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About This Paper 

Artificial intelligence (AI) and the potential emergence of artificial general intelligence (AGI) have 
important national security implications for the United States, particularly with regard to its 
competition with China. Existing AI technology—in the form of large language models (LLMs)—has 
shown great promise, and many in the AI technology and policy worlds think that LLMs may scale up 
to AGI in the near future. This paper is intended to complicate that position, explaining why there are 
barriers to LLMs hyperscaling to AGI, and why AGI may instead emerge from a suite of 
complementary, if not alternative, algorithmic and computing technologies. Our goal is to provide 
U.S. policymakers with a clear, nontechnical introduction to the issue of LLM hyperscaling and 
alternative pathways to AGI. We argue that there may be multiple courses to AGI and thus 
recommend that policy around AI avoid over-optimizing for a given possible future (e.g., hyperscaling 
LLMs), even while that policy addresses the possible near-term emergence of AGI in the hyperscaling 
paradigm. 
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Charting Multiple Courses to Artificial 
General Intelligence 

Getting to Artificial General Intelligence from Large Language 
Models  

The large language model (LLM) is a transformative technology that has generated an enormous 
amount of attention and investment dollars as companies across the globe race to build ever-larger, 
more-performant models trained on datasets of ever-increasing size. The introduction of ChatGPT in 
2022 was an electrifying moment, and the prospect of artificial intelligence (AI) that uses natural 
language to solve problems and interact with humans—along with complementary trends in big data 
and compute—have begun a new AI summer with profound social and economic effects (Vöpel, 
2024). This rapid progress in AI has inspired historic investment in AI, with U.S. business capital 
allocations topping $1 trillion in generative AI, in anticipation of increasing performance of LLMs 
(Goldman Sachs, 2024). 
 

In this paper, we define artificial general intelligence (AGI) in the 
following three ways: 
• human or superhuman capabilities across a variety of cognitive 

and metacognitive tasks 
• deployed AI systems that perform economically valuable work by 

substituting automation for labor 
• AI systems that display emergent properties, such as learning new 

skills and conducting new tasks. 

 
The monetary stakes for scaling and improving these models is also high; existing generation 

models, such as GPT-4, cost upward of $78 million to train (Buchholz, 2024), and there is 
speculation that larger models could cost in the billions of dollars (Nesov, 2024). This massive 
investment reflects the potential economic and scientific impact of LLMs: They are likely to 
dramatically boost the productivity of workers across a variety of industries (Eloundou et al., 2023; 
Korinek, 2024) and may also revolutionize the pace of scientific discovery (Ifargan et al., 2024). 

Many in industry and AI research argue that the trend toward larger and larger LLMs with 
increasing performance on a variety of benchmark tests means that the age of AGI is coming.1 This is 
the hyperscaling paradigm: LLM systems will continue to grow in size and performance until they are 
self-improving, creating an irreversible launch to superhuman AGI (Aschenbrenner, 2024). Given the 

 
1 For more on AGI as defined by capabilities, see Morris et al., 2024. For more on AGI as defined by deployed systems that perform 
economically valuable work, see OpenAI, undated. For more on AGI as defined by emergent properties, see Chollet, 2019. 
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rapid pace of development and improvement in LLMs, if AGI is imminent (say, in the next two to 
four years, as some forecast), it will likely come from hyperscaling LLMs (Aschenbrenner, 2024). To 
some AI experts, this prospect entails manageable risks and an intelligence explosion leading to a post-
scarcity world (Drexler, 2019), while others fear that this poses a genuine existential risk to humanity 
(Kruppa and Seetharaman, 2024). 

In addition to the possibility of enormous economic gains or grave threats, the prospect of AGI 
has huge geopolitical stakes, particularly in terms of the U.S. competition with China. Because AGI 
has the potential to stimulate transformative economic growth and national power, there is a real 
concern that whoever gets to AGI first may have a permanent, decisive geopolitical advantage (Gill, 
2020). The Chinese Communist Party, the governing party in China, has made a public commitment 
to global AI leadership, launching an ambitious, whole-of-government effort to develop AI through 
public-private partnerships that bring together national government, regional governments, academic 
researchers, and industry to accelerate AI development across a variety of AI technologies (Zhang and 
Luo, 2024). Clearly, the Chinese Communist Party takes competition for AI dominance seriously, 
and there is the potential for a race to AGI. U.S. government policy could have a huge effect on 
whether the United States maintains or extends its global AI lead. 

Given these high stakes, it is important to understand the plausibility of the hyperscaling 
paradigm. If the hyperscaling paradigm is not plausible, then U.S. government policy on AI assumes 
that hyperscaling may be brittle, if not a source of strategic regret. In the rest of this paper, we lay out 
how existing AI research supports the idea that using LLMs may be an important but insufficient 
technical path to AGI. LLMs appear to have inherent limits that may require complementary 
technology to continue toward AGI, and while we cannot, at this time, make a confident claim about 
how to get to AGI, we do assert that the path to AGI is uncertain. U.S. government policymakers can 
consider the possibility that AGI emerges soon in the hyperscaling paradigm. But because of this 
uncertainty, the U.S. government may not want to put all its chips on black and bet the house, and 
instead, could prudently hedge against an uncertainty with policy that supports multiple possible 
futures. 

Large Language Models Keep Getting Better, but Is That Enough? 
Existing research suggests that hyperscaling may not be a viable or the only path to AGI. For 

example, while leading AI labs marketing their LLM products point to improving performance on 
reasoning benchmarks as LLMs scale, recent research shows that although this is true, scaling also 
leads to increasingly confident, wrong answers (Zhou et al., 2024). Whether these LLMs have any 
capacity to truly understand language—as opposed to shortcut learning of surface patterns—is broadly 
contested in the AI research world (Mitchell and Krakauer, 2023). Prominent AI researchers, such as 
François Chollet (2024) and Melanie Mitchell (2024), argue that LLMs are not meaningfully 
intelligent and fail when presented with data outside what they have memorized: They cannot do the 
general part of AGI. So, while there has been continuing improvement in LLM technology, the 
technology’s development remains a complicated story, as we detail in the following paragraphs.  

At the heart of the hyperscaling paradigm is the idea of emergent abilities. Early research on LLMs 
found unexpected and profound jumps in performance: Somehow, as models scaled, new abilities 
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emerged without specific training for those abilities (Woodside, 2024). Subsequent research has 
shown, however, that emergence may be a mirage caused by faulty metrics. Benchmarks showing 
emergence were all-or-nothing measures and so steady, partial improvement toward problem-solving 
hid smooth improvement. When metrics are adjusted to measure progress and partial solving, 
improvements smooth out, and new abilities vanish (Schaeffer, Miranda, and Koyejo, 2024). Still 
others argue there may be true emergence with scaling but that LLMs may plateau in capabilities 
(Nayak and Varshney, 2024). 

Furthermore, for usage of LLMs to be a viable path to AGI, LLMs likely need to go beyond 
statistical modeling of language to having the ability to reason in logic and math. Although LLMs have 
improved on problem-solving reasoning benchmarks as they scale, this may be the result of pattern 
memorization. One example of this is the reversal curse, in which models can memorize a relationship 
unidirectionally but not bidirectionally (Berglund et al., 2023; Golovneva et al., 2024). That is, LLMs 
can memorize that “A has feature B,” but not that “B is a feature of A,” unless the model is double-
trained to separately memorize this relationship. Recent research on mathematical reasoning also 
highlights the issue of LLM performance as memorization (Mirzadeh et al., 2024). If benchmarks are 
abstracted to symbols (e.g., instead of “if Tony has four apples and Janet has six,” the question has “if 
{name} has {x} apples and {name} has {y}”) not only does accuracy drop dramatically (up to 65 
percent), but this fragility also increases with the length of the benchmark question. Furthermore, if 
linguistically similar but irrelevant information emerges (“five of the kiwis are smaller than average”), 
LLMs tend to naively incorporate this irrelevant information—for example, by subtracting the smaller 
kiwis. 

In addition to performance limits, there are potential economic limits to scaling, in particular data 
and energy constraints. At existing model scaling rates, the entire stock of human-generated training 
data may be exhausted within the decade, and ever-increasing quantities of AI-generated content may 
contaminate future training to the point that models collapse into lower and lower quality and 
diversity of output. This data wall may present serious challenges to scaling LLMs (Aschenbrenner, 
2024; Villalobos et al., 2024). Beyond data constraints, the ever-growing power demands for training 
models and running those models (inferencing) may mean that researchers hit an energy wall that limits 
LLM scaling (Kurshan, 2024; Stojkovic et al., 2024). It is possible that data and energy walls could be 
surmounted through technical means,2 but there are still credible reasons that hyperscaling may not 
work. 

In summary, while LLM performance on benchmarks increases as LLMs scale, recent research 
raises the possibility this may be a function of higher-power memorization of patterns. Scaling and 
training result in increasingly confident—yet incorrect—answers to hard questions for multiple 
families of LLMs. Emergent abilities in LLMs may be artifacts of flawed measurement. Additionally, 
LLMs struggle with formal reasoning and math, apparently relying on rote memorization when faced 
with abstract or linguistically complex problems. Finally, from a practical standpoint, data and energy 
walls may economically constrain LLM scaling. Of course, none of this is definitive: It is still possible 
that hyperscaling will lead to AGI, and if AGI emerges in the near future, it is likely to come from 

 
2 The recent attention to DeepSeek’s low-cost models is a good example of how algorithmic innovation can reduce energy 
demands. DeepSeek engineers were able to dramatically improve training efficiency and thus reduce compute (and, thus, energy) 
requirements for training their DeepSeek-V3 model (Liu et al., 2024). 
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scaling up LLMs. However, existing research raises important questions about the limitations of 
hyperscaling as a path to AGI. AGI might depend on additional, alternative technology. 

What Else Might We Need for Artificial General Intelligence? 
If hyperscaling LLMs is not a viable path to AGI, what might be? In this section, we survey a 

variety of complementary alternative technologies that may fill in the gaps that LLMs leave. Table 1 
lists and describes a sample of some of the more promising complementary AI technologies that might 
fill in the gaps from LLMs. This list is not exhaustive but rather illustrative of how different AI 
technologies might contribute to AGI. This list is derived from a workshop that RAND researchers 
conducted with leading AI experts across U.S. federally funded research and development centers, 
university-affiliated research centers, and academia. 

Table 1. Potentially Instrumental Artificial General Intelligence Technologies  

Approach Description 

Physics or causal 
hybrids 

• Integrates physical laws and causal reasoning into AI models to improve the 
models’ utility in the real world. 

Cognitive AI • Mimics the human brain’s architecture to improve efficiency and processing 
speed. 

Information lattice 
learning  

• Creates interpretable representations of patterns. 
• Facilitates robust learning from small datasets for novel, unseen problems. 

Reinforcement 
learning 

• Trains models through trial and error to learn optimal behaviors (e.g., in robotics, 
gaming, and autonomous systems) to train agents. 

Neurosymbolic 
architectures 

• Combines neural networks with symbolic reasoning to enhance interpretability 
and logic and mathematical problem-solving. 

Embodiment • Learns spatial relationships, object dynamics, and physical relationships through 
interaction (e.g., learning robots with sensors).  

Neuromorphic 
computing 

• Uses spiking neural networks for energy-efficient computation. 

Potentially Instrumental Algorithmic and Computing 
Technologies 

In the following sections, we unpack algorithmic and computing technologies, explaining them at 
the conceptual level and explaining how they might address fundamental limitations in existing AI 
systems and how they might contribute to achieving AGI. 
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Physics-Informed Neural Networks and Causal Models 
Picture a child running through a home clutching barber’s shears in their hand. This is likely a 

very uncomfortable image because adult humans have developed robust models for real-world physics 
and causality. That is, we have a good understanding of what happens when sharp steel hits soft flesh 
with force. We also have a good understanding of the disastrous consequences of such an event. Part 
of what allows people to be generally intelligent is their understanding of how the physical world works. 

Physics-informed neural networks (PINNs) model the fundamental laws of physics, such as 
Newton’s laws of motion. PINNs can solve problems, such as dynamics (e.g., simulating turbulence or 
predicting structural stress) and are highly valuable when data are sparse by leveraging prior 
knowledge of physics principles (Cuomo et al., 2022; Raissi, Perdikaris, and Karniadakis, 2019). 
Causal models, on the other hand, are for understanding cause-and-effect relationships. Causal models 
can distinguish between correlation and causation, and they allow AI systems to simulate 
counterfactual scenarios—for example, “What would happen if the car brakes were applied more 
forcefully?” Causal models are critical for safety because autonomous systems (e.g., robots, cars) 
navigate dynamic, real-world environments (Kacianka et al., 2019) and for the safety of potential AGI 
systems (Everitt et al., 2019; Holtman, 2021). 

Although LLMs capture patterns in textual or visual data, there is no explicit representation of 
real-world physics or causality. Existing LLMs model “sharp objects” as a probabilistic relationship 
between words without any apparent grounding in the physical world. An LLM may model that 
“knife” lives near “cut” and “blood,” but as of this writing, no LLM appears to simulate the dynamics of 
a knife’s cutting or predict the potentially deadly consequences of a cut in physical terms. PINNs and 
causal models, however, bridge this gap in real-world understanding. While existing language models 
offer only surface-level semantic understanding (Vafa et al., 2024), PINNs can model physical 
processes, and causal models can reason about the outcomes of those processes. Together, PINNs and 
causal models could enable more-robust decisionmaking: an AI system that, for example, understands 
the danger of moving massively heavy pallets around frail human bodies in a warehouse. 

Cognitive Artificial Intelligence 
Cognitive AI takes human cognition as the starting point for AGI. In contrast with statistical and 

generative approaches, cognitive AI is designed to artificially reproduce the hallmark features of 
human intelligence. The goal of cognitive AI research is to engineer systems that are similar to human 
intelligence; specifically, systems that can learn concepts by interacting with the environment and 
other actors, have short- and long-term memory, can adaptatively learn how to act in different 
contexts, and can learn continuously and iteratively (Voss and Jovanovic, 2023). 

While different research threads use terms of art, such as cognitive computing, cognitive AI, and 
artificial cognition, they all have in common a focus on human-like cognition. On the one hand, AI 
does not necessarily require cognition; for example, reinforcement learning is, in one sense, a kind of 
brute-force path to learning optimization, and LLMs are statistical models of patterns in data, such as 
language or proteins. On the other hand, cognitive AI requires a human-like capacity for thinking as a 
process to solve real-world problems by making sense of data in context (Sandini, Sciutti, and 
Morasso, 2024). This approach is designed to achieve a more-holistic form of AI in which machines 
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can engage in reasoning, problem-solving, and decisionmaking in a way that mirrors human cognitive 
abilities (Sreedevi et al., 2022). 

This AI technology could address the fundamental challenge of replicating the broad and 
adaptable intelligence that humans possess. One definition of the G in AGI includes the assumption 
that such intelligence has the ability to understand and learn from diverse experiences, make context-
aware decisions, and apply knowledge flexibly across different domains—capabilities that are inherent 
to human cognition. By focusing on replicating these cognitive processes, cognitive AI provides a 
pathway to developing systems that can not only perform specific tasks but also generalize such 
learning to new, unforeseen challenges. This adaptability and contextual understanding may be 
essential for AGI to operate effectively in the complex, dynamic environments that characterize the 
real world. 

Information Lattice Learning 
If we threw a set of irregularly sized, differently colored, square- and star-shaped blocks on the 

ground, even a very young child could immediately detect the pattern that distinguishes the two 
classes. Furthermore, a child of a certain age could articulate a rule for classifying the blocks: Squares 
have four corners and equal sides; stars have more than four corners and can have different-length 
sides. LLMs lack this human-like ability to recognize patterns from a single or very few examples and 
then explain the rules of the pattern in human-understandable ways. However, a novel kind of AI, 
information lattice learning, does exactly this without using neural networks. This form of AI can 
discover known laws of music theory, chemistry, genetics, and quantum physics from very small 
amounts of data in the same human-interpretable form as textbooks, and it can also make new 
discoveries beyond what scientists have previously considered without human engineering to explicitly 
input any domain knowledge in advance (Yu, Evans, and Varshney, 2023).  

Such general knowledge discovery could be used downstream for diverse applications: state-of-
the-art classification of visual targets, semantic compression for 6G wireless, or helping people create 
ideas and artifacts that have never been imagined before. Because essentially no domain knowledge is 
needed in advance and few data are needed for training, information lattice learning captures a key 
aspect of general intelligence (Chollet, 2019). In fast-changing or idiosyncratic settings that arise in 
intelligence, defense, biosecurity, and other domains of national competitiveness, including research 
and development, the data efficiency and human controllability of information lattice learning have 
capabilities that are powerfully complementary to LLMs. 

Reinforcement Learning 
Reinforcement learning (RL) trains AI through trial and error rather than by learning rules or 

theory. So, for example, existing AI chess systems that beat any human player do not learn chess in a 
human way through a set of principles and strategies but rather by trying potentially millions of 
combinations to find optimal solutions. When an RL model makes progress, its policy is reinforced 
through a reward while suboptimal moves are penalized until a system, such as a chess AI expert, 
might see dozens of moves ahead down obscure paths that result in a small win, such as a single pawn 
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taken. While this is a very nonhuman approach, it can be a powerful and useful one for specific tasks 
and within certain domains. 

A paradigm example of this is an autonomous vehicle, such as a drone. With sufficient RL, drones 
(and other agents) can learn how to navigate complex terrain and dynamic situations without any 
human supervision; for example, aerial delivery drones can safely avoid power lines, and 
reconnaissance drones can hug terrain to avoid detection (AlMahamid and Grolinger, 2022). Because 
RL involves so many trial-and-error attempts, much RL training is done virtually (for example, by 
crashing a drone virtually over and over again but in a time-accelerated way to get enough experience 
to learn optimal policies). Beyond autonomous movement, RL has value in diverse areas, such as 
medical diagnosis and education (Radmehr, Singla, and Käser, 2024; Yu et al., 2023). 

RL may be critical for developing AGI because it gives machines the ability to learn and adapt 
through experience, much like humans do. RL systems can tackle a wide variety of tasks and 
environments by continuously refining their actions based on feedback. Furthermore, RL could be 
combined with LLMs to create hybrid systems that reflect deep learning on a task (RL) with the 
ability to problem-solve (LLMs) (Pternea et al., 2024; Radmehr, Singla, and Käser, 2024), and, in 
fact, the most-recent tranche of reasoning LLMs from such companies as OpenAI and DeepSeek 
incorporate RL for such tasks as math, coding, and science question-answering (Mercer, Spillard, and 
Martin, 2025). RL’s adaptability and continuous learning are key components in creating machines 
that could learn to act across diverse situations and tasks, moving humanity closer to achieving AGI.  

Neurosymbolic Architectures 
Neurosymbolic architecture refers to an emerging field that integrates the strengths of neural 

networks with symbolic reasoning, aiming to overcome the limitations of purely data-driven models, 
such as LLMs. An LLM is an example of a traditional neural network, which excels in pattern 
recognition and data-driven tasks but struggles with tasks that require abstract reasoning, logical 
inference, and generalization beyond training data, especially in advanced mathematics. Symbolic AI, 
on the other hand, uses formal logic and explicit knowledge representations (e.g., rules, ontologies) to 
reason about the world. By combining these two approaches, developers can design a hybrid 
neurosymbolic AI system that leverages the flexibility of neural networks in processing raw data with 
the interpretability and structured reasoning of symbolic systems (Garcez, Lamb, and Gabbay, 2019). 
This integration allows more-robust problem-solving across a wider variety of domains, including 
those that require common-sense knowledge and complex reasoning. 

In contrast with LLMs, which rely purely on statistical learning from vast corpora of text data, 
neurosymbolic AI combines data-driven learning with explicit representations of knowledge. While 
LLMs have demonstrated impressive language capabilities, they remain limited by their reliance on 
pattern-matching rather than logical reasoning or understanding of the world (Bender et al., 2021). 
Neurosymbolic AI, by incorporating symbolic components, such as logical reasoning and structured 
knowledge, enables models to better handle such tasks as deductive reasoning, problem 
decomposition, and explanation generation (Zhang and Sheng, 2024). These models bridge the gap 
between the data-driven strength of neural networks and the structured intelligence of symbolic 
reasoning, allowing more-generalizable and explainable AI systems. 



 8 

Neurosymbolic AI may be a critical step toward achieving AGI because of its ability to combine 
flexible learning with structured reasoning. AGI requires not just vast data processing capabilities but 
also the ability to reason, learn from fewer examples, and generalize knowledge across different 
domains—qualities that are difficult to achieve with purely neural-based models, such as LLMs 
(Schmidhuber, 2022). The ability to integrate symbolic reasoning into neural networks equips the 
system with higher-order cognitive capabilities, such as understanding context, forming causal 
relationships, and applying learned knowledge to new situations. This hybrid approach allows more 
human-like flexibility in thinking, such as dealing with incomplete information, explaining decisions, 
and reasoning about novel situations. 

Embodiment 
What if an AI system could learn about the world through interaction, similar to how a baby 

learns? Imagine a robot with a variety of sensors: cameras, microphones, hands with tactile sensors, 
maybe even chemical sensors for taste and smell. The robot roams around, learning about dogs by 
hearing them bark, feeling their fur, seeing them move, and smelling wet dog. The robot interacts with 
people (and maybe other AI agents) to learn through embodied interactions.  

Embodied AI systems are grounded in reality, developing a nuanced understanding of spatial 
relationships, object dynamics, and physical interactions (Duan et al., 2022). This allows these 
systems to learn through interactions, much as humans do, and like humans, gain context-aware 
knowledge, which is something that LLMs lack. This high-context awareness is critical for AI systems 
to be able to make real-time decisions and adapt dynamically. And by bridging the gap between 
sensing and moving or manipulating (Hughes et al., 2022), embodied AI systems could have the 
physics, causal, and interactional knowledge to make sense of the consequences of their actions in the 
physical world and thus make more-informed and safe decisions. 

Embodiment brings AI systems closer to human-like intelligence by enabling them to experience 
the world in a way that is similar to how humans do. This experiential aspect is valuable for developing 
empathy, intuition, and other cognitive abilities that are difficult to achieve through data processing 
alone. 

Neuromorphic Computing 
LLMs use incredible amounts of energy, not just for training large models but also when deployed 

and generating responses (inferencing), especially with new chain-of-thought techniques for reasoning 
using RL: test-time scaling rather than train-time scaling (Mercer, Spillard, and Martin, 2025). Because 
LLMs are a kind of artificial neural network, they require high-performance computer chips, 
specifically graphics processing units (GPUs). These GPUs can efficiently handle the complex matrix 
math of LLMs, but they have high energy demands to train and run. These power demands are a 
particular sustainability concern as LLMs hyperscale. Additionally, there is a single dominant supplier 
(the Nvidia Corporation) for GPUs, which raises cost and supply chain risks (Tang and Zhu, 2024).  

While these traditional chips use clock-driven timing and constant power, a new class of 
neuromorphic chips has been developed that uses discrete (and thus low levels of power) electrical 
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pulses for computation. Neuromorphic chips take inspiration from the human brain and use spiking 
signals and massive parallel connectivity among computational units to be vastly more energy efficient 
than traditional computer circuits. These chips have been deployed in labs but are not in widespread 
use as of this writing (early 2025). A different, nascent approach would be to culture actual biological 
neurons into artificial computing devices, so that such devices run on small amounts of sugar rather 
than large amounts of electricity (Zhang et al., 2024). If pushed to an industrial scale, these alternate 
physical substrates may upend supply chains for AI compute and change the energy calculus for AI.  

A Robust Strategy That Covers Multiple Futures 
In the previous section, we introduced a variety of possibly fruitful alternative technical paths to 

AGI. Our point is not to make specific recommendations but to provide policymakers and other 
stakeholders with enough conceptual understanding of the variety and breadth of those alternatives to 
make visible that there is more than one possible path to AGI. These alternative pathways involve 
algorithmic and hardware technologies from diverse research areas. This suggests that policies 
supporting alternative technologies for AGI may need to be complex in ways that account for a variety 
of development entities and models.  

We hope that, in this paper, we have explained some of the uncertainty around the technical path 
to AGI and interrogated the assumption that LLMs will simply scale to AGI. We stress this 
uncertainty: It is possible that LLMs could scale up in a way that compensates for their limitations and 
gets to transformative AGI. But there are empirical and theoretical impediments to LLM 
hyperscaling. Because we cannot predict the future, we urge policymakers to likewise avoid guessing 
the future. Although it is not in the scope of this paper to make any recommendations about specific 
technology or strategy, we think that U.S. government policy can account for the possibility that AGI 
will emerge soon in the hyperscaling paradigm without making policies that are conditioned solely on 
such an assumption. The U.S. government can instead plan for uncertainty and make policy choices 
that accommodate multiple pathways to AGI. 
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