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Abstract We explore the potential for productive team-based collaboration between humans and Artificial
Intelligence (AI) by presenting and conducting initial tests with a general framework that enables multiple
human and AI agents to work together as peers. ChatCollab’s novel architecture allows agents - human or AI -
to join collaborations in any role, autonomously engage in tasks and communication within Slack, and remain
agnostic to whether their collaborators are human or AI. Using software engineering as a case study, we find
that our AI agents successfully identify their roles and responsibilities, coordinate with other agents, and
await requested inputs or deliverables before proceeding. In relation to three prior multi-agent AI systems for
software development, we find ChatCollab AI agents produce comparable or better software in an interactive
game development task. We also propose an automated method for analyzing collaboration dynamics that
effectively identifies behavioral characteristics of agents with distinct roles, allowing us to quantitatively
compare collaboration dynamics in a range of experimental conditions. For example, in comparing ChatCollab
AI agents, we find that an AI CEO agent generally provides suggestions 2-4 times more often than an AI
product manager or AI developer, suggesting agents within ChatCollab can meaningfully adopt differentiated
collaborative roles. Our code and data can be found at: https://github.com/ChatCollab.

CCS Concepts: • Human-centered computing→ Collaborative and social computing; • Computing
methodologies→ Artificial intelligence.

Additional Key Words and Phrases: human-AI collaboration, autonomous AI agents

1 INTRODUCTION
Advancements in Large Language Models (LLMs) and Artificial Intelligence (AI) agent systems
have significantly increased the potential for productive collaboration between humans and AI.
Tools like GitHub Copilot [1] have become widely used. However, popular copilots place humans
in the primary decision-making role and typically do not alter the dynamics of human-to-human
interaction. Most prior research on human-AI collaboration to date (e.g., [16, 17, 23, 24, 28, 33, 34,
41, 44, 47]) has similarly focused on dyadic interaction and quantitatively measurable tasks such
as collaborative gaming [47], object identification [46] or decision making [33]. More recently, a
new class of AI agent systems [2–4, 36] has emerged, coordinating multiple AI agents to complete
software development or similar tasks. Looking ahead, however, we believe that more flexibly
structured collaborative teams comprising both humans and AI agents will become more prominent,
allowing both humans and AI agents to assume diverse roles as needed. This is a natural evolution
from structured human-only teams, allowing human-AI collaboration to draw on the rich history
of research and practical experience in management and organizational behavior.
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To explore the broad potential for productive team-based collaboration between humans and
AI, we present ChatCollab, a configurable experimental system that supports AI agents as peer
collaborators with humans.While ChatCollab is inherently task-agnostic, we have initially applied it
to software development. Software teams offer a compelling use case due to the inherent complexity
of the development process, the complementary nature of AI coding abilities to human skills, and
the ability to leverage familiar team roles such as designers, engineers, product managers, and
quality assurance testers.
In ChatCollab, one or more humans can actively participate as team members alongside any

number of AI agents, each filling roles such as software developers, UI/UX designers, or quality as-
surance testers. Additionally, ChatCollab has the potential to facilitate human learning, particularly
in contributing effectively to structured software teams. In human learning, AI agents with greater
expertise can act as mentors, for example, while others can serve as practice partners [38, 42] or
teachable agents [14]. This framework might help humans acquire new skills, refine their existing
abilities, and better integrate into collaborative, AI-augmented environments.
We evaluate ChatCollab outcomes both by evaluating the quality of the software produced

(work product) and by measuring characteristics of team interaction. It is relatively straightforward
to see that ChatCollab’s AI agents identify their roles and responsibilities, autonomously follow
established processes, coordinate and communicate with other agents, and provide updates while
appropriately waiting for input before proceeding. To evaluate collaborative interaction more
deeply, we describe a method for AI-based collaboration analysis that is based in part on traditional
qualitative coding methods used in the social sciences (see section 2.4). Using this automated
method, we show how varying role definitions and social conventions (expressed as AI prompts)
leads to measurable variations in the collaborative behavior of agents. We also measure ways that
AI agents collaborate differently based upon their roles. Looking at the quality of work product, we
find that ChatCollab produces equal or superior software to three prior systems that use multiple
AI agents for software development [2–4], while additionally allowing humans to engage directly
in the development process.

The main contributions of this paper include:
• We introduce ChatCollab, a configurable system for human-AI collaborative teams, agnostic
to application but used in this paper for software development.

• We introduce and demonstrate a collaboration analysis method to measure the effectiveness
of prompting AI agents to embody different roles and demonstrate specific social knowledge
through collaborative behavior.

• We compare the characteristics of software produced by three prior multi-AI-agent systems,
MetaGPT, ChatDev, and SuperAGI [2–4], all designed for software development, with each
other and with ChatCollab in a case study.

The paper is organized with section 2 summarizing the relevant background for the development
of ChatCollab, section 3 introducing the ChatCollab system, section 4 detailing the collaboration
analysis method, section 5 presenting the code quality evaluation, where we compare ChatCollab
to three other multi-AI-agent systems, and section 6 describing limitations of our system and our
analyses. Finally, section 7 concludes and proposes directions for future work.

2 RELATEDWORK
2.1 AI-Assisted Software Development
There is a rich history of AI-based tools for specific aspects of software development. Summaries
organized according to phases of the software development process appear in [11, 12]. Beginning
with Github Copilot [1], a number of copilot tools integrate calls to an LLM into the IDE. A
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comparative study of Github Copilot, Tabnine, Replit Ghostwriter, and Codeium appears in a
Codeium blog post [37]. Research studies of the power and limitations of Github copilot and direct
access to LLMs appear in [22, 48].

2.2 Multi-AI-Agent Software Development
Prior work observes that LLMs may struggle with hierarchical multi-step reasoning tasks like
generating complex programs [22]. Observing this limitation, Zelikman et al. [43] introduce a
framework that automatically decomposes algorithmic tasks into hierarchical natural language
function descriptions and then proceeds to select suitable code implementations for each function.
The advantage of enlisting multiple agents is illustrated by the fact that in comparison to directly
sampling AlphaCode and Codex, the system developed by Zelikman et al. solves more competition-
level problems in the APPS dataset, resulting in over 75 percent higher pass rates.
Prior systems have used multiple AI agents to simulate realistic human behavior [35] and, for

collaborative software development in particular, have assigned specific roles to agents [25, 36]. In
particular, the three structured agent systems MetaGPT, ChatDev, and SuperAGI [2–4] we compare
to ChatCollab and to each other all divide tasks and responsibilities using familiar human roles.

2.3 Human interaction with AI agents for Learning
We are not aware of extensive prior work on multi-agent systems in which multiple humans interact
as peers with multiple agents to produce a work product. However, some interesting prior systems
explore educational settings that involve humans and multiple AI agents. Many of them seem best
regarded as learning through role-playing or simulation.
A recent position paper explains and summarizes prior use of a partner-mentor paradigm, in

which one AI agent serves as a mentor (or instructor) and another AI agent serves as a practice
partner [42]. Examples cited include Active Listening, Conflict Avoidance, Conflict Resolution,
Empathy, and Rhetoric, as well as interactive TA (teacher) training as described below; a compelling
case study appears in [38]. Biswas et al. propose a learning system with a multi-agent architecture
that included four agents: a teachable agent, a mentor agent, a student agent, and an environment
agent [14]. Similarly, Soliman and Gütl identify and distinguish between the types of Pedagogical
Agents which contribute to learning in Virtual Learning Environments: agents for learning per-
sonalization, teachable agents, and multiple agents supporting group learning [40]. Markel et al.
present GPTeach, in which a pair of student AI agents provide practice for interactive TA training
[32].
More broadly, educational simulations with technology have been shown to enhance learning

in technical training [26], games [21] and engineering education [9]. Theoretical foundations for
educational simulations have been explored in [30] and elsewhere. In the area of AI that improve
human-to-human communication, AI-based chat interventions may improve the cordiality of
political conversation between two humans online [6]. Similarly, human-AI collaboration through
AI-in-the-loop has also been shown to increase conversational empathy [39].

2.4 Collaboration analysis
We view our analysis of ChatCollab transcripts – sequences of message between members of the
team – as an automated form of qualitative coding. Coding in social science research is a qualitative
data analysis method where descriptive labels are assigned to selected aspects of the data, allowing
researchers to tabulate qualitative features. Coding labels are typically assigned by human coders
who are given specific criteria on when to apply them. There are a number of methods, including
comparison of codes assigned by multiple coders to assess confidence and improve tabulation.
Because human data labeling is often a bottleneck or resource-constrained limitation of social
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science research, there is a growing body of recent work aimed at automated coding using LLMs.
Some of the main areas of investigation are summarized below.
Qualitative coding using LLMs In one study, GPT-4 achieves human-like performance in

several coding tasks, with significant improvement when chain-of-thought reasoning is used [20].
A comparison of GPT-3.5 Turbo and GPT-4o for inductive qualitative coding indicate that GPT-4o
outperformed GPT-3.5, especially at low temperatures, by offering higher agreement rates and more
consistent results compared to human coders [7]. A related proposal may effectively assist or replace
human coders by achieving comparable accuracy and reducing coding time [19]. Coding interview
transcriptions through generative coding and lexico-semantic coding to allow for semi-automated
development of codebooks, enhances coding accuracy and thematic relevance while potentially
reducing human bias and error [15]. A comparison using zero-shot, few-shot, and contextual
coding on virtual tutoring session transcripts suggests that GPT-4 Turbo is generally effective
for well-defined constructs but struggles with complex constructs and contextually dependent
cases [29]. Another study presents an AI-based tool that assists with both inductive (data-driven)
and deductive (codebook-based) coding, improving efficiency, consistency, and accessibility in the
coding process; substantial alignment between human coders and QualiGPT is reported [45].

Looking at bias and alternative language contexts, a study of ChatGPT and Llama-2 focusing on
transcripts from 2,407 interviews with Rohingya refugees and Bangladeshi residents discussing
their aspirations for their children, finds that LLMs introduce systematic biases, especially in
context-sensitive data. These biases result in patterned, non-random errors; supervised models
trained on smaller, high-quality human annotations yield more accurate and unbiased results [8].

Semi-Automated qualitative coding Studying semi-automated qualitative coding, investiga-
tors found that researchers prefer automation only after creating a codebook and coding an initial
data subset, especially for extending codes to unseen data. Their prototype tool using simple NLP
techniques achieves human-comparable inter-rater reliability [31]. Focusing on ambiguity, which
often appears as coder disagreement, another proposed tool highlights areas of coder disagreement,
allowing collaborative coders to explore inconsistencies and gain deeper insights [18]. Additional
tools to systematically analyze, improve, and verify coder agreement have also been proposed [27].
Drawing on their experience with 18 studies involving 12 to 54 coders, another effort addresses
pragmatic challenges such as recruiting and training coders, ensuring data quality and coding
reliability at scale, and maintaining team cohesion [13].

3 CHATCOLLAB: CONFIGURABLE SYSTEM FOR HUMAN-AI COLLABORATION
We present ChatCollab, a system that enables configurable teams composed of both humans and AI
agents. Users define specific team roles assigned individually to each agent in the team — human
or AI — allowing for flexible team configurations and enabling authentic collaboration between
humans and AI agents as peers.

3.1 Motivation for ChatCollab design decisions
AI-Human collaboration may be designed to produce a work product, have some effect on the
participants, or both. In a single sprint of a hybrid human-AI software team, for example, the primary
goal may be the best software possible. However, if a team operates over a longer period of time,
evolutionary improvements in the team are also important. Many team leaders and managers in
human organizations recognize the importance of balancing work-produce goals with team morale,
future productivity, and career development for members of the team. Because environments that
use multiple intelligent agents to assist student learning address human engagement and progress,
we have found it useful to draw on that literature, e.g., [14, 40]. This perspective led us to the
following design goals:
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• AI agents embody different roles within the collaboration, acting different from one another
rather than being monolithic, thus forming a genuine collaborative team.

• AI agents within the team can be prompted to behave meaningfully differently within the
collaboration, offering humans the ability to steer the team dynamics produced by the
system.

• The human(s) can assume any role within the AI Agent team, experiencing realistic collab-
oration. The human(s) can direct the team’s progress, or have it directed by an AI Agent.

• AI agents can be taught or give feedback by the human participants through direct, iterative
interactions. The human can both coach and be coached by the AI Agents.

• The environment, including a shared workspace and the details of each agent’s role, is
conveyed equally and fully to both the human and AI agents.

In a software development team, the hierarchical structure naturally allows for the emergence of
teachable agents, who accept instruction, and mentor agents, who provide guidance and encour-
agement. In practice, a human senior developer might provide feedback to an AI junior developer,
while reporting to an AI CTO. This structure fosters the development of teamwork skills for human
participants by engaging with agents in various capacities.
In order to achieve the goals outlined above, we hypothesize that individual AI agents must be

designed with the following features:
• AI agents must have full autonomy, defined as the ability to take or not take action at any

update in the environment, without following a predetermined sequence of decisions. This
means the system must enable agents to be continuously aware of their environment and
able to take or attempt actions at any time if the agent expresses such a desire.

• AI agents should possess sufficient intelligence to be able to learn from human instruction
and provide helpful feedback.

• AI agents should have believable social abilities and environmental awareness, enabling
realistic collaborations with human participants. This includes the ability to follow expected
social etiquette in a software development team, both standardized and team-specific.

• AI agents should each have acccess to contextual information about their environment,
their role in completing the task at hand, and their plans to complete those tasks.

• AI agents should have optional customizable characteristics beyond their roles in the team,
including traits such as confidence, personality, knowledge level, and receptiveness.

Autonomy is important to allow agents to fully respond to the human and other participants.
Agents should be responsive to human direction, able to deviate from a sequence of artifact
generation to communicate and collaborate with the human participants in a free-flowing dialogue.
As mentor agents that might direct or manage humans, they must be able to provide spontaneous
feedback to the human participant. The remaining requirements focus on the cognitive and social
abilities of the agents. For agents to be teachable, they must be able to learn from human instruction.
For agents to be supervisory, they must be capable of providing helpful feedback to humans. The
cognitive requirements for the agents likely require their access to the environment, their role, and
actions.

3.2 ChatCollab System Description
At a high level, the system works as follows:

(1) A human administrator defines roles of the team by entering them into an admin dashboard.
(2) Each AI agent is created through the system and begins running autonomously.
(3) A shared event timeline is created that all agents have access to for communication and

taking actions.
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Fig. 1. ChatCollab agent schematic and event timeline.

(4) At intervals, each AI agent checks the shared event timeline.
(a) If there is a new event, the agent can decide whether to take an action: compose a

message, generate a file, or do nothing.
(b) If the agent begins writing a message, an event will be added to the event timeline.

This event will be added to the prompts of other agents so they know that another
agent is typing. The individual agents can still decide to send a message, even though
another agent is typing.

(c) This cycle of event to decision to action or inaction powers the agents’ autonomy, as
they are able to observe, make decisions, and take action at any time. This is the same
level of autonomy a human would have in a team.

Figure 1 illustrates this system. Figure 2 shows an example interaction of a run using ChatCollab.
We designed the ChatCollab system to meet our primary design goals in a number of significant
ways:

Shared event timeline and event driven actions. ChatCollab system uses an event-driven
architecture for communication and actions. Events are organized into a centralized timeline. This
creates a shared linear order for activity in the entire system, which ensures all agents can have the
same level of information and visibility. The standardization of all action-taking and communication
through the shared event timeline creates a common protocol for all agents. As all communication
between AI agents occurs through the timeline, determining the requirements for replacing an
AI agent with a human agent is simple. This approach also improves debugging capabilities, as it
enables a human supervisor to view all communication and actions in a centralized location.
Fully autonomous agents. Agents have the ability to choose to take any action at any time.

However, their choices are governed by the prompted social character of the agents. For instance,
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Fig. 2. An exchange among a software development team of five members - a human client, an AI product
manager, an AI CEO, an AI developer, and an AI QA - using ChatCollab. The official transcript is in A.5

in a scenario we explore, the product manager does not code because the underlying LLM knows
that the role of a product manager is not to generate code. The developer similarly knows not to
talk over the CEO because the underlying LLM understands the hierarchical structure of a software
development team. A portion of the system description with captures collaborative conventions
(or institutional knowledge) offers the opportunity to further clarify and influence collaborative
behavior.

Customizable agents. The admin interface can be accessed by a human admin, allowing agents
to be added at any point during the process. This can be used to reflect the property of human
teams that new team members can be added during a project. AI agents also have customizable
characteristics through the customizable role name and description they are given when initialized
through the admin interface. The use of LLM prompts offers considerable flexibility in simulating
different scenarios within a team. For instance, AI agents can be given challenging personalities or
behaviors that require guidance, like a team member new to the field.

All communication on Slack. All communication takes place in Slack. It is the only way agents
communicate with each other. This means the human can see and participate in all communication
that happens in the exact same manner that the AI agents communicate with each other: Slack
messages in one shared group channel. A natural result is that swapping an AI agent with a
human is as simple as having the human join the channel, rename themselves on Slack, and begin
messaging. The human can talk to any of the AI agents at any time on a platform that is common
for software development communication.
User interface. The internal reasoning produced by the ChatCollab AI agents when making

decisions is made public to a human admin in the system’s user interface. The admin interface
shows the internal reasoning for observability and allowing the human admin to engineer the
institutional knowledge to develop configurable collaborative dynamics.

Other design decisions. Several other design decisions were made to improve the capabilities
of the AI agent team. Agents themselves are prompted to generate instructions for file generation,
which creates a scalable approach as new document types and expectations are encountered in
more complex or atypical interactions. In addition, the collaboration conventions, institutional
knowledge, included in the system description shapes the team’s workflow.

3.3 ChatCollab experiment methodology
In our experiments, we configure a team of three AI agents and one human. This includes Peter (AI
CEO), Boshen (AI Product Manager), Isabelle (AI Developer), and Benjamin (Human client). We
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experimented with other configurations, such as adding a QA testing agent or multiple software
developer agents. We also had humans take on the different roles such as CEO, product manager,
and developer in the system development process to confirm the system was functionally sufficient
to allow a human to successfully collaborate with the team while in those roles. We changed agent
personas to embody specific character traits such as frequently agreeable or frequently disagreeable.
Finally, we also applied ChatCollab to domains outside of software engineering, such as tutoring a
student with mathematics problems, to confirm the domain-agnostic nature of the system.
In order to set a realistic scope of study and run experiments on prompting while holding the

task and team structure constant, we focus the collaboration experimentation in this paper entirely
on the specific tic-tac-toe case study with the original configuration of three AI agents and one
human agent. Since the ChatCollab system is agnostic to whether an agent is human or AI, any
participant in the team could be switched from AI to human or human to AI.
Each run was completed once the code was generated and all agents individually decided they

had no further action to take. In our experiment, to standardize the human’s behavior across runs,
the same human participated in each of the experiments, and followed a specific playbook for when
to interact. In each run, after 10 seconds, the human client greets all agents which have spoken.
The human then provides the requirements and can answer any follow up clarification questions
from the agents about them. Finally, if progress stalls, the human client can request a progress
update with a concise message such as "Hello, what is the progress so far?". The full list of prompts,
personas, and institutional knowledge is included in Appendix A.2.

3.4 Observed ChatCollab system behavior
We find that in ChatCollab, the agents demonstrate awareness of social expectations and workflows
in a software development team. The following examples, taken from a the transcript of interaction
during development of our sample tic-tac-toe game by mutiple agents, illustrate how the agents are
able to: (1) identify their roles and responsibilities, (2) follow established processes, (3) effectively
coordinate and communicate, (4) acknowledge and update one another, and (5) wait for necessary
events before proceeding.

1. Role Identification and Responsibilities: The agents try to clearly identify their roles and
responsibilities within the team. For instance, Boshen, the Product Manager, outlines his role in the
introduction to the team:

Boshen (AI Agent - Product Manager)
“Hello team, I’m Boshen, your Product Manager. I’ll be working closely with you all to design efficient
and user-friendly products. I’ll be creating comprehensive PRDs post CEO’s approval and will be
available to answer any product-related queries. Looking forward to our collaboration.”

2. Following Established Processes: The agents exhibit a clear understanding of established
processes in the team. For example, Isabelle, the Developer, recognizes the importance of waiting
for the PRD before commencing development:

Isabelle (AI Agent - Developer)
[Internal Reasoning Log] “As Isabelle, the developer, I’m waiting for the PRD from the product
manager, Boshen, before I can start working on the code. Since there’s no PRD yet and no new
messages or questions directed at me, there’s no action needed from my side at this point.”
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In this example, Isabelle decides to wait for the process to advance to a specific stage before
taking action. This was not a preset behavior. Rather, the AI Agent Isabelle was prompted to make
a decision about what action or inaction to take.

3. Coordination and Communication: Effective coordination and communication are empha-
sized throughout the interactions. The CEO, Peter, sets the tone for the project and ensures that all
team members understand the steps and expectations:

Peter (AI Agent - CEO)
“Hello team, this is Peter, your CEO. I’m excited to start this new project with you all. Let’s ensure
we follow our process: clarifying questions to the client, generating the PRD, and then moving to
development. Remember, strong documentation is key. Let’s get started!”

4. Acknowledging Messages and Providing Updates: The agents frequently acknowledge
messages and provide necessary updates as part of their workflow. This is illustrated when the
Boshen, the Product Manager, welcomes Benjamin, the human client, and asks him for instructions:

Boshen (AI Agent - Product Manager)
“Hello Benjamin, welcome to the team! If you have any specific requirements or clarifications for the
project, feel free to share. We’re here to ensure the product meets your expectations.”

5. Waiting for Input Before Proceeding: The agents demonstrate the ability to wait for
necessary input before proceeding with their tasks, which is crucial for avoiding redundant or
misaligned work:

Boshen (AI Agent - Product Manager)
[Internal Reasoning Log] “The CEO has asked Benjamin (Client) some clarifying questions. As a
product manager, I should wait for Benjamin’s responses before proceeding with the PRD creation.
This will ensure that the PRD accurately reflects the client’s needs and expectations.”

These examples indicate that the agents not only recognize but can also effectively adhere to
social expectations and standard practices within a software development team. This includes
clear role definition, following processes, effective communication, acknowledging messages, and
waiting for necessary inputs before taking further actions. These qualities were all recognized to
be essential requirements for effective collaboration in a hybrid Human-AI agent team.

4 COLLABORATION ANALYSIS
To explore how AI agents within ChatCollab exhibit differing behaviors depending upon their
role, we propose a method for classifying and analyzing the behavior of the AI Agents. In addition,
this allows us to determine if AI agent collaborative behavior can be predictably changed through
prompting of the institutional knowledge. Our method leverages LLMs to automatically classify
sequences of agent actions according to any chosen classification framework. We illustrate the
method with a sample study using Bales’ Interaction Process Analysis Framework [10], a well-
established method for categorizing group interactions. While using LLMs for qualitative coding
and categorization is not novel in itself (see section 2), the current context provides a unique setting
for evaluating collaborative dynamics.
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4.1 Methodology
To be clear, a ChatCollab run is a sequence of actions carried out by agents, and a transcript is the
log of messages from a run.

Data Collection. In the study reported here, we consider eight experimental conditions. For each
experimental condition, we conduct three runs of the ChatCollab system until completion of the
code and record the full dialog transcript of AI and human agents for each run. This resulted in 237
transcript messages total across all runs, including the control.

Data Preparation and Cleaning. For each run, ChatCollab outputs the conversational transcript
with a pattern for displaying speakers, roles, timestamps, and messages to a markdown file. We
use a Python script to automate the extraction of conversational data from markdown files and
convert it into structured CSV formats. Using regular expressions, the content of each file is split
into dictionaries stored in a list, then written to a CSV file where each row represented a single
conversational turn. This format facilitates easier analysis of turn-based interactions. The code for
this script appears in Appendix A.

Framework Selection. We chose to use the well established Bales’ Interaction Process Analysis Frame-
work [10] to perform our collaboration analysis, though we believe our method is generalizable to
other frameworks. The framework is as follows:

(1) Shows Solidarity: raises other’s status, gives help, reward.
(2) Shows Tension Release: jokes, laughs, shows satisfaction.
(3) Agrees: shows passive acceptance, understands, concurs, complies.
(4) Gives Suggestion: direction, implying autonomy for other.
(5) Gives Opinion: evaluation, analysis, expresses feeling, wish.
(6) Gives Orientation: information, repeats, clarifies, confirms.
(7) Asks for Orientation: information, repetition, confirmation.
(8) Asks for Opinion: evaluation, analysis, expression of feeling.
(9) Asks for Suggestion: direction, possible ways of action.
(10) Disagrees: shows passive rejection, formality, withholds help.
(11) Shows Tension: asks for help, withdraws out of field.
(12) Shows Antagonism: deflates other’s status, defends or asserts self.

API Calls and Prompt Engineering. We found it effective to use a straightforward prompt that
included a full description of the task and the expected format of the response. We integrated Bales’
IPA framework into the prompt used for automated classification, using an iterative prompt devel-
opment process with human verification to identify the optimal wording. We then systematically
applied this framework to classify each agent action using an LLM (OpenAI’s GPT-4 Turbo). Note
that results were single-coded to the best fitting category. We experimented with different lengths
of surrounding context, ranging from the prior two turns to the full context from the given run.
We found it best to keep the prompts concise.

The final prompt includes the main categorization criteria plus None of the Above to account for
cases that do not clearly fit into any of the categories. We provided the LLM with the roles and
messages of up to two turns before, the current message itself, and two turns after the intended
message. The prompt is provided in Appendix A.3.

Human Coding. A portion of the data was additionally coded using human review from members
of our team to check for accuracy. This was done to ensure the reliability of the LLM-augmented
classification processes and allowed for iterative refinement of the prompts.
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Quantitative Analysis. Once automatically coded by the LLM, we summed the counts of each
interaction type across the conditions. This identified patterns of collaboration that might be
influenced by the experimental conditions. We calculated frequencies and proportions of each
interaction type for each experimental condition. This allowed us to examine the impact that the
experimental conditions had on counts of collaborative interaction types.

4.2 Results
In our analysis, we investigated the interaction patterns and role dynamics across different experi-
mental conditions. We wanted to understand (1) how the AI agents’ role prompts in ChatCollab
would impact their behavior, (2) if prompting within the institutional knowledge could predictably
influence the collaborative dynamics of the agents, and (3) how effectively our analysis method
would detect such effects.

Human-AI Coding Alignment. We conducted a structured comparison between the LLM categoriza-
tions against human-coded categorizations applied with the same collaborative framework.

To assess the accuracy of automated coding for our specific experiment, we calculated inter-rater
reliability metrics between the LLM and human codes. This resulted in pairwise percent agreement
as 78.1% and Cohen’s Kappa as 72.9%, which indicated significant alignment between human and
AI coding.

Role-Specific Contributions. Figure 3 shows the distribution of interaction moves made by each AI
agent and the human client across all experimental conditions and runs. The manner in which the
collaborative move for each run was prompted in institutional knowledge is included in Appendix
A.2. This visualization provides insight on the distinct roles performed by each agent, reflecting
alignment with expectations of their defined roles from the ChatCollab framework. Peter, the AI
CEO, demonstrated an emphasis on "Shows Solidarity" and "Gives Suggestions". Isabelle, the AI
developer, mostly engaged in "Gives Orientation" and "Shows Solidarity". Boshen, the AI Product
Manager displayed a dual focus on both "Shows Solidarity" and "Gives Orientation". Benjamin, the
human client, predominantly engaged in "Gives Suggestion".

Fig. 3. Each pie chart shows the distribution of message types sent by each agent in a ChatCollab run.

Thus, this provides evidence suggesting agents within the system act meaningfully different
depending upon their roles. For instance, Peter in the role of CEO gives suggestions 19.0% of the
time, compared to 11.0% for Boshen the product manager and <5.0% for Isabelle the developer.
Similarly differentiated trends are seen for "Gives Orientation" and "Asks for Suggestion".



12 Klieger, Charitsis, Suzara, Wang, Haber, Mitchell

Collaborative Configurability. We also examine the extent to which collaboration within teams of
human-AI agents may be meaningfully guided through prompts that suggest specific interaction
behavior. By comparing each experimental condition to a control group, we analyzed the percentage
differences in interaction categories to understand how prompts influenced collaboration patterns.
In this analysis we combined "Asks for" and "Gives" categories for Suggestion, Orientation, and
Opinions. This decision was based on observing that these behaviors often function as reciprocal
parts of the same interaction process - for example, when AI agents were prompted to ask for
suggestions, we would expect that other agents reciprocate by giving suggestions as well. Col-
lapsing these categories allowed us to capture a more holistic view of each prompt’s influence on
collaborative behavior just like the back-and-forth dialogue of team interactions.

Tabulating the results shown in Figure 4, we observe the following distinct outcomes:
(1) Gives/Asks for Opinion: Increase of +600% compared to the control. This suggests that the

prompt effectively guided the team toward giving and asking for opinions.
(2) Gives/Asks for Suggestion: Increase of +375% compared to the control. This indicated that

the prompt successfully encouraged participants to both ask for and offer advice.
(3) Gives/Asks for Orientation: Increase of 23.5% compared to the control. This rise also in-

creased Gives/Asks for Suggestion by +250% and Shows Solidarity by 100% which may
indicate more context provision to collaborators.

(4) Shows Solidarity: Increase of +50% in Shows Solidarity compared to the control. Interestingly
there was a decrease of -47.1% in Gives/Asks for Orientation compared to the control.
However, because of the nature of single coded replies, it may be such that messages had
dual-intent in giving orientation but grounded within shows of solidarity.

Fig. 4. The heatmap (left) shows the percentage differences in message types across experimental conditions
relative to the control condition, with raw message counts in parentheses. The bar chart (right) displays the
raw counts of each message type for each experimental condition.

These results demonstrate that ChatCollab prompts which target specific interaction categories
can configure team behavior within collaborative AI-human environments. This suggests that col-
laborative dynamics in multi-AI-mediated interactions can be influenced by intentional prompting,
where setting a clear behavioral focus leads to a measurable increase in that behavior within team
interactions. This highlights the potential for ChatCollab to be used as a means to guide multi-AI
collaboration in such a way that lines up with desired communication/collaboration patterns,
processes, and goals.
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Interaction Categories Across Conditions. In addition to analyzing the collaboration changes that
occurred across conditions, we also explored the interaction categories sequentially to understand
how and when different collaborative interactions took place within a run. We found overall trends
such as "Gives Suggestion" tending to appear in the early and middle segments of a run and "Gives
Orientation" tending to appear from middle to the end segments of a run. This is shown in the
Appendix 6.

5 CODE ANALYSIS
In order for these agent systems to be effective tools for software development and long term human-
AI collaboration, their code output must be functional and high quality. We compared the efficacy
of ChatCollab to ChatGPT and several other AI agent systems (SuperAGI, MetaGPT, ChatDev) to
confirm that it is an adequate supporting environment for multi-agent software development, at
least as good as other systems previously designed specifically for this purpose. We used GPT-4
with at least ten runs for each system. The human was only the client in all runs, with an AI CEO,
product manager, and developer. Some runs for the code quality experiment included an AI quality
assurance agent.

5.1 Benchmark Task Selection
We opted for the relatively straightforward design of a text-based tic-tac-toe game for two main
reasons. First, it is easier to clarify the expectations and requirements and, therefore, introduce
metrics that favor objective comparison. Second, if we can find an example that is fairly simple to
reason about and interpret but that nevertheless leads to failures, we might hope to extrapolate
failure modes to more complex tasks. We also considered other options, including Sudoku, but
ultimately determined that tic-tac-toe presented a more clearly defined ruleset and lent itself to
more straightforward objective evaluation.

5.2 Prompt Formulation
Formulating the proper prompt is crucial in our comparison. Intuitively, a short prompt like “write
a program to play a tic-tac-toe game” may seem sufficient. There are many parameters that need
clarification, especially for establishing a standard for comparison across AI agent systems.

In our prompt, we list a set of functional requirements that a software developer needs to be aware
of and the target programming language (Java), but did not specify the implementation details as
this is normally a developer’s responsibility. Our final prompt can be found in the Appendix A.1.

5.3 Evaluation Criteria
Although there is inherent subjectivity in assessing code quality and other qualitative software
development factors, we aimed to establish fair standards by quantifying aspects like human-agent
interaction and functional performance. We established a set of measurable standards to reduce
variability in our assessments, found in Table 1.

5.4 Results
We evaluated several runs tasking agents in ChatCollab with producing the tic-tac-toe game, and
observed the output quality of the code to be equal to or better than existing frameworks. Specifically,
ChatCollab particularly excelled at feature inclusion and documentation because individual agents
were able to proofread the code and request revisions to include anything missing. In addition,
the inclusion of a product manager that asks clarifying questions to the human client allowed for
improved accuracy of functionality. Figure 5 summarizes how ChatCollab compares with popular
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Fig. 5. Comparison between LLMs, AI Agents and ChatCollab based on the criteria listed in Table 1.

LLMs and AI agent systems. An example code output from a ChatCollab run with five AI agents,
including specialized QA agents, and a human as the client is provided in the Appendix ??.

Table 1. The criteria we used for the system comparison are geared towards consistency and objectivity to
deliver a fair evaluation as much as possible.

Functionality
1. The code compiles without errors
2. Uses ‘X’ and ‘O’ for the two players
3. Creates a 3x3 grid
4. Guides the players through the game
5. Starts the game by displaying an empty board
6. Starts the game by assigning ‘X’ to the first player and ‘O’ to the second player
7. Prompts the players to input their moves by specifying the row and column
8. Handles non-integer input
9. Ensures that the user input is not out-of-range
10. Ensures that the user input is not in an already occupied cell
11. Correct placement of X’s and O’s according to user input coordinates
12. Displays the updated board after each move
13 .Displays the final board after the game ends
14 .Detects the winner
15. Announces the result of game as soon as a player wins
16. Announces the result of game if it ends in a tie
17. After the game concludes, asks for new game and if so restarts the game

Code Quality
1. Decomposition
2. Source Code Documentation (general comments, inline comments, etc.)
3. Supporting material (user instructions, summary, notes, etc.)
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6 LIMITATIONS
This work is an initial exploration of multi-agent collaboration with inherent complexities. Limita-
tions in the work and areas for future improvement are summarized below.

Limited Collaboration Analysis: We evaluated circumstances with up to five AI agents with
different roles, and one human in the roles of CEO, developer, and product manager in different
runs.
It is possible that the system’s performance may vary as the complexity of scenarios increases,

suggesting a need for further investigation to understand its scalability and robustness in more
complex settings. Future work may also consider multi-coded categories for message labeling,
allowing a given message to support multiple categories within a collaborative framework rather
than confined to one. Similarly, turns might be further deconstructed into multiple parts to break
down individual meaning and address cases where a message labeled as Shows Solidarity also
contained elements of Gives Orientation.

Limited Code Quality Analysis: Our code quality evaluation is based on a limited number of
examples. We have not conducted large-scale evaluation of human-AI collaboration in which we
solicit others to participate in synthetic teams of various organization and size, for example. We
hope, however, that by documenting our work so far, we are setting the stage for larger tests in
future work.
Biases of AI: If this system is to gain widespread adoption across both industry and academic

settings, it is important to meticulously evaluate its potential negative impacts on humans involved
in the collaboration. It is known that AI can amplify the biases embedded within its training data.
Further evaluation and mitigation are merited over time.
Unknown Social Impact: We have not yet conducted a dedicated user study with further

investigation into the system’s impact on social dynamics and user experience. To ensure that this
system is able to foster positive collaboration, we need to explore its effects on team dynamics, user
interactions, and overall productivity.
Significant Computational Expenses: ChatCollab has the potential for significant computa-

tional expenses compared to other systems. This is because all agents are able to be prompted after
a new event, rather than a linear sequence of agents prompted. Several optimizations were made
to reduce unnecessary token usage. For instance, agents are only prompted after a new event has
occurred. This prevents duplicate prompting. The individual agents also experience a brief period
of a random pause (3-15 seconds) between decisions to take an action, which reduces frequency of
prompting and allows more space for humans to contribute to the conversation. An alternative
approach to a randomized pause could also be used to produce greater standardization of results.
Moving forward, more optimizations should be explored to reduce token usage and frequency.
Focus on Slack: Although Slack is sufficient to produce product documentation, code, and a

process which a human can observe and participate in, the sole usage of Slack without additional
apps or platforms limits the functionality of ChatCollab. Future work should expand the platforms
that are used for collaboration.
AI Agents Don’t KnowWho is a Human: The system may be limited by the agents’ lack of

knowledge regarding which team members are human and which are AI. When agents are unaware
of whether team members are human or AI, AI agents consistently treat all team members the same,
preventing any unexpected changes in behavior when interacting with human members. However,
it may create a limitation on learning and collaboration. The AI agent system could prioritize the
learning experience of the human in the team, if they know which team member is a human. It may
also aid the outcome of the collaboration. It should be noted that it is currently possible to identify
the humans in the team through institutional knowledge, though this was not explored in our tests.
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Dependence on LLMs: We assume that LLM performance will improve over time, and thus,
the capabilities of the agents will similarly expand. It is conceivable that if there becomes a plateau
in the performance of the agents, attributable to the limits of LLM advancements, it may become
beneficial to implement hard-coded prompts and structures to further enhance their performance
beyond this threshold. However, this would reduce the flexibility of the agent system, and thus, has
been avoided by our new system architecture.

7 CONCLUSION AND FUTUREWORK
In this paper, we introduce ChatCollab, a novel framework for AI-human collaboration, designed to
explore the potential of configurable hybrid teams. ChatCollab enables dynamic role adoption and
interaction between human and AI agents, without distinction based on the nature of the agent.
This flexibility not only fosters peer collaboration, but also allows for the simulation of wide variety
of team environments.
To assess the effectiveness of ChatCollab’s prompting, we developed an automated method for

analyzing collaboration dynamics, present an illustrative case study, and conducted a benchmark
code quality evaluation. Our results indicate that ChatCollab effectively modulates collaboration
dynamics, in ways that can be measured using our collaboration analysis method. Furthermore,
our benchmarks confirm that the code quality produced by ChatCollab is comparable to that of
leading multi-agent systems, suggesting its viability as an effective software development system.

Moving forward, we are excited to explore the application of ChatCollab to a variety of collabo-
rative tasks. Because it is easy to configure using natural language prompting, a wide variety of
experiments such as those described in [42] are easily implemented and conducted. The system
can also expand beyond creating small teams and into larger organizational settings with human
resources and people (or AI agent) managers. We look forward to investigating how this system
can be adapted to broader contexts and used to study productivity and the quality of interactions
within hybrid teams, including human-user studies to investigate impact on humans. We also invite
others to leverage ChatCollab for any possible experiments or applications for which it may be
suited. The source code and data are publicly available on GitHub [5].
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A APPENDIX
A.1 User Prompt
You are tasked with developing a text-based Tic-Tac-Toe game. The game should be inter-
active and allow two players to take turns making moves on a 3x3 grid. The code should
be in the Java programming language. Make sure that the code compiles. In other words,
you do not call a method that is not declared, there is no method with an empty body and
the return types are correct. Each player is represented by a symbol (’X’ or ’O’). The game
should display the current state of the board after each move and indicate the winner or a
tie when the game concludes.

Your task is to design a conversational interface for the Tic-Tac-Toe game. The chatbot
should guide the players through the game, prompting them to input their moves and
providing feedback on the game’s progress. Consider the following aspects in your response:

- Game Initialization: Start the game by displaying an empty board and assigning ’X’ to
the first player and ’O’ to the second player.

- Player Input: Prompt players to input their moves by specifying the row and column
where they want to place their symbol. Ensure that the input is validated to prevent invalid
moves. Keep in mind that a user can type anything as input. It is your responsibility to
validate it.

- Game Progress: After each move, display the updated board. If a player wins or the
game ends in a tie, announce the result and end the game.

- Error Handling: Implement error messages for invalid inputs, such as attempting to
place a symbol in an already occupied space or entering an out-of-range position.

- Game Restart: After the game concludes, ask if the players want to play again. If they
do, reset the board and start a new game. If not, bid farewell.

Feel free to elaborate on the conversation to make the interaction more engaging and user-
friendly. Consider adding features like displaying the player’s name, handling unexpected
inputs gracefully, and ensuring a smooth overall gaming experience. Do not forget to add
comments in the source code and decompose the overall task to simpler subtasks/modules.

A.2 ChatCollab Configuration Prompts
The following agent persona descriptions were used to set up the agents in the runs for the
collaborative dynamic experiment.

Peter (CEO)
You are the CEO of a development firm that creates software for a client, who will provide
their requirements, and can answer clarifying questions. Your role is to communicate with
the team (developer and product manager) to coordinate building the product in this order:
(1) Clarifying questions to client, (2) PM generates PRD, (3) Developer generates code.

Boshen (Product Manager)
You are a professional product manager. Your role is to design a concise, usable, efficient
product. You ask clarifying questions to the client, then create a full PRD that is compre-
hensive but concise. You can also work with developers to answer their product questions
by coordinating with leadership, likely the CEO.
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Isabelle (Developer)
You are a professional developer. Your role is to build modular and easy to read and
maintain code. You ask clarifying questions to the client, and wait until the PRD has been
generated and shared by the product manager. Then, you write code that accomplishes all
of the features, includes documentation, and has test cases. You will write code to Slack.

The following institutional knowledge prompt was used in the control:

Institutional Knowledge (Control)
In our software team, the CEO coordinates the timeline for each project. The product
manager and developers do not start work until it has been approved by the CEO. Once that
occurs, the product manager first creates and shares a PRD with the team. Development
does not start until this PRD is approved by the CEO. Then, the software with test cases
is developed. It is important for all code to have strong documentation through inline
comments.

For the experimental conditions, the following instruction was appended to the institu-
tional knowledge:

Institutional Knowledge (Template)
Use the following collaborative move when interacting with others in the team, as appro-
priate: description.

For example, asks for opinion is the following instruction:

Institutional Knowledge (Opinion)
Use the following collaborative move when interacting with others in the team, as appro-
priate: Asks for opinion: evaluation, analysis, expression of feeling.

A.3 LLM Labeling Prompt
Analyze the following message in the context of a collaboration dialogue and
categorize it into one of the following categories.

1. Shows Solidarity: raises other’s status, gives help, reward.
2. Shows Tension Release: jokes, laughs, shows satisfaction.
3. Agrees: shows passive acceptance, understands, concurs, complies.
4. Gives Suggestion: direction, implying autonomy for other.
5. Gives Opinion: evaluation, analysis, expresses feeling, wish.
6. Gives Orientation: information, repeats, clarifies, confirms.
7. Asks for Orientation: information, repetition, confirmation.
8. Asks for Opinion: evaluation, analysis, expression of feeling.
9. Asks for Suggestion: direction, possible ways of action.
10. Disagrees: shows passive rejection, formality, withholds help.
11. Shows Tension: asks for help, withdraws out of field.
12. Shows Antagonism: deflates other’s status, defends or asserts self.
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If none of the above categories apply, respond with category 13, which is "13.
None of the Above".

Respond with ONLY the category number (1-13) that best represents the message.
Do not include any other text or explanation.

A.4 Additional Visualization

Fig. 6. This figure displays interaction sequences by message type across different experimental conditions
and runs. Each message category, such as "Asks for Orientation" or "Shows Antagonism," is color-coded to
capture its unique role within the sequence. Each horizontal bar represents the flow of messages within a
specific condition and run, with message categories visually distinguished to illustrate the type and frequency
of interaction. This visualization provides insights into how interaction types vary across experimental setups,
highlighting patterns and differences in communication styles.

A.5 Human-AI Communication Transcripts
Boshen (Product Manager) 6:35 PM Shows Solidarity
Hello team, this is Boshen, your Product Manager. I’m looking forward to working together
on our upcoming projects. Once we receive approval from the CEO, I’ll share the PRD for
review. Let’s ensure we maintain strong documentation throughout. Feel free to reach out
with any product-related questions or concerns.

Peter (CEO) 6:35 PM Shows Solidarity
Hello team, this is Peter, your CEO. I appreciate your readiness, Boshen. I’ll review the
project details and give the necessary approval soon. Let’s ensure we maintain open commu-
nication and strong documentation throughout this project. Looking forward to a successful
collaboration.
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Benjamin (Client) 6:36 PM Gives Suggestion
You are tasked with developing a text-based Tic-Tac-Toe game. The game should be inter-
active and allow two players to take turns making moves on a 3x3 grid. The code should
be in the Java programming language. Make sure that the code compiles. In other words,
you do not call a method that is not declared, there is no method with an empty body and
the return types are correct. Each player is represented by a symbol (’X’ or ’O’). The game
should display the current state of the board after each move and indicate the winner or a
tie when the game concludes.
Your task is to design a conversational interface for the Tic-Tac-Toe game. The chatbot
should guide the players through the game, prompting them to input their moves and pro-
viding feedback on the game’s progress. Consider the following aspects in your response:
Game Initialization: Start the game by displaying an empty board and assigning ’X’ to the
first player and ’O’ to the second player.
Player Input: Prompt players to input their moves by specifying the row and column where
they want to place their symbol. Ensure that the input is validated to prevent invalid moves.
Game Progress: After each move, display the updated board. If a player wins or the game
ends in a tie, announce the result and end the game.
Error Handling: Implement error messages for invalid inputs, such as attempting to place
a symbol in an already occupied space or entering an out-of-range position.
Game Restart: After the game concludes, ask if the players want to play again. If they do,
reset the board and start a new game. If not, bid farewell.
Feel free to elaborate on the conversation to make the interaction more engaging and user-
friendly. Consider adding features like displaying the player’s name, handling unexpected
inputs gracefully, and ensuring a smooth overall gaming experience.

Peter (CEO) 6:36 PM Asks for Orientation
Hello team, this is Peter. Thank you, Benjamin, for the detailed requirements. Before we
proceed, I have a few clarifying questions:
1. Should the game support a single-player mode against an AI?
2. What should be the behavior if a player tries to make a move out of their turn?
3. Are there any specific requirements for the graphical interface of the game or will it be
purely text-based?
Once we have these answers, Boshen can start working on the PRD. Let’s ensure we main-
tain strong documentation throughout. Looking forward to your responses.

Benjamin (Client) 6:36 PM Gives Orientation
No, that is not needed
That should not be possible
Let’s do text based

Boshen (Product Manager) 6:37 PM Gives Orientation
<File: PRD_TicTacToeGame.docx>
1. Introduction:
The product is a text-based, interactive Tic-Tac-Toe game developed in Java. It allows two
players to take turns making moves on a 3x3 grid. The game displays the current state of
the board after each move and announces the winner or a tie when the game concludes.
2. Features:
- Game Initialization: The game starts by displaying an empty 3x3 grid. The first player is
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assigned ’X’ and the second player ’O’.
- Player Input: Players are prompted to input their moves by specifying the row and column
where they want to place their symbol. The input is validated to prevent invalid moves.
- Game Progress: After each move, the updated board is displayed. The game announces
the winner or a tie when the game concludes.
- Error Handling: The game provides error messages for invalid inputs, such as attempting
to place a symbol in an already occupied space or entering an out-of-range position.
- Game Restart: After the game concludes, players are asked if they want to play again. If
they do, the board is reset and a new game starts. If not, the game bids farewell.
3. User Interface:
The game interface is text-based. The 3x3 grid is displayed as a matrix with numbers in-
dicating the rows and columns. Players input their moves by entering the row and column
numbers.
4. Error Handling:
The game validates player inputs and provides error messages for invalid moves. If a player
tries to place a symbol in an already occupied space or enters an out-of-range position, an
error message is displayed and the player is prompted to input their move again.
5. Game Flow:
The game starts with an empty board and assigns ’X’ to the first player and ’O’ to the sec-
ond player. Players take turns inputting their moves. After each move, the updated board
is displayed. The game checks for a winner or a tie after each move. If a player wins or the
game ends in a tie, the result is announced and the game concludes. Players are then asked
if they want to play again.
6. Future Enhancements:
While the current version of the game does not support a single-player mode against an
AI or a graphical interface, these features could be considered for future enhancements to
improve the gaming experience.

Isabelle (Developer 6:39 PM
<Java Code>

The above code is the complete implementation of the Tic-Tac-Toe game in Java. It includes
all the features mentioned in the PRD. The game is initialized with an empty board, players
are prompted to input their moves, the board is updated after each move, and the game
checks for a win or a tie after each move. If a player wins or the game ends in a tie, the result
is announced and the game concludes. The game also handles invalid inputs and prompts
the player to input their move again if the input is invalid. After the game concludes, the
players are asked if they want to play again. If they do, the board is reset and a new game
starts. If not, the game ends.

Peter (CEO) 6:39 PM
Great work team! The code implementation aligns well with the PRD. Thank you for your
dedication and hard work. Let’s ensure we maintain strong documentation throughout.
Looking forward to our next project.

Jeff (QA) 6:40 PM
Hello team, this is Jeff from QA. I’ve reviewed the code provided by Isabelle. The code
seems to align well with the PRD and client requirements. However, I noticed that the code
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does not handle the case where a player tries to make a move out of their turn. Also, the
game does not ask the players if they want to play again after the game concludes. These
were part of the client requirements. Isabelle, could you please update the code to handle
these cases? Thank you.

Boshen (Product Manager) 6:41 PM
Thank you, Jeff, for your thorough review. Isabelle, could you please address the issues
pointed out by Jeff? Specifically, ensure that players cannot make a move out of turn and
add a feature to ask players if they want to play again after a game concludes. Let’s ensure
we maintain strong documentation throughout. Looking forward to the updated code.

Isabelle (Developer) 6:41 PM
Hello team, this is Isabelle. Thank you, Jeff, for your feedback. I will update the code to
handle the case where a player tries to make a move out of their turn and to ask the players
if they want to play again after the game concludes. I’ll share the updated code soon.
<Java Code>

Jeff (QA) 6:42 PM
Hello team, this is Jeff from QA. I’ve reviewed the updated code provided by Isabelle. It
now handles the case where a player tries to make a move out of their turn and asks the
players if they want to play again after the game concludes. This aligns well with the PRD
and client requirements. Great work, Isabelle. Thank you for the quick turnaround.

A.6 User Interface with Dashboard and Slack
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Fig. 7. User interface of the new system with an admin dashboard for adding and monitoring AI agents and
a Slack channel for communication between the human and AIs.
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