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Abstract

The proliferation of Connected Automated Vehicles repre-
sents an unprecedented opportunity for improving driving
efficiency and alleviating traffic congestion. However, exist-
ing research fails to address realistic multi-lane highway sce-
narios without assuming connectivity, perception, and con-
trol capabilities that are typically unavailable in current ve-
hicles. This paper proposes a novel AI system that is the
first to improve highway traffic efficiency compared with
human-like traffic in realistic, simulated multi-lane scenarios,
while relying on existing connectivity, perception, and con-
trol capabilities. At the core of our approach is a reinforce-
ment learning based controller that dynamically communi-
cates time-headways to automated vehicles near bottlenecks
based on real-time traffic conditions. These desired time-
headways are then used by Adaptive Cruise Control (ACC)
systems to adjust their following distance. By (i) integrat-
ing existing traffic estimation technology and low-bandwidth
vehicle-to-infrastructure connectivity, (ii) leveraging safety-
certified ACC systems, and (iii) targeting localized bottleneck
challenges that can be addressed independently in different
locations, we propose a practical, safe, and scalable system
that can positively impact numerous road users.

1 Introduction
Highway congestion has widespread social impacts, includ-
ing disproportionately affecting low-income communities
with longer commutes, increased pollution, high stress lev-
els, and reduced economic productivity (Lomax, Schrank,
and Eisele 2021; Fattah, Morshed, and Kafy 2022). The
proliferation of Connected Automated Vehicles (CAVs)
equipped with technologies such as Adaptive Cruise Con-
trol (ACC) represents an unprecedented opportunity to uti-
lize these technologies to improve highway traffic flow and
reduce congestion (Stern et al. 2018; Wu, Bayen, and Mehta
2018; Delle Monache et al. 2019).

Prior research on highway congestion reduction ex-
plored distributed and centralized vehicle speed control ap-
proaches. Distributed approaches typically implement an in-
vehicle speed controller that uses information of the vehi-
cle’s surroundings to decide when to increase headway and
allow vehicles to merge into its lane. These approaches are
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scalable and effective when the location and time of lane-
changes can be accurately predicted, such as in merge and
certain bottleneck scenarios (Cui et al. 2021; Zhang et al.
2023a; Vinitsky et al. 2023). However, in multi-lane scenar-
ios, lane changes can occur unpredictably at any time and
any point on the road, driven by drivers’ intentions and be-
haviors, rendering these distributed approaches ineffective.
Centralized approaches leverage aggregate traffic data to
provide high-level guidance for influencing spatio-temporal
traffic density (Bayen et al. 2020). While this circumvents
the need to predict lane changes, these approaches face chal-
lenges in generating the complex speed-control commands
necessary to achieve the desired density patterns.

To address these challenges, we propose a centralized AI
system that influences density more directly by generating
time-headway requests that are used by ACC systems to ad-
just their vehicles’ headways. At the core of our systems is a
reinforcement learning based controller that continually out-
puts desired vehicle headways for each road segment lead-
ing to the bottleneck, based on real-time traffic conditions.
To narrow the gap to real-world deployment, our system is
designed to integrate with existing traffic estimation tech-
nology, low-bandwidth vehicle-to-infrastructure connectiv-
ity, and safety-certified ACC systems. As shown in hundreds
of large-scale experiments involving hundreds of vehicles
and various CAV penetration rates, our system is the first
to demonstrate significant traffic flow improvements over
human-driven traffic in realistic, simulated multilane sce-
narios, where previous methods fall short. As a secondary
contribution to improving traffic flow evaluation accuracy,
we identify a flaw in a commonly used throughput metric
and introduce a modified average speed metric that accounts
for entry delays caused by congestion, addressing a limita-
tion highlighted in prior work (Cui et al. 2021). By lever-
aging existing technologies, ensuring safety through ACC
systems, and addressing localized bottleneck challenges, we
propose a practical, safe, and scalable system that can poten-
tially enhance the travel experience of numerous road users.
Our code is publicly available on GitHub.

2 Related Work
Traffic congestion poses a significant challenge in highway
planning, prompting the development of traffic flow mod-
els to understand and mitigate its adverse impacts (Hall

ar
X

iv
:2

41
2.

02
52

0v
1 

 [
cs

.M
A

] 
 3

 D
ec

 2
02

4



1992; Ni and Leonard 2006; van Wageningen-Kessels et al.
2015; Ferrara, Sicona, and Silvia 2018; Mohammadian et al.
2021). Studies have shown that traffic breakdowns can oc-
cur spontaneously and stochastically, even without the pres-
ence of bottlenecks (Sugiyama et al. 2008), a phenomenon
that classical traffic flow theories fail to adequately explain
(Kerner et al. 2015; Kerner 2016). Traffic microsimulators,
such as SUMO (Krajzewicz et al. 2012) which we use in this
paper, were thus suggested for reproducing observable traf-
fic phenomena, using car-following models of human driv-
ing. One such model is the Intelligent Driver Model (IDM),
which has been instrumental in reproducing complex phe-
nomena like traffic jams, stop-and-go waves, and bottleneck
congestion (Treiber, Hennecke, and Helbing 2000). IDM can
reproduce realistic vehicle interactions, particularly when
modeling diverse traffic scenarios, and is superior to other
models such as the Optimal Velocity Model (OVM) (Bandō
et al. 1994, 1995) that tends to smooth out traffic by encour-
aging vehicles to maintain an optimal velocity.

The idea to utilize automated vehicles as mobile actuators
for alleviating traffic problems is based on the assumption
that these vehicles can be systematically coordinated and
controlled to optimize traffic flow (Stern et al. 2018; Wu,
Bayen, and Mehta 2018; Delle Monache et al. 2019; Gora
et al. 2020; Wang et al. 2022, 2023). Inspired by this idea,
the CIRCLES project (CIRCLES 2020) has focused on de-
veloping traffic control algorithms to optimize traffic flow on
highways, and conducted a large-scale, open-road field ex-
periment with 100 CAVs (Wang et al. 2024; Lee et al. 2024).

Since developing model-based controllers for traffic con-
gestion is challenging due to the problem’s scale and com-
plexity, research on data-driven controllers trained in simu-
lation using Reinforcement Learning (RL) (Sutton and Barto
2018) has emerged. This line of research demonstrated that
centralized RL controllers enable wave dissipation and sig-
nificant average speed increase in single-lane roads with
merges or bottlenecks with as low as 10% CAV penetration
(Kreidieh, Wu, and Bayen 2018; Vinitsky et al. 2018a,b,c).
However, deployment of these approaches might not be scal-
able due to the challenge of learning a policy that individu-
ally controls a large numbers of vehicles.

To enable scalability, distributed approaches have em-
ployed in-vehicle speed controllers that utilize information
about a vehicle’s surroundings to determine when to in-
crease headway and allow other vehicles to merge into its
lane. These approaches work well when the location and
time of lane-changes can be accurately predicted, e.g. in
merge and certain bottleneck scenarios (Cui et al. 2021;
Zhang et al. 2023a; Vinitsky et al. 2023). However, in multi-
lane scenarios, lane changes can occur unpredictably at any
time and point on the road, rendering these distributed ap-
proaches ineffective.

As an alternative, centralized approaches have used ag-
gregate traffic data to provide high-level guidance without
modeling local behaviors, such as lane-changes. The Vari-
able Speed Limit (VSL) method (Hegyi, De Schutter, and
Hellendoorn 2005; Lu and Shladover 2014) aims to prevent
traffic breakdowns by regulating inflow into congestion-
prone areas. Extensive studies of VSL (Li et al. 2017; Nie

et al. 2021; Alasiri, Zhang, and Ioannou 2023; Zhang et al.
2023b; Hua and Fan 2023) have explored its application
through optimization problems, such as minimizing total
travel time or maximizing traffic throughput (Bayen et al.
2022). However, these approaches have struggled to address
realistic multi-lane scenarios due to the difficulty of achiev-
ing the required road dynamics when only speed limits are
controlled (see Section 4.2). To overcome these limitations,
we propose a centralized AI system that avoids the need to
predict lane changes or implement complex speed control.
Instead, our method employs time-headway control (Pang
and Huang 2022) to directly influence spatio-temporal traf-
fic density to enhance traffic efficiency. By leveraging ex-
isting traffic estimation technology, low-bandwidth vehicle-
to-infrastructure communication, and safety-certified ACC
systems, our approach offers a practical, safe, and scalable
solution for real-world applications.

3 Domain Description
In this section, we define the problem addressed by this pa-
per, and the simulation setup used in the experiments.

3.1 Problem Description
Traffic congestion frequently occurs when the demand for
road use exceeds the available capacity. Addressing this im-
balance by reducing demand typically involves long-term,
systemic changes, such as enhancing public transportation
infrastructure. Therefore, in this paper we assume that de-
mand is given, and focus on optimizing road capacity. Road
capacity can be optimized by influencing driving behavior to
mitigate the impact of capacity-reducing phenomena, such
as lane changes at bottlenecks.

Our problem is defined as follows. Given a road net-
work with multiple lanes, a merging road, and mixed au-
tonomy traffic consisting of both human-driven vehicles and
CAVs, maximize the network’s traffic efficiency by control-
ling CAVs, where traffic efficiency is measured in terms of
average speed. We assume that CAVs are altruistic, sharing
the common goal of reducing traffic congestion, which can
be facilitated by incentivizing such behavior. A solution to
our problem is a control policy that maps the traffic state
to actions that influence CAVs to enhance traffic efficiency.
For reasons described in Section 4, we propose and focus
on control policies that influence CAVs equipped with tech-
nologies such as ACC, by sending them time-headway com-
mands based on real-traffic information.

We note that in simulated open road networks where ve-
hicles enter and exit dynamically, increased average speed
may not accurately reflect real-world traffic flow improve-
ments due to discrepancies between finite simulated roads
and real-world conditions (Cui et al. 2021). To address this,
we propose a novel average speed metric that aligns more
closely with real-world scenarios, enabling more reliable
evaluation of our system’s performance (Section 4.1).

3.2 Simulation Platform & Scenario Parameters
To test our system in large-scale simulations, we use the
SUMO traffic simulator (Krajzewicz et al. 2012), which dy-
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Figure 1: Centralized Time-headway control for multi-lane highway congestion reduction: (a) The analyzed scenario. An
RL-based controller sends time-headway commands to CAVs near bottlenecks, based on measured traffic speed and density.
(b) Lane-changing behavior simulation results. Aggressive lane-changing behavior significantly impacts traffic dynamics.

namically models all vehicles and their interactions. We in-
terface SUMO with a custom environment following the
Gymnasium API (Towers et al. 2024), enabling the training
of controllers using reinforcement learning algorithms from
the RLlib library (Duan et al. 2016).

The road network used in our simulations is a 2 km
segment of I-24 in Tennessee, USA, extracted from Open-
StreetMap (2017). The simulation includes hundreds of ve-
hicles engaging in complex lane-changing and car-following
interactions, with vehicles merging onto the highway and
executing required lane changes. Figure 1a presents a partial
snapshot of our scenario in SUMO, featuring a centralized
control policy that senses traffic conditions and issues time-
headway commands. These commands are utilized by ACC
systems to dynamically adjust vehicle headways.

Human-driven vehicles are modeled using IDM (Treiber,
Hennecke, and Helbing 2000) which has a fixed time-
headway parameter and a safety enforcement module. CAVs
are modelled using IDM with a time-headway parameter
that can be dynamically adjusted. Before real-world deploy-
ment, automated vehicle models should be calibrated with
real-world data prior to using them with time-headway con-
trollers, however due to the lack of such data and the aim of
ACC systems to follow human-driving behaviors, we used
the aforementioned adjustable IDM models. An additional
challenge is modeling lane-change behavior, which signif-
icantly affects traffic flow (Figure 1b). Aggressive lane-
change behavior, characterized by vehicles merging into
smaller gaps, causes major disturbances and decreases both
speed and throughput. Timid lane-change behavior cause
disturbances by low utilization of additional lanes. We ad-
justed lane-change aggressiveness through visual inspec-
tion to better align with real-world driving behavior. Lane-
change behavior should ideally also be calibrated with high-
way data if available. Values of all SUMO parameters can
be found in the Appendix.

4 Methodology
In this section, we present our methodology for designing
and testing the proposed time-headway controllers. First,

we introduce a congestion metric that overcomes the limi-
tations of finite-length simulations highlighted in prior re-
search. Next, we analyze vehicle interactions contributing to
traffic inefficiencies, identify the shortcomings of existing
methods, and justify our centralized time-headway control
approach. We then outline our practical design choices. Fi-
nally, we describe a baseline fixed-value time-headway con-
trol policy, and our proposed RL-based control policy.

4.1 Congestion Metrics
To demonstrate improvements in traffic flow efficiency, it
is essential to define how congestion is measured. In an
ideal scenario with constant inflows, there are multiple met-
rics that would all lead to the same quality-ordering of
congestion-reduction control policies: maximizing average
speed, maximizing network outflow, and minimizing aver-
age time delay (Dresner 2008). Both average speed and av-
erage throughput are commonly used metrics, but each has
its drawbacks in simulations. Average throughput is sensi-
tive to the simulation length, since a temporary decrease in
throughput can be offset by a subsequent increase, if the sim-
ulation is long enough and includes periods with demand
lower than road capacity. While changes in average speed
can effectively measure congestion, caution is needed when
using this metric in finite road length simulations, especially
when testing controllers. A controller that prevents vehi-
cles from entering the simulation might artificially inflate
speeds without being penalized for the reduction of speeds
that would have happened in real-world road sections pre-
ceding the simulated road network (Cui et al. 2021).

We solve the aforementioned problem by tracking vehi-
cles whose entry to the simulation is delayed and penalizing
for the delay time. The metric we use is the average speed
change compared to a simulated human-driven traffic, taking
into account the delay time of each of the vehicles:

∆V ≡ 1

N

N∑
i

v̄
(i)
control − v̄

(i)
baseline

v̄
(i)
baseline

(1)

where N is the total number of vehicles, v̄(i)baseline is vehicle i’s
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Figure 2: Time-headway control motivation: (a) Aggressive lane-change may cause excessive speed and throughput decrease
(top). Preemptively increasing headway can reduce the negative effect (bottom). (b) Analysis of constant speed-limit command
dynamics. Low downstream density is maintained for a limited duration (blue). (c) Simulation results for constant speed and
time-headway signals. Constant time-headway signals maintain lower downstream density for arbitrary duration.

average speed in simulated human-driven traffic, and v̄
(i)
control

is the same vehicle’s speed in the controlled simulation.
Average speed computations assume that delayed vehicles

have a speed of 0 while they wait to enter the simulation:

v̄(i) =
L(i)

min
(
T

(i)
f , Tsim

)
− T

(i)
s

(2)

where L(i) is the distance driven by vehicle i, T (i)
s is its

planned simulation entry time, T (i)
f is its measured finish

time, and Tsim is the final simulation time. T (i)
s of each ve-

hicle is known apriori and stored in a per-vehicle route file
used to initialize the SUMO simulation.

4.2 Centralized Time-Headway Control
To motivate our centralized time-headway control approach,
we identify and address factors that may have prevented
prior methods from handling realistic multi-lane scenarios.
Prior research has shown that lane changes during merges
can cause slowdowns and trigger congestion. However, if a
vehicle in the target lane preemptively increases its head-
way as it approaches the merge, it can prevent congestion
from forming, as illustrated in Figure 2a. Distributed ap-
proaches typically implement an in-vehicle speed controller
that uses information of the vehicle’s surroundings to decide
when to preemptively increase headway. These approaches

are scalable and effective when the location and time of lane-
changes can be accurately predicted, such as in merge and
certain bottleneck scenarios. However, in multi-lane scenar-
ios, lane changes can occur unpredictably at any time and
any point on the road, driven by drivers’ intentions and be-
haviors, rendering these distributed approaches ineffective.

In such scenarios, it may be desirable to try approaches
of higher-level control over road density, motivated by real-
world data showing that lower traffic density reduces the
negative impact of lane changes on traffic flow (Yang, Wang,
and Quddus 2019; Gao and Levinson 2023). Since den-
sity is an aggregate measure, it is naturally controlled us-
ing a centralized controller. Centralized approaches that at-
tempt to control each CAV individually face scalability is-
sues (Cui et al. 2021). Instead, centralized approaches such
as Variable Speed Limit (VSL) used aggregate traffic data to
provide high-level guidance by employing speed-limit ad-
justments in controlled road segments. However, these ap-
proaches struggle with controlling traffic density. As shown
in the qualitative vehicle trajectory time-space diagram in
Figure 2b, applying a constant speed limit in a road segment
can only temporarily reduce downstream density (blue area).
In contrast, constant time-headway signals maintain lower
downstream density for an arbitrary duration. This is em-
pirically demonstrated in Figure 2c, where a constant time-
headway control signal results in a complex, time-dependent
upstream speed profile that would be difficult to achieve with



speed-limit control.
Therefore, we develop a centralized time-headway con-

trol capable of reducing traffic density around bottlenecks,
allowing vehicles to self-organize in the sparser traffic, as of-
ten observed in real-world uncontrolled traffic. Our system
uses high-level traffic information to control vehicles near
road merges, enabling scalable and independent deployment
at numerous highway junctions.

4.3 Practical Design Choices
An AI system that influences CAVs equipped with technolo-
gies such as ACC must address several key objectives to be
practical:

• Safety: The system should enhance traffic flow while
maintaining safe operations.

• Simplicity and Generality: To ensure broad applicabil-
ity and ease of implementation across diverse environ-
ments, the system must be simple and generalizable.

• Deployability and User Acceptance: For successful de-
ployment, the system’s decisions must be transparent, in-
stilling confidence among drivers and stakeholders.

To address safety, our system influences existing safety-
certified ACC systems by sending them desired time-
headway commands that can only increase the time-
headway above its default value. We assume the availabil-
ity of low-bandwidth vehicle-to-infrastructure communica-
tion that allows vehicles to receive a few floating-point val-
ues every few seconds representing desired time-headways,
supporting the simplicity and generality objectives. The in-
frastructure is assumed to measure traffic metrics across dif-
ferent road segments, such as average speed, density, and
throughput. This type of sensing is already available, and
was recently used in a large-scale open-road experiment
(Lee et al. 2024), supporting the deployability of our pro-
posed system. The system’s time-headway decisions can be
made transparent to users and support user-acceptance.

4.4 Fixed-Valued Time-Headway Control
Before proposing an RL-based time-headway control pol-
icy, it is natural to ask whether a simpler fixed-value time-
headway control policy can outperform human-driven traf-
fic, and if so, whether RL can offer significant additional
improvements. We therefore design a controller that sends
an optimized fixed time-headway signal to road segments
located before a bottleneck. The controller activates when
vehicles are detected on the merging road, and deactivates
when no vehicles are present there. When deactivated, vehi-
cles return to their default time-headway. The optimal time-
headway value is optimized by a parameter sweep.

4.5 RL-based Safe Time-Headway Control
The dynamic nature of traffic suggests that a controller
capable of adjusting time-varying headway values would
outperform a fixed time-headway approach (Yanakiev and
Kanellakopoulos 1995). The ability of reinforcement learn-
ing (RL) to learn from interactions with the environment

makes it a good fit for complex, dynamic, and stochastic en-
vironments such as traffic control. We design an RL-based
controller that continuously monitors the traffic state, de-
termines time-headway commands for each controlled road
segment, and communicates these commands to automated
vehicles traveling within those segments. While RL poli-
cies typically do not have safety guarantees, our RL con-
troller ensures safety by sending headway commands above
the minimum safe threshold to a safety-certified commercial
ACC system, which consistently maintains a safe following
distance. Notably, no crashes occurred in our experiments.

To apply RL to our traffic control problem, we model
the problem as a discrete-time, finite-horizon Markov De-
cision Process (MDP) (Puterman 2014), defined by a tu-
ple M = (S,A, P,R, ρ0, T ), where S is the set of possi-
ble environment states, A is the set of all possible actions,
P : S × A × S → [0, 1] is a state transition probability
distribution, R : S × A → R is a reward function map-
ping a given state and the action taken from it to a numeric
reward, ρ0 : S → [0, 1] is a distribution over initial states,
and T is the problem’s time horizon. In an MDP, the goal
of the RL algorithm is to learn a decision-making policy
π : S × A → [0, 1] that stochastically maps states to ac-
tions and maximizes the expected cumulative sum of re-
wards over all trajectories Eτ

∑T
t=0 r(st, at). Here τ is a

trajectory [s0, a0, s1, a1, ..., sT , aT ], where the initial state
s0 is sampled from the initial state distribution: S0 ∼ ρ0, ac-
tions are sampled from the policy: at ∼ π (st), and the next
state in the trajectory is sampled from the transition proba-
bility: st+1 ∼ P (st, at), defined by the traffic simulator.

Modeling Traffic Control as an MDP We model our traf-
fic control problem as an MDP by defining its states, actions,
reward function, and horizon. The initial state distribution
and the transition function are determined by the simulator.

States To allow effective control of traffic density, our
state representation encapsulates relevant information that is
(i) needed for predicting the traffic’s evolution over time, and
(ii) is reasonable to obtain using current technology. There-
fore, a state includes the average speeds and densities in each
of 21 road segments preceding and following the traffic bot-
tleneck area, where each segment is about 100 meter long.
In general, both speed and density are necessary in the state
representation to avoid ambiguity.

Actions The actions A correspond to the required time-
headway values for automated vehicles in each segment.
Since density typically accumulates in the segments pre-
ceding the traffic bottleneck, changing density in these seg-
ments offers the highest potential for improving traffic ef-
ficiency through density control. Therefore, our action is a
vector of real numbers representing desired time-headways
in each controlled segment preceding the bottleneck. In our
experiments we tried setups with 2-5 controlled segments.
For the tested scenario, controlling the time-headway for 2
road segments was found to allow faster RL convergence
without performance compromise. Thus, the RL algorithm
results in this work were trained using 2 control segments.
While more granular actions spaces could be used, such as



separate headway for each lane in each controlled segment, a
single headway per segment would be more practical to im-
plement in the real-world, as it avoids the need to estimate
vehicles’ lane-position.

Reward Function The reward function plays a crucial
role in the RL training process, as it guides the agent toward
maximizing the desired performance metric. As described in
Section 4.1, our performance metric is the relative average
speed increase compared with a baseline simulated human-
driven traffic. However, the average speed of a vehicle can
only be computed once a vehicle had completed its route,
so using it would delay the reward and pose challenges for
current RL algorithms.

To provide a more immediate reward that serves as a
proxy for our metric, we use a time-delay reward function
that is measured relative to free-flow traffic conditions. The
reward at time t is:

rt =
1

C

Nt∑
i=1

v
(i)
t − vfree

(
x
(i)
t

)
vfree

(
x
(i)
t

)
∆t (3)

where Nt is the number of vehicles planned to enter the
simulation by time t, x(i)

t and v
(i)
t are the location and ve-

locity of vehicle i at time t, vfree (x) is the speed limit of
the road at location x, and C is a normalization factor that
scales episode returns to the interval [0, 1], to avoid numeri-
cal issues when using neural networks. For delayed vehicles
which did not yet enter the simulation, the speed is assumed
to be 0. When this reward is accumulated for all simulation
time-steps, it provides an approximation for the average time
delay for all vehicle trajectories, relative to free flow. This
time-delay corresponds to our average speed performance
metric as described in Section 4.1. The advantage of this re-
ward over our metric is its immediate feedback on the impact
of the current traffic state over the overall average speed.

Horizon The horizon is scenario dependent. We discuss
the horizon length determination in Section 5.

Training Setup To solve the traffic control problem mod-
eled as an MDP, we utilize the Proximal Policy Optimization
(PPO) algorithm (Schulman et al. 2017). PPO is chosen for
being well-suited for complex control tasks in continuous
action spaces and for its training stability, but other state-of-
the-art continuous RL algorithms could work similarly well.
We use RLlib’s PPO implementation (Duan et al. 2016) with
most of its default hyperparameters, including a dual-head
neural network representing both the policy and value func-
tions with two hidden layers of 256 units each and tanh acti-
vation functions, and a linear output layer representing a di-
agonal Gaussian with mean and standard deviation for each
controlled segment. We use a batch size of 2000, surrogate-,
value-function-, and KL-losses, discount factor γ = 0.99
reflecting an effective horizon of about 100 steps, actions
that are bounded to 1.5-6 second headway to reflect realistic
values, and rewards that are normalized such that the value
function’s magnitude lies in a range that can be processed by
a neural network without numerical issues. The training pro-
cess is carried out over 25000 episodes, with each episode
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Figure 3: Time-headway control performance: Simulation
performance results for (a) single-lane scenarios, and (b)
multi-lane scenarios. The performance of our safe RL-based
controller and fixed-valued time-headway control baseline is
measured relative to simulated human-driven traffic (dashed
black line). Error bars show 95% confidence intervals for
mean performance values, each derived from 30 simulations.

representing a finite-horizon simulation of traffic flow in our
environment. Overall, the PPO algorithm, combined with
our carefully designed training setup, enables the develop-
ment of a policy that dynamically adjusts time-headways to
optimize traffic flow while maintaining safety.

5 Empirical Analysis
In this section, we describe the experimental setup used to
evaluate the proposed time-headway control strategies and
present the results obtained from the simulations.

Experiments were conducted in the SUMO simulation en-
vironment using a highway network with a single merge,
based on an approximately 2 km segment of route I-24 in
Tennessee, USA (see Section 3.2). The route was divided
into 20 segments of approximately 100 meters each, plus
an additional segment for the merging road. This segment
length was chosen to ensure effective sensing and control



resolution while being long enough to maintain stable con-
trol policies. The default time-headway parameter value is
1.5 seconds, and the speed limit on the highway is 31.29 m/s
(70 mph). Traffic inflow to the highway matches the max-
imum capacity of 1800 vehicles/hr/lane. Vehicles from the
merging road enter the simulation at maximum inflow after
a 200-second warm-up for a duration of 30 seconds in the
single-lane scenarios, and 50 seconds in the multi-lane sce-
narios, to create realistic traffic disturbances that negatively
affect traffic flow. The simulations ran for 500 seconds to
allow congestion to form and dissipate. An action interval
of 2.5 seconds was chosen to reflect a realistic duration for
influencing traffic dynamics, considering vehicle response
times and acceleration characteristics.

For each scenario we tested the performance of the fol-
lowing traffic configurations:
1. (Baseline) 100% Human-Driven Traffic
2. (Baseline) Mixed Traffic with Fixed-Valued Time-

Headway Control: Traffic consisting of both human
drivers and a fraction of 10-100% CAVs, which set their
headway based on commands sent by the fixed-valued
time-headway controller described in Section 4.4. The
controller was tuned to the best performing fixed-valued
time-headway.

3. (Ours) Mixed Traffic with RL-based Controller: Traf-
fic consisting of both human drivers and a fraction of
20-100% CAVs, which set their headway based on com-
mands sent by the RL-based time-headway controller de-
scribed in Section 4.5.

The two baselines were selected for the following reasons.
First, human-driven traffic represents the current status quo,
serving as a benchmark for improvement. Previous conges-
tion reduction methods have generally not tackled realistic
multi-lane highway scenarios involving lane changes and
merges, likely due to the limitations discussed in Section 4.2.
In our evaluations, these methods underperformed compared
to human-driven traffic and were therefore omitted. Second,
the manually tuned baseline is included to demonstrate the
necessity of a more sophisticated RL-tuned controller.

Notably, an ablation analysis would be less informative
for our system, as it relies on essential components whose re-
moval would compromise functionality. Specifically, speed
and density are necessary in the state representation to avoid
ambiguity, and the reward function is directly derived from
the performance metric to ensure alignment with our ob-
jectives. Additionally, sensitivity analysis indicated that the
system is robust to minor changes in the number and length
of road segments, as well as in action ranges.

Figure 3 presents results from hundreds of experiments
under the most challenging traffic flows and varying percent-
ages of controlled vehicles. Each scenario configuration was
run 30 times with different random seeds, enabling the com-
putation of 95% confidence intervals. We focused on two
scenario types: a simplified merge with a single-lane main
road, and a complex merge with a multi-lane highway:

Single-Lane Scenarios Highway vehicles drive on the
rightmost lane, no lane changes are allowed, and a single-
lane road merges into the highway. This simplified setup

tests the feasibility of time-headway control. The tuned
fixed-value control improves merge efficiency and traffic
flow over the human baseline across different CAV fractions
(Figure 3a). RL-based control further enhances performance
for CAV fractions of 40% and above, achieving up to a 16%
average speed increase in the 100% CAV scenario.

Multi-Lane Scenarios All highway lanes are used, lane-
changes are allowed, and a single-lane road merges into
the highway, creating a congestion-prone bottleneck. Time-
headway control signals are sent to all lanes in controlled
segments. While lane-specific control could be more effec-
tive, it requires extra sensing, limiting practicality. Fixed-
value time-headway control improves merge efficiency and
traffic flow only at low or 100% CAV fractions (Figure 3b).
In contrast, our RL-based controller outperforms both the
human baseline and fixed-value control across all CAV frac-
tions, achieving up to a 7% increase in average speed at
100% CAV fraction.

Overall, our RL-based controller outperforms the fixed-
headway controller in scenarios with complex dynamics:
specifically, in single-lane settings with CAV fractions of
40% or more, and in multi-lane settings with CAV fractions
of 20% or more, where fixed-headway controllers are chal-
lenging to tune and may struggle to represent effective con-
trol strategies. These experiments robustly demonstrate the
effectiveness of our approach, which is the first to handle
realistic multilane scenarios.

6 Conclusions
This paper proposes a dynamic time-headway control ap-
proach for increasing the average travel speed of vehicles
while maintaining safety in high-volume highway traffic. By
integrating with existing traffic estimation technology and
low-bandwidth vehicle-to-infrastructure connectivity, and
leveraging safety-certified adaptive cruise control systems,
our method offers a practical path towards real-world im-
plementation. Our safe reinforcement learning-based time-
headway controller outperforms both baselines and alterna-
tive approaches across a variety of automated vehicle pen-
etration rates, in both single- and multi-lane realistic, sim-
ulated scenarios featuring hundreds of vehicles. Notably,
even at low penetration rates, adjusting time-headways led
to measurable improvements in average traffic speeds.

While these results are encouraging, several avenues
for future work remain. First, deploying an RL controller
trained in simulation into the real world requires it to be ro-
bust to diverse traffic flows and driving styles, and trained
on simulations calibrated with real-world data. Addition-
ally, real-world testing is crucial to validate the simulation
results and overcome practical implementation challenges.
Finally, integrating this approach with other traffic man-
agement strategies, such as ramp metering or dynamic lane
assignment, could potentially yield even greater efficiency
gains. As automated vehicle technology continues to ad-
vance, time-headway control emerges as a promising tool for
transportation engineers and policymakers seeking to allevi-
ate congestion and improve mobility in our road networks.
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A Simulation Details
This section describes the details of simulations shown in
various figures in the paper.



Figure 1b, lane-change behavior tuning This figure
presents three examples of time-space diagrams, illustrating
the throughput along the road during the simulations. These
simulations were conducted in a multi-lane scenario over
a 500-second period, with a 50-second merge starting af-
ter 200 seconds and an inflow rate of 1800 vehicles per hour
per lane. In the aggressive example (left), the lcAssertive pa-
rameter was set to 5, while in the tuned example (right), it
was set to 3. In the no-lane-change scenario (middle), the lc-
SpeedGain and lcStrategic parameters were set to 0, and the
lcCooperative parameter was disabled by setting it to -1.

Figure 2c, comparison of constant speed and constant
time-headway control This figure compares two simu-
lations: one with fixed-value speed limit control and one
with fixed-value time-headway control. The results are pre-
sented in two pairs of time-space diagrams. The top pair il-
lustrates the throughput along different road segments over
time, while the bottom pair shows the average velocity along
the road. The simulated scenario involves a single-lane high-
way without any merging road inflow. After 200 seconds,
control signals are applied to all vehicles within a 200-meter
road segment for a duration of 100 seconds.

B Computing Infrastructure
Hardware Desktop with 12 Intel Xeon W-2133 3.6GHz
CPU cores, 64 GB RAM.

Operating system Ubuntu 20.04.

Software To recreate our software environment, install
Eclipse SUMO 1.17 simulator, and create a Conda environ-
ment using the file environment.yml in our code repository.

C Hyperparameters
This section describes the parameters and hyperparameters
used for the vehicle behavior in the SUMO simulator, for
the MDP actions and rewards, and RLlib’s PPO algorithm,
listed in Table 1.

SUMO parameters The step length was chosen to be 0.5
seconds to allow more resolution than the default 1 sec-
ond step, while keeping simulation time low. Most IDM car
following parameters were kept default. The default time-
headway parameter (tau) value was empirically tuned to 1.5
seconds, to obtain a maximal incoming vehicle flow of 1800
vehicles per hour per lane. The continuous sub-lane lane-
change model was used to capture the complex dynamics
of lane changes better than the default model. Lane-change
behavior parameters were empirically tuned to mitigate spu-
rious disturbances once all vehicles from the merging road
had entered the highway. The empirical tests were analyzed
using a time-space diagram of the simulation, as illustrated
in Figure 2 of the paper. Additionally, the lane change pa-
rameter that required vehicles to drive in the rightmost lane
was disabled. This parameter caused vehicles to move to the
rightmost lane whenever there were sufficiently large gaps,
even if the vehicles in that lane were moving slower, which
is not realistic behavior.

MDP parametes Reward normalization was selected such
that returns will be approximately in the range [-1, 0]. For
safety reasons, the minimum action value of 1.5 seconds
was chosen to be equal to the default time headway param-
eter of the IDM car following model. This guarantees that
the RL agent can only increase time-headway. The maxi-
mum action value was selected to narrow the action space,
thereby reducing training time while still accommodating a
sufficiently large time-headway range. We tested different
values for the numbers of control segments, ranging from
2 to 5. We chose to use 2 since the performance of all val-
ues was similar, while training with 2 control segments was
faster.

PPO hyperparameters The number of rollout workers
was chosen based on the number of available CPU cores,
and the train batch size was adjusted accordingly to include
one full simulation episode for each rollout worker. Other
PPO hyperparameter values were kept as RLlib’s defaults,
since they resulted in both speed and stability in the learning
process.

SUMO parameters
step-length 0.5 seconds
lateral-resolution 0.4 meters
extrapolate-departpos True
tau (default time-headway) 1.5 seconds
lcKeepRight 0
lcAssertive 3
lcSpeedGain 5

MDP parameters
1
C (reward normalization) 1e-5
action range [1.5, 6] seconds
num control segments 2

RLlib PPO parameters
num rollout workers 10
train batch size 2000
sgd minibatch size 128
clip param 0.3
num sgd iter 30
use gae True
lambda 1
vf loss coeff 1
kl coeff 0.2
entropy coeff 0
learning rate 5e-5

Table 1: SUMO, MDP, and PPO hyperparameters


