and use data for micro-targeting without restrictions (Bennett [2013]).

Some notable state-level privacy laws are:

- California (CCPA) requires companies to inform about personal data collected, allow opting out of data sales,
provide the right to delete information, and applies to companies processing California residents’ data regardless
of location - Virginia (CDPA; Consumer Data Protection Act) classifies political opinions as ’sensitive data’,
requires explicit consent for processing, and is stricter than CCPA for handling political data. Includes data
protection assessments, opt-out option after consent, clear privacy notices, and regular review of consent validity
- Colorado’s Privacy Act focuses on transparency, clear disclosure of data collection purposes, right to opt out
of data processing, and includes political preferences in protected categories. All 50 states have breach notification
laws. (Bakare et al. [2024])

Therefore, we will enforce clear opt-out mechanisms and transparent information to any user regarding our use
of their data in long-term storage and/or training models. Users will have to provide their clear consent to allow
us to train models using their data. Once the model is trained, however, we will not be able to exclude or remove
the user’s data from the model weights. We will allow deletion of the user’s data and account from our database
at any point in time. In the highly unlikely event of a data breach, all affected users will be notified immediately.

Monitoring and Logging Infrastructure: A centralized logging system will be established using tools like ELK
Stack (Elasticsearch, Logstash, Kibana) or Grafana for monitoring. Monitoring tools will provide dashboards
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for real-time insights into system health, resource utilization, and anomaly detection. Logs will capture request
details, errors, performance metrics, and security events. Logs will include user identities, timestamps, actions
performed, and the outcome. This facilitates compliance monitoring and forensic analysis in case of security
incidents Nugroho et al. [2022].

Representative API Endpoints

We include representative, high-level API endpoints served by the API Gateway in Appendix A. These endpoints,
adhering to RESTful principles, facilitate interactions such as user authentication, policy management, value
elicitation, and economic forecasting. Some endpoints may provide real-time updates via WebSockets for
asynchronous event notifications.

Research Roadmap and Timeline:

Oct–Nov 2024 (Sprints 1–2): Set up the API gateway, implement JWT-based authentication, user management
endpoints, and initial MongoDB schemas.

Dec 2024–Feb 2025 (Sprints 3–4): Introduce containerization (Docker) and orchestration (Kubernetes) for
horizontal scaling. Implement event-driven pipelines, asynchronous messaging, and indexing strategies. Validate
features via product research and refine endpoints for policy CRUD and value elicitation. Integrate basic CI/CD
pipelines.

Mar–Apr 2025 (Sprints 5–6): Enforce RBAC, data encryption at rest, and improved input validation. Set up
performance monitoring, logging, and load testing. Optimize queries for stable performance. Submit workshop
paper integrating backend feedback from other sub-teams.

May 2025 (Sprint 7+): Final integration testing with the full platform. Document APIs thoroughly (OpenAPI
specs), prepare operational runbooks, and ensure readiness for conference submissions and public release.

6 Analyzing
the Employment and Social Welfare Impacts of GPT and LLM Adoption

The societal impact of LLMs on the U.S. economy are critical to contextualizing this project. As informed by the
integrated AI policymaking platform described previously, we analyze economic indicators, labor markets, and
public trust, to identify key risks and opportunities arising from LLM adoption. This assessment guides strategies
for minimizing harms and maximizing inclusive benefits through our proposed approach.

Overview: This proposal aims to investigate the impact of Generative Pre-trained Transformers (GPT) and Large
Language Model (LLM) adoption on employment levels and social welfare within the United States economy.
By reassessing existing research with updated models and data, we seek to understand how these advanced
technologies affect labor markets. Furthermore, we will explore policy interventions using a Transferable Utility
framework to mitigate adverse social consequences, ensuring equitable outcomes for displaced workers. In
doing so, our analysis complements the broader mission of the larger initiative—our findings on LLM-driven
economic shifts will inform the Economics Transformer’s forecasting capabilities and guide the AI Legislator’s
policy recommendations. Further, by communicating these insights, we also aim to raise public awareness of
the far-reaching societal impacts of advanced AI, fostering more informed discourse and engagement around
the development of equitable, data-driven policy solutions.

Introduction: The rapid advancement of artificial intelligence (AI) technologies, particularly GPT and LLMs,
has transformative potential across various industries. These technologies are increasingly capable of performing
tasks that were traditionally the domain of human workers, raising concerns about potential job displacement and
its impact on social welfare [Frey and Osborne, 2017, Brynjolfsson and McAfee, 2014]. While automation has
historically led to both job destruction and creation [Autor, 2015], the scale and speed of GPT and LLM adoption
necessitate a thorough examination of their implications for the labor market.

This research seeks to analyze the effects of GPT and LLM technologies on employment levels and social welfare
in the United States. Additionally, we aim to identify policy measures that can address the social consequences
of workforce reductions, ensuring that the benefits of technological advancements are equitably distributed

Primary Research Question: What is the impact of GPT and LLM adoption on employment levels and social
welfare within the United States economy? How can policymakers address the social consequences of workforce
reductions due to GPT technologies to ensure equitable outcomes? Our project aims to address this in parts:

1. Empirical Reassessment: Building upon the current GPTs are GPTs paper, we aim to reassess their question
with updated models and data. Specifically, we will analyze how the adoption of GPT and LLM technologies
impacts employment levels and social welfare within the United States economy.
2. Policy Design and Evaluation: Utilizing a Transferable Utility (TU) framework, we will explore how
policymakers can design taxation and social insurance policies to redistribute the excess utility gained by
companies to workers adversely affected by GPT-induced job displacement. Specifically, we will examine:
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• The role of employer subsidies in incentivizing workforce retention.
• How the proliferation of LLMs influences the Marginal Value of Public Funds (MVPF) associated with these
interventions.
• How shift-exposure changes across economic sectors.

Literature Review: The debate on automation and employment has been longstanding, with early concerns dating
back to the Industrial Revolution. Recent studies have focused on the susceptibility of jobs to computerization
[Frey and Osborne, 2017] and the historical perspective of workplace automation [Autor, 2015]. Brynjolfsson and
McAfee [2014] discuss the implications of the "Second Machine Age," highlighting the potential for significant
technological unemployment.

Agent-based computational economics provides a framework for modeling complex economic systems with
heterogeneous agents [Tesfatsion, 2006]. This approach can capture the micro-level interactions that give rise
to macroeconomic phenomena, which is particularly relevant when assessing the impact of GPT and LLM
technologies on labor markets.

Policy interventions have been proposed to mitigate the adverse effects of automation on employment. The
Marginal Value of Public Funds (MVPF) concept, as discussed by Hendren and Sprung-Keyser [2020], offers
a method for evaluating the cost-effectiveness of government policies aimed at improving social welfare.

Empirical Analysis and Modeling: Our methodology integrates theoretical modeling with empirical analysis to
provide a comprehensive understanding of the impact of GPT and LLM adoption. Our empirical strategy involves:

• Data Collection: Compiling data from O*NET on occupational characteristics, BLS for employment and wage
statistics, IRS data for income and tax information, and annotations on task automation potential from both human
experts and GPT models.
• Shift-Share Analysis: Employing Bartik shift-share instruments to measure industry and regional exposure
to GPT/LLM technologies, following the methodologies of Goldsmith-Pinkham et al. [2020] and Borusyak et al.
[2022].
• Econometric Modeling: Estimating the causal impact of GPT/LLM adoption on employment and wages using
instrumental variable regression techniques to address endogeneity concerns.
• Robustness Checks: Performing sensitivity analyses to ensure the validity of our findings, including alternative
specifications and placebo tests.

Metrics: To evaluate the impact and effectiveness of policy interventions, we will utilize the following metrics,
and possibly more:

Bartik Shift-Share Exposure Variable serves as a critical tool for decomposing employment changes and analyzing
the regional or industry-level effects of GPT/LLM adoption. This method involves calculating the extent to which
specific regions or industries are exposed to GPT/LLM adoption based on their initial employment composition
[Adao et al., 2019]. Additionally, it enables the attribution of employment changes to either GPT/LLM adoption
or other economic factors, ensuring that causal relationships are properly identified [Borusyak and Hull, 2023].

Kaldor-Hicks Efficiency is employed to assess whether the economic gains from GPT/LLM adoption can
compensate for the losses incurred by displaced workers. This metric focuses on welfare evaluation by measuring
the net change in social welfare, aggregating the gains and losses of all stakeholders. Furthermore, it explores
compensation mechanisms that, in theory, could ensure no stakeholder is left worse off, thus adhering to the
criteria for Kaldor-Hicks efficiency [Mishan, 1981].

Pareto Efficiency and ϵ-Pareto Efficiency are integral for evaluating the efficiency of resource allocation in the
context of GPT/LLM adoption. Pareto Efficiency identifies allocations where no individual can be made better
off without making someone else worse off. In contrast, ϵ-Pareto Efficiency allows for minimal efficiency losses
to achieve greater equity, acknowledging the trade-offs between efficiency and equity [Varian, 1974].

Marginal Value of Public Funds (MVPF) quantifies the cost-effectiveness of government interventions aimed
at mitigating the societal impacts of GPT/LLM adoption. MVPF is computed by estimating the social benefit
per dollar of government expenditure, as outlined by Hendren and Sprung-Keyser [2020]. This metric is
particularly useful for comparing different policy interventions—such as subsidies, retraining programs, and
social insurance—and prioritizing those that maximize social welfare.

Data: Our analysis draws on several critical data sources to ensure comprehensive evaluation and accurate
modeling. The O*NET database provides detailed information on job requirements and worker attributes, enabling
an in-depth analysis of task automation potential. Employment and wage data from the Bureau of Labor Statistics
(BLS) offer insights into the distribution of occupations and industry-level dynamics. IRS data contribute income
and tax information essential for evaluating fiscal policy impacts. Finally, human and GPT-annotated labels are
employed to assess task susceptibility to automation by GPT/LLM technologies, enhancing the precision and
reliability of our exposure measures.

13



7 Conclusion and Future Directions

This research proposal outlines a comprehensive effort to build a cooperative AI policymaking platform that
integrates advanced multimodal time-series forecasting with large language model (LLM)-driven value elicitation
and policy generation. By coupling these emerging technical capabilities with a visually appealing frontend the
proposed system aims to support more informed, data-driven decision-making for the public good.

Summary of Contributions

Our approach centers on developing a multimodal “Economics Transformer”—a specialized time-series LLM
capable of assimilating numeric economic indicators, policy documents, and event data to forecast the impacts
of proposed policies. We pair this with an “AI Legislator” component that elicits user values, learns nuanced
public preferences, and proposes evidence-based policy interventions grounded in these values to feed to the
“Economics Transformer". Taken together, these advancements promise a platform that hopes to predict economic
and social outcomes more accurately along with actively incorporating public input, enhancing legitimacy and
inclusiveness in policymaking.

Expected Outcomes and Impact

We primarily aim to achieve the following outcomes:

Technical Benchmarks and Open-Source Tools: We expect to deliver baseline models, code repositories, and
datasets as reference points for researchers in AI, economics, and public policy. By releasing these resources
openly, we aim to foster a community of contributors who can refine and extend our methods.

Improved Policy Forecasting Models: The integrated model architecture—combining textual and temporal
data—should yield richer predictive insights, surpassing traditional forecasting approaches in accuracy,
uncertainty quantification, and robustness.

Inclusive Value Elicitation and Policy Proposals: Through value elicitation and user modeling, we seek
to produce policy recommendations that better reflect a diverse range of public values. Ensuring that
recommendations consider broad stakeholder input can lead to more equitable outcomes and enhanced trust in
AI-driven policy support tools.

Challenges and Mitigation Strategies

Developing such a platform will not be without significant challenges. Data integration may require sophisticated
preprocessing and careful alignment of temporal and textual sources. The computational cost of training large
multimodal models is substantial, and we will rely on efficiency strategies—such as parameter-efficient fine-tuning
and mixture-of-experts architectures—to manage complexity. Additionally, safeguarding fairness and mitigating
bias in model outputs will be critical to maintaining broad support. We will employ rigorous auditing, transparency
measures, and fairness constraints in both forecasting and policy generation modules.

Scalability and Generalization

Our methodology is designed to scale across policy domains, from economic regulation to environmental policy,
and from local governance to international negotiations. By developing extensible, open-source architectures and
tooling, we encourage the adaptation of our models for diverse regional contexts, policy areas, and data regimes.

Long-Term Vision and Future Work

This project lays the groundwork for next-generation AI policymaking support systems. Future directions include
refining multimodal modeling techniques, exploring causal inference and counterfactual analysis for robust policy
impact assessment, and expanding participatory mechanisms for public engagement. Further research may incor-
porate richer modalities—such as geospatial data or real-time sentiment streams—and integrate more advanced
deliberation frameworks to facilitate constructive dialogue among policymakers, domain experts, and the public.

In sum, this proposal envisions a future where AI systems not only assist in forecasting the consequences of policy
decisions but also guide the creation of more equitable, data-driven policies. By opening our code, methods,
and datasets to the global research community, we aspire to catalyze a new era of transparent, accountable, and
inclusive policymaking enhanced by cooperative artificial intelligence.
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A High-Level Backend API Endpoints

User & Authentication:

• POST /auth/login: Returns a JWT upon successful credential verification.

• POST /auth/logout: Invalidates active tokens.

• GET /users/me: Retrieves the authenticated user’s profile and role information.

Policy Management:

• POST /policies: Submit a new policy draft (requires policy_id, content, metadata).

• GET /policies/{policy_id}: Retrieve policy details, including economic forecasts and
AI-generated recommendations.

• PUT /policies/{policy_id}: Update policy draft content or metadata (restricted to authorized
roles).

• POST /policies/{policy_id}/finalize: Signal that a policy is ready for legislative evaluation
and public dissemination (admin-only).

User Value Elicitation:

• POST /values/responses: Submit user answers to a value elicitation questionnaire.

• GET /values/preferences: Retrieve aggregated or personalized preference data for a user or cohort.

Economic Analysis & Forecasting:

• GET /economics/indicators: List available economic indicators (e.g., GDP, inflation).

• GET /economics/forecast?policy_id=X: Trigger or retrieve an economic forecast for the
specified policy scenario.

Legislative Data Integration:

• GET /legislation/bills: Query recent bills, amendments, or public laws.

• GET /legislation/bills/{bill_id}: Retrieve detailed legislative text, metadata, and related
amendments.

Real-Time Updates & Notifications:

• GET /events/subscribe (WebSocket): Subscribe to event-driven updates (e.g., completion of a
forecast, changes in a policy’s status).
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