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ABSTRACT

Time series and sequential data have gained significant attention recently since many real-world
processes in various domains such as finance, education, biology, and engineering can be modeled as
time series. Although many algorithms and methods such as the Kalman filter, hidden Markov model,
and long short term memory (LSTM) are proposed to make inferences and predictions for the data,
their usage significantly depends on the application, type of the problem, available data, and sufficient
accuracy or loss. In this paper, we compare the supervised and unsupervised hidden Markov model
to LSTM in terms of the amount of data needed for training, complexity, and forecasting accuracy.
Moreover, we propose various techniques to discretize the observations and convert the problem to a
discrete hidden Markov model under stationary and non-stationary situations. Our results indicate
that even an unsupervised hidden Markov model can outperform LSTM when a massive amount of
labeled data is not available. Furthermore, we show that the hidden Markov model can still be an
effective method to process the sequence data even when the first-order Markov assumption is not
satisfied.

Keywords Dynamic Bayesian Network · Graphical Model · Hidden Markov Model · LSTM · Time Series

1 Introduction

Many real-world applications, such as stock markets, weather, temperature, and DNA sequences, are modeled as
time series and sequential problems. The fundamental challenges in time series and sequential data analysis are: 1-
Observations at different points in time are correlated. 2-order of observations in time matters. This makes some of the
algorithms that change or permute the order of data unusable.

Scientists and researchers have done extensive research in time series analysis, such as [1],[2],[3],[4]. They have
borrowed tools from various domains, such as graphical modeling, statistics, and machine learning to model and
forecast the time series data. In [1], the authors used autoregressive integrated moving average (ARIMA) to make
predictions of the stock market. In [2], authors used deep learning, specifically long short term memory (LSTM),
to predict multivariate time series data. They showed that even simple LSTM architectures can make an accurate
prediction of future values. In [3], the author combined ANN and ARIMA to design a hybrid methodology to model
time series data. In [4], the author used machine learning, specifically a support vector machine (SVM), to predict the
stock market index.

Graphical models, specifically Bayesian networks (BN), have been used extensively in modeling various applications,
such as [5] and [6]. A dynamic Bayesian network (DBN) specifically an HMM is a variant of a BN that is used to model
time series and sequential data in various applications such as [7], [8], [9], [10]. In [7], the authors used an HMM to
predict student performance in an educational video game. They used a discrete HMM to measure student mastery of
concepts as they go through levels of the game. In [8], the authors used a five-state HMM to analyze the individual
differences in in-game behavior and used the logistic regression for the prediction. In [10] the authors incorporated a
two-state HMM along with dynamic programming to classify and segment a soccer video game.
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Deep learning has been used extensively in various applications. For instance, LSTM, a variant of the recurrent neural
network, has been successful in modeling the sequence data in recent years. For example it is widely used in the natural
language processing (NLP) to model sequences [11], [12]. Despite their effectiveness and their numerous applications,
neural networks, in general, suffer from the following problems: 1- They require a massive volume of (labeled) data for
training. 2-The number of trainable parameters, even for a simple model, is huge. 3- Since they have a huge number of
parameters, the models are not easily interpretable. For these reasons, simpler models with fewer parameters are usually
preferred if the performance degradation is negligible.

Advances in statistics and optimization allow researchers to develop various algorithms from graph theory and Bayesian
learning such as [13], [14], [15], [16] to design sophisticated graphical models for better inference and learning.
However, the more complex the model, the more computationally difficult inference and learning become. HMM and
its variants such as [17], [18] have been successfully used in applications with latent variables. This is due to the tree
structure of its graph, which makes the inference and learning very efficient. To the best of our knowledge, this is
the first work that compares LSTM and HMM in terms of the number of samples needed, prediction accuracy, and
complexity of models on datasets with various complex patterns.

In this paper, we compare HMM and LSTM in terms of performance, the number of trainable parameters, and how
much data is needed for training using synthetic data corresponding to various graph structures. The contribution of
this paper is twofold: 1- Comparing LSTM to both supervised and unsupervised HMM in terms of performance and
complexity. 2- Proposing some methods to efficiently convert continuous HMM to discrete HMM by discretizing the
observations.

The rest of this paper is organized as follows. Section 2 reviews algorithms and background materials used in other
sections. Section 3 describes the data generation mechanism. Section 4 describes the problem formulation. Section 5
presents and discusses the results. Section 6 concludes the paper.

2 Algorithms

2.1 HMM Algorithms

In this section, HMM algorithms are briefly reviewed. Both the discrete hidden Markov model (DHMM) as well as the
continuous hidden Markov model (CHMM) are discussed.

The HMM is the extension of the Markov process in which the observations are a probabilistic function of the states.
In an HMM, states are considered as hidden and should be inferred by the sequence of observations. The HMM is
characterized by the following:

N: Number of the hidden states. Although this is unknown since the states are hidden, it usually can be initialized to a
reasonable number depending on the problem and the dataset and later can be learned using various statistical analysis
tools which will be discussed later.

M: Number of the observation symbols per state.
−→
S : State sequence where

−→
S = (s1, s2, ...sT ), T is the length of the sequence, and each si ∈ {1, 2, ..., N}.

−→
O : sequence of the observation symbols where

−→
O = (o1, o2, ...oT ) and each oi ∈ {1, 2, ...,M}.

A: State transition probability. It defines the probability of going from state i to the state j and is denoted by

aij = p(st+1 = j|st = i) (1)

B: Observation distribution per each state, which is denoted as follows:

bi(k) = p(ot = k|st = i) (2)

−→π : Initial state distribution that is defined as follows:
−→πi = p(s1 = i) (3)

λ: HMM parameters together are usually denoted by the following:

λ = (A,B,−→π ) (4)

The above equations together can be used to fully define any HMM with discrete observations.
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Forward and backward algorithms [9] are used to calculate P (
−→
O |λ), the probability of observing a sequence given

λ. If the time series is not labeled and the mapping between the observations and the states is not available, then
HMM parameters should be estimated using the Baum-Welch or EM algorithm [19]. If the observations are continuous
(CHMM) as opposed to discrete, the emission probability distribution should be adjusted to account for this change.
Continuous observations are modeled by fitting the probability density functions (pdf) to the data. A Gaussian
distribution or mixture of Gaussian distributions are typically used for modeling the data.

If the observations for each state can be modeled using a single Gaussian distribution, then equation (2) will be changed
to the following:

bi(x) = p(x|st = i) = N(x;µi,Σi) (5)
In equation (5), µi and Σi are the mean and the covariance matrix of the Gaussian distribution for state i respectively.

If a single distribution is not a reasonable fit to the data, then a mixture of Gaussian distributions can be used to model
the observations. In this case, equation (6) can be used to model the observations for each state.

bi(x) = p(x|st = i) =

M∑
m=1

cimN(x;µim,Σim) (6)

cim is the mixture coefficient and determines the weight each component has in modeling the data. µim and Σim are
the mean and covariance matrices of each mixture component corresponding to the state i.

Decoding the optimal state sequence given the observation can be done using the Viterbi algorithm [20]. It finds the
sequence of the states that best explains the observed data:

S∗ = argmaxSP (S|O, λ) (7)

2.2 LSTM Algorithm

RNN networks are mainly designed for the sequence prediction problem. Unlike feed-forward networks that consider
inputs and outputs to be independent, RNN networks consist of memory cells that can remember the long term
dependencies between elements of a sequence. In theory, RNN can remember arbitrarily long time steps, but in practice,
they suffer from the vanishing gradient problem [21], [22]. LSTM is designed to address the vanishing gradient problem.
The first step in the operation of LSTM is the use of a cell state, which is a memory element to store information. LSTM
has the ability to remove and update the cell state via various gates. A forget gate decides what information should be
kept or removed. This is done using a sigmoid function that produces a number between 0 and 1, where one means
keeping and zero means removing the data. The input gate is responsible for adding or updating the information to the
cell state. It consists of a component that involves a sigmoid function to determine which information should be added
to the cell state. It also has a component using a tanh to squeeze the data to -1 and 1 range. The output gate decides
what information from the cell state should be passed to the output at time t. This is done similarly to the input gate in
which the cell state data is squeezed to -1 and 1 range and then is multiplied by the output of a sigmoid function to
determine the useful information passed to the output.

2.3 K-means Algorithm

K-means is a well-known distance-based clustering method that uses the Euclidean distance to measure the similarity
between data points. The inherent problem with the K-means is that the value of K should be specified in advance. This
can be done by the domain knowledge or techniques such as the elbow method, Silhouette index, and gap statistics.

The elbow method works by iterating through different values of K and plots the sum of squared distances of samples to
their closest cluster center. This quantity is called inertia or the sum of squared errors (SSE). Then the optimal number
of clusters is selected by the value of K at the “elbow”, namely the point after which the SSE/inertia starts decreasing
linearly.

Silhouette index is a measure of how similar a data point is to the points in its cluster compared to points in other
clusters. It works by calculating the Silhouette coefficient for each instance of clustering as follows:

c =
a− b

max(a, b)
(8)

In equation (8), a represents the mean intra-cluster distance, and b represents the mean nearest-cluster distance for each
sample. Equation (8) shows that the silhouette coefficient is a number between -1 and 1 in which the number closer to 1
represents that a sample is assigned to the correct cluster and a number closer to -1 shows that the sample is assigned to
the wrong cluster.
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3 Dataset

In this paper, We create the synthetic data corresponding to different DBN structures. We proposed three DBN structures
with various levels of complexity. The followings are the parameters and notations for the synthetic data:

T = Length of each time series.

D = Dimension of time series.

N = Number of samples (time series)

S1, S2, ..., ST = sequence of discrete states.

ui1, ui2, ...uiT = sequence of input i.

Oi1, Oi2, ...OiT = sequence of observations i.

Nui = Number of symbols for input i (if it is discrete).

Ns = Number of symbols for state i (if it is discrete).

Case I: we generate a structure shown in figure 2 with two confounding variables (inputs) and two continuous
observations per time point. For this case, N= 2000, T=50, D=2, Ns=3, Nu1 and Nu2 are both 2.

Case II: we generate a structure shown in figure 3 with one input variable and one continuous observation per time
point. This is more complex than the case I since inputs are connected across time in addition to states. Moreover, the
input is connected to observation and state per time point. For this case, N=2000, T=20, D=1, Ns=4, Nu1 =2.

Case III: we generate a structure shown in figure 4 with one input variable and one continuous observation per time
point. This is the most complex case since input at time t is connected to state at time t and input and state at time t+1.
Moreover, the state at time t is connected to state at time t+1 and both observations at time t and t+1.For this case,
N=1000, T=10, D=1, Ns=4, Nu1 =2.

Case IV: we generate a structure shown in figure 5 with one input variable and one continuous observation per time
point. This is a more complex version of case II since state at time t is connected to state at time t+1 and state at time
t+2.For this case, N=2000, T=20, D=1, Ns=4, Nu1 =2.

For all these cases, a multinomial distribution is used to model discrete nodes, and a Gaussian distribution is used to
model continuous nodes.

This method of generating time series has the advantage that parameters of the time series such as the dimension, length,
number of samples, distribution of each node, and graph structures can be arbitrarily chosen.

4 Problem Formulation

In this section, the problem formulation and the prediction algorithms are discussed. The procedure to train and test the
LSTM is as follows:

1. Pick a training ratio as the amount of data used for training.

2. Perform transformation on data to scale it to [0,1] range.

3. Perform model selection to find the optimal parameters.

4. Test the model on the test (unseen) data.

5. Keep reducing the training ratio and perform steps 1 to 4 again.

Figure 1 shows the architectures used for LSTM training:

The procedure to train and test the HMM is as follows:

1. Pick a training ratio as the amount of data is used for training.

2. Perform model selection to find the optimal parameters.

3. Train model with parameters from step 2.

4. Perform the testing by applying the Viterbi algorithm on test data.

5. Perform state mapping
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(a) Model 1

(b) Model2

(c) Model3

Figure 1: LSTM Architectures for Time Series Data

6. Keep Reducing the training ratio and perform steps 1 to 5 again.

The above procedure works very well for the HMM if there is one feature but if there are more than one feature then
a more reasonable method to approach the prediction problem is as follows. First, find the correlation between the
features. Second, train one HMM for each set of features that have positive correlation with each other. Third, combine
the predictions together.

The differences between DHMM and CHMM lie in the input and how data is modeled. CHMM can be converted to the
DHMM problem by discretizing the observations. The critical question is how to perform discretization in order not to
degrade the predictive performance. In this paper, we propose the following:

1. Network structure is the same through time: Since the network structure is unchanged throughout time and
number of nodes, their distributions, and confounding variables remain the same. Then time series for different
samples can be concatenated to create a long vector, and discretization by domain knowledge or K-means can
be performed on this vector.

2. Network structure is varying through time: In this case, we perform the discretization per time slice. This
is because node distribution, interconnections, and confounding variables are changing from time to time,
and it would not be meaningful to concatenate the time series. For example, consider that the observation
corresponds to how long it takes to finish the levels of a game. Different levels have different difficulties,
game mechanics, and narratives. Therefore, if some levels are more straightforward than others, then they are
expected to take less time, which should be taken into consideration during discretization.

The first case above is used more often than the second one in modeling time series and sequential data since it reduces
the inference and learning complexities. This is because it allows us to use dynamic programming to find the estimate
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of the parameters iteratively while if a network structure is changing with time, a new set of equations is needed to
update and estimate the parameters.

This paper aims to measure the trade-off between predictive accuracy and the complexity of HMM and LSTM. We use
CHMM for unsupervised HMM, DHMM for both the supervised HMM and unsupervised HMM.K-means clustering is
also used for the discretization.

We find the number of trainable parameters for LSTM using simulation. The following are the equations to find the
number of parameters in CHMM with diagonal covariance matrix (although the procedure for other cases is very
similar) and DHMM.

• CHMM with a diagonal covariance matrix:

C = M ∗ (M − 1) +M ∗ (N − 1) + (N ∗M) ∗D + (M ∗N ∗D) +M − 1 (9)

where M is the number of states, N is the number of mixture components, and D is the dimension of time
series.

• DHMM:

C = M ∗ (M − 1) +M ∗ (N − 1) + (M − 1) (10)

where M is number of states, N is number of symbols.

It is worth noting that to measure the accuracy of unsupervised HMM (parameters learned from EM), we set the number
of states to be Ns and find the optimal number of mixture components.

5 Results and Discussions

In this section, we present and discuss the results for the comparison of HMM and LSTM.

Case I

This case corresponds to figure 2 and consists of two continuous observations. This can be a simple model of student
learning, in which S1, S2, ..., ST corresponds to student mastery levels and u1j1, j = 1, 2, 3, ...T corresponds to study
habit (it has two levels corresponding to bad and good) and u2j , j = 1, 2, 3, ...T corresponds to other factors (like
the personal issues, interest,...) and observations can correspond to time to finish an assignment and the assignment
score. Tables 1 and 2 summarize the prediction accuracy and the number of parameters for the LSTM and HMM as
a function of the training ratio. It is worth noting that N=2000 is the total number of time series. Therefore training
ratio of 0.8 results in 1600 time series for training and 400 time series for testing. The length of each time series is 50.
To train the LSTM model, we usually concatenate the samples, which means we will have 50*1600=80000 samples.
In Table 1 for training ratio=0.8,0.3,0.1, the optimal parameters are as follows: the number of neurons in the hidden
layer is 8, the optimizer is Adam, and the batch size is 4. The optimal parameters for training ratio =0.005 and 0.001
are the same, except the number of neurons in the hidden layer is 32. As Table I demonstrates the prediction accuracy
for unsupervised HMM even for two time series (2*50=100) samples is very accurate. Both DHMM and CHMM are
outperforming LSTM when the number of samples is low. HMM has a significantly lower number of parameters than a
simple one layer LSTM.

The correlation between the two observations is -0.87, which shows they are negatively correlated. Therefore two
different HMMs will be trained, one for each set of observations, and the final prediction will be a combination of both
of them. This method has an advantage that predictions can be weighted and assign more weights to more important
observations.

The unsupervised DHMM provides accuracy comparable to the unsupervised CHMM, which shows that if the
discretization is done correctly, there is not much information loss.

We observe that although under case I, there are two confounding variables per time step, Markov’s assumption for states
hold and observations are conditionally independent. To make enough samples for HMM and LSTM prediction, instead
of increasing the number of cases (N ), we can increase the length of time series (T ). This is a crucial observation since,
in many domains such as education, it is hard to have a large number of time series and sequence data, but it is rather
easier to increase the length of time series. Here we generate synthetic time series, and so we have access to labels
(states); therefore, we should manually set the number of states and find the optimal number of mixture components,
which is less optimal to perform model selection over states and mixture components. Finally, if discretizing is done
correctly, i.e., finding the optimal number of clusters, this can be used as an alternative solution to fit a Gaussian or
mixture of Gaussian distributions to data.
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Figure 2: Synthetic Time Series Under Case I

Table 1: LSTM Prediction Accuracy and Number of Parameters for Case I
Architecture Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Model 1 379

0.8 80000 98.55
0.3 30000 98.34
0.1 10000 98.1

4579 0.005 500 93.63
0.001 100 64.2

Model 2 971

0.8 80000 98.4
0.3 30000 98.12
0.1 10000 98.06

12899 0.005 500 93.83
0.001 100 69.5

Model 3 755

0.8 80000 98.25
0.3 30000 98.06
0.1 10000 98.06

9155 0.005 500 94.23
0.001 100 76.68

Table 2: HMM Prediction Accuracy and Number of Parameters for Case I
Model Type Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Unsupervised
CHMM

46 0.8 80000 93.89

28
0.3 30000 92.24
0.1 10000 88.50

0.005 500 84.01
0.001 100 81.23

Unsupervised
DHMM 28

0.8 80000 90.89
0.3 30000 87.81
0.1 10000 86.51

0.005 500 78.32
0.001 100 67.01

Supervised
DHMM 28

0.8 80000 96.78
0.3 30000 96.39
0.1 10000 96.12

0.005 500 96.12
0.001 100 96.12
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Case II

This case corresponds to the figure 3 and is more complex than case 1 in terms of interconnection between the nodes. In
this network, the Markov assumption does not hold since

Sn+1 6⊥⊥ Sn−1|Sn (11)

The prediction procedure is similar to the case I and is summarized in Tables 3 and 4. As Tables 3 and 4 show, the
prediction accuracy for this case, especially for unsupervised HMM, is lower than the case I, and this is because the
Markov assumption no longer holds for this network. However, unsupervised HMM still provides a reasonable estimate
and can outperform LSTM when there are only 200 and 40 samples. The supervised HMM is done by first discretizing
the observations according to K-means to five clusters. The elbow and Silhouette methods are used to verify the optimal
number of clusters. Comparing the number of parameters between different models suggests that the HMM is much
more efficient and less complex than a simple one layer LSTM. Moreover, the sub-optimal unsupervised HMM provides
a reasonable prediction even when the structure is not the tree, and the Markov assumption is not satisfied. As Table 4
shows again there is not much loss in terms of prediction accuracy after discretizing the observation.

Figure 3: Synthetic Time Series Under Case II

Table 3: LSTM Prediction Accuracy and Number of Parameters for Case II
Architecture Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Model 1 356

0.8 32000 88.75
0.3 12000 87.33
0.1 4000 87.20

4484 0.005 200 58.28
0.001 40 38.23

Model 2 900

0.8 32000 88.52
0.3 12000 88.36
0.1 4000 87.32

12804 0.005 200 58.47
0.001 40 33.46

Model 3 708

0.8 32000 87.62
0.3 12000 87.23
0.1 4000 87.19

8964 0.005 200 62.47
0.001 40 38.12
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Table 4: HMM Prediction Accuracy and Number of Parameters for Case II
Model Type Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Unsupervised
CHMM

47 0.8 32000 75.21

23
0.3 12000 74.5
0.1 4000 72.14

0.005 200 70.04
0.001 40 74.12

Unsupervised
DHMM 27

0.8 32000 70.07
0.3 12000 71.36
0.1 4000 70.14

0.005 200 62.83
0.001 40 60.15

Supervised
DHMM 31

0.8 32000 88.91
0.3 12000 88.15
0.1 4000 88.04

0.005 200 85.09
0.001 40 80.05

Case III

This case corresponds to the figure 4 and is much more complex than cases I and II. In this network, the Markov
assumption is not satisfied. Tables 5 and 6 summarizes the prediction accuracy and the number of parameters for
this case. In this case, N is 1000, and T is 10. Some interesting observations from this case are:1- Lower prediction
accuracies for the HMM and LSTM for this case suggest that a more complex model is needed to model time series. 2-
Adding more layers to the LSTM does not necessarily increase the prediction accuracy but can significantly increase
the model complexities. 3- Unsupervised HMM, even when the number of states is not optimal, can compete with the
supervised HMM or LSTM.

Figure 4: Synthetic Time Series Under Case III
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Table 5: LSTM Prediction Accuracy and Number of Parameters for Case III
Architecture Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Model 1 4484

0.8 8000 61.59
0.3 3000 58.36
0.1 1000 56.12

0.005 50 33.84
0.001 10 30.23

Model 2 12804

0.8 8000 62.33
0.3 3000 61.25
0.1 1000 59.51

0.005 50 34.78
0.001 10 29.10

Model 3 8964

0.8 8000 62.32
0.3 3000 61.12
0.1 1000 59.4

0.005 50 34.26
0.001 10 30.12

Table 6: HMM Prediction Accuracy and Number of Parameters for Case III
Model Type Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Unsupervised
CHMM

35 0.8 8000 60.8

23
0.3 3000 60.15
0.1 1000 58.4

0.005 50 51.74
0.001 10 37.67

Unsupervised
DHMM 31

0.8 8000 60.95
0.3 3000 60.01
0.1 1000 57.9

0.005 50 50.16
0.001 10 37.2

Supervised
DHMM 35

0.8 8000 61.32
0.3 3000 60.10
0.1 1000 60.10
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Case IV This case corresponds to the figure 5. In this network, the Markov assumption is not satisfied, and state
dependencies are over two time steps. Tables 6 and 7 summarizes the prediction accuracy and the number of parameters
for this case. In this case, N is 2000, and T is 20. Some observations from this case are:1- DHMM provides comparable
accuracy to CHMM if discretization is done correctly. 2- Supervised HMM outperforms LSTM for a lower number of
samples even when Markov assumption does not hold, and state dependencies are more than one step time.

Some observations from all these four cases are as follows: 1- HMM, unlike LSTM, can be used as in an unsupervised
domain to model sequential and time series data. This is important especially since the amount of labeled time series is
limited.2- HMM is a model-based generative model that operates based on the first-order Markov assumption, however
LSTM is a data-driven discriminative model that can learn information from arbitrarily long time-steps. 3- HMM has
significantly fewer parameters than LSTM, which makes it easier to interpret.4- LSTM is a data-driven method and
needs lots of samples for efficient training.5- LSTM has a huge number of hyper-parameters, such as the number of
layers, batch-size, choice of the optimization method, learning rate, and the number of neurons per layer. It is very
hard, and there is no ground rule to find optimal parameters in LSTM. 6- HMM is very sensitive to the initial condition
due to the EM algorithm; therefore, the model might never converge to the global optima. One way to overcome this
issue is to start the EM algorithm from multiple different initial conditions and choose the model that optimizes some
criteria. 7-Supervised HMM provides a very high prediction accuracy even when Markov assumption fails, and state
dependencies are more than one time step.

Figure 5: Synthetic Time Series Under Case IV

Table 7: LSTM Prediction Accuracy and Number of Parameters for Case IV
Architecture Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Model 1 4484

0.8 32000 82.97
0.3 12000 81.68
0.1 4000 80.54

0.005 200 36.84
0.001 40 34.33

Model 2 12804

0.8 32000 83.30
0.3 12000 81.92
0.1 4000 80.70

0.005 200 43.36
0.001 40 35.07

Model 3 8964

0.8 8000 82.90
0.3 12000 81.72
0.1 4000 81.01

0.005 200 40.07
0.001 40 33.89
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Table 8: HMM Prediction Accuracy and Number of Parameters for Case IV
Model Type Number of Parameters Training Ratio Number of Training Sample Accuracy(%)

Unsupervised
CHMM

59 0.8 32000 68.4

23
0.3 12000 66.2
0.1 4000 63.47

0.005 200 61.12
0.001 40 58.12

Unsupervised
DHMM

27 0.8 32000 64.17
35 0.3 12000 62.58
27 0.1 4000 62.40
35 0.005 200 60.12
35 0.001 40 57.89

Supervised
DHMM

35
0.8 32000 83.89
0.3 12000 83.77
0.1 4000 83.11

0.005 200 81.36
23 0.001 40 50.91

6 Conclusion

In this paper, we created synthetic time series corresponding to various DBN structures with different degrees of
complexity. We calculated and compared the prediction accuracies and number of parameters for the LSTM and
supervised and unsupervised HMM. We showed that even an unsupervised HMM can be a reliable method when
the amount of labeled data is limited. Furthermore, We showed that unsupervised DHMM can provide comparable
prediction performance to unsupervised CHMM when observations are continuous. We also showed that a supervised
DHMM outperforms LSTM and produces reliable and accurate predictions when the number of samples is limited.
We proposed a method to discretize the observation under two different scenarios, i.e., 1- The network structure is
changing with time 2- network structure remains the same. The second option is used in synthetic data generation as it
significantly reduces the number of parameters.
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