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ABSTRACT

Inferring causal relationships in the decision-making processes of machine learning algorithms is a
crucial step toward achieving explainable Artificial Intelligence (AI). In this research, we introduce a
novel causality measure and a distance metric derived from Lempel-Ziv (LZ) complexity. We explore
how the proposed causality measure can be used in decision trees by enabling splits based on features
that most strongly cause the outcome. We further evaluate the effectiveness of the causality-based
decision tree and the distance-based decision tree in comparison to a traditional decision tree using
Gini impurity. While the proposed methods demonstrate comparable classification performance
overall, the causality-based decision tree significantly outperforms both the distance-based decision
tree and the Gini-based decision tree on datasets generated from causal models. This result indicates
that the proposed approach can capture insights beyond those of classical decision trees, especially in
causally structured data. Based on the features used in the LZ causal measure based decision tree,
we introduce a causal strength for each features in the dataset so as to infer the predominant causal
variables for the occurrence of the outcome.

Keywords Lempel-Ziv Complexity · Decision Tree · Causal Discovery ·Machine Learning

Incorporating causal based explanation to Machine Learning (ML) decision making process is an integral part of
trustworthiness and model explanbaility [1]. In many scenario’s a dataset dealt by an ML scientist would be observational
data. Observational data are historical records of a phenomenon observed passively. An example of observational
data would be studying the link between smoking and lung cancer. Such a study includes the documentation of the
historical recording of the smoking/non-smoking habits and health condition over time. It is essential to note that such
studies do not ask people to start and quit smoking. On the other hand, interventional data includes design experiments
to study the effect of a specific variable through randomized control trials (RCT’s) [2]. For eg., in the COVID -19
vaccine trials, researchers do interventional study to establish the causal influence of a proposed treatment for a desired
outcome through RCT’s. In several cases, conducting RCT’s is not feasible due to ethical reasons. So, it is essential
to have robust methods that can give causal explanation from observational data. There are several methods used to
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Causal Discovery and Classification Using Lempel-Ziv Complexity

detect causal directions from observational data. The methods like Granger Causality, [3] (GC), Transfer Entropy [4]
(TE) make use of Norbert Wiener’s notion of causality [5]. Wiener’s definition of Causality states – if a time series
X causes a time series Y, then past values of X should contain information that help predict Y above and beyond the
information contained in past values of Y alone [6]. The above definition of predictability as an indicative measure for
causality is expanded to incorporate compressibility as they are related. The following methods uses compressibility as
an causality indicative measure: Compression Complexity Causality [7], ORIGO [8], ERGO [9]. ORIGO is a causal
discovery method based on minimum description length principle (MDL). ORIGO infers that X is likely a cause of Y
if compressing X first, followed by compressing Y given X , results in better compression than doing it in the reverse
order [8]. ERGO relies on complexity estimates as proxies for Kolmogrov complexity instead lossless compression [9].
In [10], the authors introduced a penalty and efficacy formulation utilizing Lempel-Ziv (LZ) complexity and Effort to
Compress (ETC) to develop a new causality measure. This method was evaluated on various datasets, including an
autoregressive (AR) process, the Tuebingen datasets [11], and SARS-CoV-2 viral genome datasets. The performance of
their approach was compared with that of state-of-the-art methods, specifically ORIGO and ERGO. The results from
all experiments conducted in [10] demonstrated that the proposed LZ and ETC-based causality measures perform
competitively against these established techniques on synthetic benchmarks.

The aim of this research is to develop novel causal direction identifying measure from univariate datasets, and incorporate
in decision tree algorithm for developing a causally informed model. The steps undertaken to achieve the goals are as
follows:

1. Novel causal measure based on Lempel-Ziv (LZ) Complexity - Inspired by the efficacy of the compression
complexity based causality measures, we propose a novel causality testing measure based on Lempel-Ziv
complexity to check the direction of causation from univariate temporal/non-temporal data. The proposed
method differs significantly from the Lempel-Ziv and ETC-based causality measures introduced in [10]. We
demonstrate a use case where our approach outperforms the causality measure suggested in the above paper.

2. Testing of the causality measure - Test the efficacy of the causality measure in real world and synthetic datasets.
3. Integration of the proposed causal measure in ML decision tree model - we integrate the proposed measure

into a decision tree as a splitting criterion, creating a tree whose decisions at each node are guided by our
proposed causality measure.

4. Novel distance metric derived from Lempel-Ziv complexity - introduced a novel distance metric derived from
the Lempel-Ziv complexity measure, which is incorporated into the decision tree.

5. Performance comparison - compare the two proposed methods with a decision tree that uses the classical
Gini impurity on several datasets, including AR dataset, Iris, Breast Cancer, Voting, Car Evaluation, KRKPA7,
Mushroom, Thyroid, Heart Disease.

6. Interpretabilty of our proposed model: We propose a feature importance score based on LZ causal measure
based decision tree. This score will rank the features based on its causal influence on the outcome variable.

The sections in the paper are arranged as follows: Section 1 describes the proposed method, the experiments on
validating the LZ based causal measure using synthetic dataset and incorporating LZ based causal and distance
measure with decision trees is highlighted in Section 2. In Section 3, we provide the Conclusion. The appendix material
can be accessed in Section 4.

1 Proposed Method

In this section, we describe the proposed causality and distance based measure derived from Lempel-Ziv complexity.
The proposed causality measure has the following assumptions:

1. Assumption 1: Cause happens either before the effect or they occur together. We don’t consider retrocausal
scenarios in this study.

2. Assumption 2: There is no confounding variable that causes X and Y , where X and Y are temporal/
non-temporal data.

Consider two univariate dataset X = [a, b, c, a, c, b, a, a . . .] and Y = [b, a, a, a, b, c, . . .] which may or may not have
temporal structure. We want to develop a measure using which we want to comment the direction causality. i.e.,
X → Y or Y → X . We want the measure to have the following properties:

• If X → Y , then the grammar of X constructed over real time has patterns that better explain Y . The extra
penalty incurrred by explaining Y using the generated grammar of X denoted as LZ−PX→Y is less compared
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to the penalty incurred by explaining X using the generated grammar of Y denoted as LZ − PY→X . For this
case, LZ − PX→Y < LZ − PY→X . The inequality will be reversed if Y → X .

• Explaining X using the real time generated grammar of X denoted as LZ − PX→X should give zero penalty.
This follows from the assumption 1.

We now describe the construction of the real time grammar of a temporal/ non-temporal data for the proposed causality
measure.

1.1 Causality Measure based on Lempel-Ziv Complexity

1.1.1 Definition

Given two symbolic sequences, x = x0x1x2....xm and y = y0y1y2....yn, such that 0 ≤ xk ≤ m−1 and 0 ≤ yk ≤ n−1,
we define LZ − Px→y as the penalty incurred by explaining y using the real time grammar of x. The algorithm
for calculating the penalty is described in Algorithm 1. For example, consider the two strings x = “101110" and y
=“110111". Then LZ − Px→y is calculated according to the following steps:

• Step 0: We consider the two strings x and y, and construct their respective grammar sets Gx and Gy

respectively using the Lempel-Ziv algorithm. We monitor the overlap at each stage, which can be thought to
represent the extent to which the current and previous values of x influence y.

x = 101110, y = 110111, overlap = 0, Gx = ϕ, Gy = ϕ.

• Step 1: Since we are inferring the strength of causation from string x to string y, we start with the selection of
the smallest substring of x, starting from the first index, that is not already present in its grammar set. Since
the grammar set is empty, ‘1’ is selected and added to Gx.

x = 101110, overlap = 0, Gx = {‘1’}, Gy = ϕ.

• Step 2: Similarly, for string y, the substring ‘1’ is selected. Since this substring is already present in Gx,
overlap is incremented. We can interpret this as the ‘1’ present in x inducing its occurrence in y.

y = 110111, overlap = 1, Gx = {‘1’}, Gy = {‘1’}.

• Step 3: The process is now repeated. The starting index of the subsequent substring must immediately follow
the terminal index of the preceding substring, so that no information is lost. Hence ‘0’ is selected and added to
the set Gx.

x = 101110, overlap = 1, Gx = {‘1’, ‘0’}, Gy = {‘1’}.

• Step 4: As in Step 3, we consider the smallest subsequently occuring substring, ‘1’. Since it is already present
in Gy , we consider the substring ‘10’ instead. ‘10’ is not present in Gy and is hence added to it, and since it is
not present in Gx, overlap is not incremented.

y = 110111, overlap = 1, Gx = {‘1’, ‘0’}, Gy = {‘1’, ‘10’}.

• Step 5:The substring ‘1’ is already present in Gx. The substring ‘11’ is selected and added to Gx, as in Step 3.

x = 101110, overlap = 1, Gx = {‘1’, ‘0’, ‘11’}, Gy = {‘1’, ‘10’}.

• Step 6: The substring ‘1’ is already present in Gy . The substring ‘11’ is selected and added to Gy . Since it is
already present in Gx, overlap is incremented.

y = 110111, overlap = 2, Gx = {‘1’, ‘0’, ‘11’}, Gy = {‘1’, ‘10’, ‘11’}.

Since there are no more substrings left in either string that can be added to the respective grammar sets, the
process stops here, and LZ − Px→y is found to be (|Gy| - overlap), which is 1.

In the upcoming section 2, we test the correctness of the proposed causality measure for determining the direction of
causation from univariate datasets.
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Algorithm 1 Calculation of Penalty of a string y of length n given another string x of length m

1: Input: String y of length n, String x of length m.
2: Output: Penalty of using x to compress y
3: Initialize set Gx ← ∅ {Empty grammar set}
4: Initialize set Gy ← ∅ {Empty grammar set}
5: Initialize ix ← 1
6: Initialize iy ← 1
7: Initialize overlap← 0
8: while iy ≤ n do
9: if ix ≤ m then

10: Set jx ← ix
11: while x[ix : jx] ∈ Gx and jx < m do
12: Increase jx by 1
13: end while
14: Add substring x[i : j] to Gx

15: end if
16: Set jy ← iy
17: while y[iy : jy] ∈ Gy and j < n do
18: Increase jy by 1
19: end while
20: if y[iy : jy] ∈ Gx then
21: Increase overlap by 1
22: end if
23: Add y[iy : jy] to Gy

24: Set ix ← jx + 1
25: Set iy ← jy + 1
26: end while
27: return |Gy| − overlap

1.2 A Distance metric based on Lempel-Ziv Complexity

In this section, we define the a distance metric derived from the grammar of two symbolic sequences. The grammar
construction is based on Lempel-Ziv algorithm [12]. Given two symbolic sequences, x = x0x1x2....xm and y =
y0y1y2....yn, such that 0 ≤ xk ≤ m− 1 and 0 ≤ yk ≤ n− 1, their grammars Gx and Gy respectively can be encoded
using the Lempel-Ziv Algorithm, as shown in Algorithm 2. The Lempel-Ziv distance between two sets Gx and Gy is

dLZ(Gx, Gy) = |Gx/Gy|+ |Gy/Gx|, (1)

where |G| represents the cardinality of a set G. The proof of the given measure being a distance metric on the metric
space of the power set of set of all symbolic sequences of all finite lengths is given in Appendix 4.1. Decision trees
utilizing this metric select thresholds depending on the symbolic sequence structure, and are thus sensitive to the
permutation of training data.

Algorithm 2 Calculation of Grammar of a String Using Lempel-Ziv Complexity

1: Input: String x of length n
2: Output: Grammar of the string, Gx

3: Initialize set Gx ← ∅ {Empty grammar set}
4: Initialize i← 1
5: while i ≤ n do
6: Set j ← i
7: while x[i : j] ∈ Gx and j < n do
8: Increase j by 1
9: end while

10: Add substring x[i : j] to Gx

11: Set i← j + 1
12: end while
13: return Gx
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1.3 Applicability in Decision Trees

In this section, we highlight on the utilization of the proposed causality and distance measure as a splitting criteria in
decision tree thereby yielding (a) Lempel-Ziv Causal Measure based decision tree, (b) Lempel-Ziv distance metric
based decision tree.

1.3.1 Utilization as a splitting criteria

To split a binary tree at a given node, a feature and threshold are selected based on minimizing LZ-based causality
measure between a feature string (for a particular chosen threshold) and target string. Each feature and target value is
transformed into symbolic sequences: elements in the feature column are represented as 0 if below the threshold, and
1 if above. In the target symbolic sequence y, a given label l is represented as 1 and all others as 0. The feature and
threshold selection is done as per the following equation:

(best feature, best threshold) = arg min
feature,target,label

(LZ − Pfeature→target). (2)

A similar approach is utilized to implement a LZ-distance based decision tree, now replacing the LZ-P causality meaure
with the LZ-based distance measure as defined in Section 1.2. Once the symbolic sequences are found, algorithm 2 is
utilized to find the grammar of the symbolic sequences, represented by Gfeature and Gtarget respectively. The feature,
threshold pair with minimum distance with respect to the target label is selected, based on the following equation.

(best feature, best threshold) = arg min
feature,target,label

(dLZ(Gfeature, Gtarget)). (3)

1.3.2 Causal Strength of a feature on a target

We propose a method of ranking of the strength of causation of different attributes on a particular label based on the
causal decision tree. Consider a decision tree with m nodes, and di denotes the depth of the ith node. The causal
strength sj for a feature j to the target is given by the following formulation:

sj =

m∑
i=0

aij · 2−di , where aij =

{
1 if j is the splitting feature at the ith node,
0 otherwise

(4)

These scores can then be normalized. This provides a relative ranking of causal influence of the features on the target
attribute.

2 Experiments

In this section, we first demonstrate the efficacy of the proposed causal measure in successfully determining the
direction of causation for coupled Auto Regressive (AR) processes, coupled logistic map as described in section 2.1 and
section 2.2 respectively. We also compare the performance of proposed method with penalty measure defined in [10] for
real world dataset obtained from Tuebingen cause-effect pairs repository1 as mentioned in Section 2.3. The integration
of the proposed casual measure and distance based measure with decision trees and its performance comparison with
decision tree based on gini impurity for the following datasets AR dataset, Iris, Breast Cancer, Voting, Car Evaluation,
KRKPA7, Mushroom, Thyroid, Heart Disease.

2.1 Simple causation in AR processes of various orders

Data was generated from a coupled auto regressive process of order p = 1, 5, 20, 100. The governing equation for X(t)
and Y (t), where both are timeseries data are as follows:

X(t) = aX(t− 1) + ηY (t− p) + ϵX,t, (5)
Y (t) = bY (t− 1) + ϵY,t. (6)

The parameters were set to be a = 0.9, b = 0.9 and coupling coefficient (η) was varied from η = 0 to η = 1 with step
size = 0.1. Noise terms ϵX,t = ν e1 and ϵY,t = ν e2 where e1 and e2 are sampled from the standard normal distribution
and noise intensity ν = 0.03. The process was simulated for t = 1000 time steps, with the first 500 transients discarded,
resulting in a time series of length 2000 for both X(t) and Y (t). This procedure was repeated for n = 1000 trials

1https://webdav.tuebingen.mpg.de/cause-effect/
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for each value of the coupling coefficient. Figure 1 a, b, c and d represents the average (across 1000 trials for each
coupling coefficient) LZ penalty from X(t) to Y (t) and Y (t) to X(t) averaged across 1000 independent random trials
for each coupling coefficient corresponding to AR-1, AR-5, AR-20 and AR-100 respectively. The error bars in the plot
represents the standard deviation. The proposed measure captures the correction direction of causality from Y (t) to
X(t).

(a) (b)

(c) (d)

Figure 1: (a) Average LZ Penalty vs Coupling coefficients for AR-1 process. (b) Average LZ Penalty vs Coupling
coefficients for AR-5 process. (c) Average LZ Penalty vs Coupling coefficients for AR-20 process. (d) Average LZ
Penalty vs Coupling coefficients for AR-100 process. The coupling coefficients are varied from 0 to 1 with a step size
of 0.1. For each coupling coefficient, LZ penalty was averaged across 1000 independent random trials.

2.2 Coupled Logistic Map

The 1D Logistic map is a chaotic map commonly used in population dynamics [13] study. The equations governing the
dynamics of master-slave system of 1D Logistic map is as follows:

Y (t) = L1(Y (t− 1)), (7)
X(t) = (1− η)L2(X(t− 1)) + ηY (t− 1). (8)
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The coupling coefficient η is varied from 0 to 0.9 with a step size of 0.1. L1(t) = A1 · L1(t− 1)(1− L1(t− 1)), and
L2(t) = A2 · L2(t− 1)(1− L2(t− 1)), where A1 = 4 and A2 = 3.82.

For both systems, 1000 data instances (Y (t) cause , X(t) (effect)) are generated. Each of the data instances are of
length 2000, after removing the initial 500 samples (transients) from the time series. Figure 2 represents the LZ penalty
from X(t) to Y (t) and Y (t) to X(t) averaged across 1000 independent random trials for each coupling coefficient. We
observe that the proposed measure correctly identifies the causal direction upto η = 0.4 as depicted in Figure 2 (a).
From η = 0.4 onwards the timeseries X(t) and Y (t) are synchronized yielding to similar LZ penalty.

(a) (b)

Figure 2: (a) LZ Penalty vs Coupling coefficients for coupled chaotic logistic map averaged across 1000 independent
trials for each coupling coefficient. The coupling coefficients are varied from 0 to 0.9 with a step size of 0.1. (b) An
instance of the timeseries X(t) and Y(t) for coupling coefficient η = 0.4 for first 50 iterations, indicating synchronization
between X(t) and Y(t).

2.3 Tuebingen Cause Effect Pairs

Tuebingen data [11], [14] consists of 108 cause effect pairs. Out of which, we conducted our experiments on 104
cause-effect pairs. For each cause effect pairs, the ground truth is provided. There are only two variables indicated as
X and Y . We use this data to determine whether X → Y or Y → X using the proposed LZ penalty measure. We
evaluate the efficacy of the problem in determining the causal direction by comparing with the given ground truth. We
use macro F1-score and accuracy to evaluate the proposed measure’s performance. In our experiments, we obtain a
macro F1-score = 0.44, accuracy = 50.8%. The top k% of pairs based on strength of causation is taken for k = 1 to
k = 100, with a step size of 1. Figure 3 provides the accuracy vs decison rate (k%) of the proposed LZ Penalty measure
in comparison with LZ − P measure defined in [10] (Note: the proposed formulation in this research is completely
different from the LZ −P formulation defined in [10]). The research in [8] have reported an accuracy of approximately
58% for a selected 95 datasets from Tuebingen Cause-Effect data pairs.
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Figure 3: Accuracy vs. Decision rates for Tuebingen dataset using proposed LZ Penalty measure and LZ-P measure
defined in [10].

2.4 Incorporation of the proposed causal and distance based measure in decision tree

In this section, we compare the performance evaluation of the proposed decision tree using LZ based causality measure,
LZ based distance metric with Decision tree using gini impurity. The dataset used and their train-test distribution are
provided in Table 1.

Table 1: Train-test split information for each dataset. 80%-20% train-test ratio was utilized. Imbalance Ratio is defined
as the ratio of number of training samples in the most commonly occurring class to the number of training samples in
the least commonly occurring class. It is calculated for the training data.

Dataset Classes Features
Training
samples
/class

Testing
samples
/class

Imbalance
Ratio of
train data

Iris [15];
[16] 3 4 (39,37,44) (11,13,6) 1.189

Breast Cancer Wisconsin
[14] ;
[17]

2 30 (286,169) (71,43) 1.692

Congressional
Voting Records
[14, 18]

2 16 (101, 84) (23,14) 1.202

Car Evaluation
[14];
[19]

4 6 (307, 55, 968, 52) (77, 14, 242, 13) 18.615

KRKPA7 [14];
[20] 2 35 (1227, 1329) (300, 340) 1.083

Mushroom [14];
[21] 2 22 (2783, 1732) (705, 424) 1.607

Heart Disease
[14];
[22]

5 13 (124, 45, 30, 28, 10) (36, 9, 5, 7, 3) 12.4

Thyroid [14];
[23] 3 21 (93, 191, 3488) (73, 177, 3178) 37.505

AR Dataset 2 1 (113, 127) (25, 35) 1.123
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2.4.1 Results and Discussion

This section describes the experimental results carried out to test the efficacy of LZ distance metric based decision
tree and LZ causal metric based decision tree. We test the model’s performance on the datasets described in Appendix
section 4.2, along with a synthetic autoregressive causal dataset that we generate, termed as the AR dataset, This dataset
has been synthetically generated to provide data where there is an underlying causal structure between the various
training examples. 450 training samples of an AR(1) process were generated according to the following equations:

X(t) = aX(t− 1) + ηY (t− 1) + ϵX,t (9)
Y (t) = bY (t− 1) + ϵY,t (10)

Coupling coefficient (η) was set to be 0.7, and parameters were fixed as a = 0.8, b = 0.8. Initial values of X and Y
were set to 0 and the noise terms ϵX,t and ϵY,t were modeled as ν e1 and ν e2 where e1 and e2 were sampled from the
standard normal distribution and the noise intensity ν=0.03. The timeseries Y was taken to be the feature data. The
timeseries X was taken as the target to be classified after equi-width binning. The first 150 transients were removed,
and the remaining samples were used for classification.
The train-test split for the datasets is done as described in Table 1. The hyperparameter tuning for LZ distance metric
based decision tree and LZ causal metric based decision tree of the aforementioned datasets are mentioned in Appendix
section 4.3. The summary of the results of the two proposed models are highlighted in Table 4 in Appendix section 4.4,
along with the performance of a decision tree that uses Gini impurity as the splitting criteria. The comparison between
the three models is illustrated in Figure 4.

Figure 4: Bar Graph of macro F1 scores of predictions made by LZ distance metric based decision trees, LZ causal
metric based decision trees and Gini impurity based decision trees, for various datasets. The datasets marked with a ‘*’
are highly imbalanced.

The macro F1 scores obtained by the three models are comparable across most balanced datasets. The macro F1 score
of the LZ-causal metric based decision tree on the AR dataset is 60.5% higher than both the macro F1 scores obtained
by the other two algorithms on the same dataset. This result suggests that the causal decision tree effectively captures
the intrinsic causal and temporal structures within the data, outperforming other models in discerning these underlying
relationships. The Gini-entropy based decision tree significantly outperforms the Lempel Ziv complexity based models
when the data is imbalanced, as seen in the Thyroid and Car evaluation datasets.

Table 2 and Table 5 (Appendix Section 4.6) illustrate the ranking for features on the Heart Disease and Mushroom
datasets respectively.

The limitations of this research are highlighted in Appendix Section 4.7. We consider this as an opportunity to further
develop the proposed method.
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Abbreviations used: chol-Serum Cholesterol in mg/dl, oldpeak-ST depression induced by exercise relative to rest, thalach-Maximum
heart rate achieved,ca-Number of major vessels (0-3) colored by fluoroscopy, trestbps-Resting blood pressure.

Figure 5: Causal Decision Tree for Heart Disease dataset.

Table 2: Ranking of Features of the Heart Disease dataset based on Causal Strength to the presence of heart disease.
Feature Causal Strength
Serum Cholesterol in mg/dl 0.4361
Age 0.2025
Sex 0.1994
ST depression induced by exercise relative to rest 0.0997
Maximum heart rate achieved 0.0545
Number of major vessels (0-3) colored by fluoroscopy 0.0062
Resting blood pressure 0.0016

3 Conclusion

In this research, we propose a novel causality testing measure and distance metric based Lempel-Ziv complexity. Using
the causality based measure, we were able to successfully capture the direction of causation of coupled AR processes
and coupled logistic maps. We then incorporated the LZ based causality measure in decision trees to build trees that
makes use of a causally informed splitting criteria. The efficacy of LZ distance metric based decision tree was also
evaluated in the research experiments. We further provide a metric to analyze the feature importance based on causal
strength derived from the LZ based causal decision tree. In future work, we will test the efficacy of the model on
temporal causal data. We also plan to explore the applicability of the proposed distance metric based on Lempel-Ziv
complexity in the bio-informatics domain, where order of nucleotide sequence plays a role.
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4 Appendix

4.1 Appendix A: Proof of dLZ(Gx, Gy) being a distance metric

The proof of dLZ(Gx, Gy) being a distance metric is as follows.
Consider two strings x and y. Let Gx and Gy be the grammar encoded by the LZ complexity algorithm for x and y
respectively.

Definition of the Distance Function

Let Gx and Gy be two sets. Define the distance between them as:

dLZ(X,Y ) = |Gx/Gy|+ |Gy/Gx|

where |A| denotes the cardinality (size) of a set A. We will show that dLZ(Gx, Gy) satisfies the four properties of a
metric.
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1. Non-Negativity

We need to show that dLZ(Gx, Gy) ≥ 0 for all sets Gx and Gy .

By definition, Gx/Gy and Gy/Gx are both sets, and the cardinality of any set is non-negative. Hence:
|Gx/Gy| ≥ 0 and |Gy/Gx| ≥ 0

Thus,
dLZ(Gx, Gy) = |Gx/Gy|+ |Gy/Gx| ≥ 0

Non-negativity is satisfied.

2. Identity of Indiscernibles

We must show that dLZ(Gx, Gy) = 0 if and only if Gx = Gy .

If Gx = Gy: If Gx = Gy , then:
Gx −Gy = ∅ and Gy −Gx = ∅

Thus:
|Gx/Gy| = 0 and |Gy/Gx| = 0

Therefore, dLZ(Gx, Gy) = 0.

If dLZ(Gx, Gy) = 0: If dLZ(Gx, Gy) = 0, then, as both are individually greater than or equal to zero:
|Gx/Gy| = 0 and |Gy/Gx| = 0

This implies that:
Gx −Gy = ∅ and Gy −Gx = ∅

which means Gx = Gy .

Thus, identity of indiscernibles is satisfied.

3. Symmetry

We need to show that dLZ(Gx, Gy) = dLZ(Gy, Gx).

By the definition of set difference:
Gx/Gy = {x ∈ Gx | x /∈ Gy}

and
Gy/Gx = {y ∈ Gy | y /∈ Gx}

Therefore:
dLZ(Gx, Gy) = |Gx/Gy|+ |Gy/Gx|

and
dLZ(Gy, Gx) = |Gy/Gx|+ |Gx/Gy|

Since addition is commutative, we have:
dLZ(Gx, Gy) = dLZ(Gy, Gx)

Thus, symmetry is satisfied.

4. Triangle Inequality

We need to show that for any sets Gx, Gy , and Gz:
dLZ(Gx, Gz) ≤ dLZ(Gx, Gy) + dLZ(Gy, Gz)

This is equivalent to showing:
|Gx/Gz|+ |Gz/Gx| ≤ (|Gx/Gy|+ |Gy/Gx|) + (|Gy/Gz|+ |Gz/Gy|)

Consider some element in the set Gx/Gz . It either belongs to Gx/Gy , or Gy/Gz . This is true for every element in the
set. Therefore, we have:

|Gx/Gz| ≤ |Gx/Gy|+ |Gy/Gz|
and similarly, for Gz/Gx,

|Gz/Gx| ≤ |Gz/Gy|+ |Gy/Gx|
Adding these inequalities gives:

|Gx/Gz|+ |Gz/Gx| ≤ (|Gx/Gy|+ |Gy/Gx|) + (|Gy/Gz|+ |Gz/Gy|)
Thus, the triangle inequality is satisfied.
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Conclusion

Since dLZ(Gx, Gy) satisfies non-negativity, identity of indiscernibles, symmetry, and the triangle inequality, it is a
valid distance metric on the space of set of all sets.

4.2 Appendix B: Datasets

1. IRIS:
This dataset consists of 150 instances. There are three labels corresponding to three different types of irises’,
namely ’setosa’, ’versicolour’ and ’virginica’. The features describe the sepal length, sepal width, petal length
and petal width measured in centimeters.

2. Breast Cancer Wisconsin
This dataset contains features derived from cell images to classify breast cancer as either benign or malignant.
There are 569 samples with 30 numerical features describing characteristics of cell nuclei.

3. Congressional Voting Dataset
This dataset contains the information of the votes of each U.S House of Representatives Congressman on 16
key issues. Each of the 435 training samples is labeled by party affiliation, ’republican’ or ’democrat’.

4. Car Evaluation
A classification dataset with 1,728 instances that classify cars as unacceptable, acceptable, good, or very good
based on six categorical attributes: buying price, maintenance cost, number of doors, capacity, size of luggage
boot, and safety.

5. KRKPA7
This dataset, also known as “King-Rook-King-Pawn-Against-Seven", is a chess dataset with 3196 samples.
The 35 attributes describe the chess board in an endgame, and the training samples are classified based on
whether White can win.

6. Mushroom
he Mushroom dataset contains records for 8,124 mushrooms, each classified as edible or poisonous. The
dataset has 22 categorical attributes describing physical characteristics like cap shape, color, and odor, across
23 different species.

7. Heart Disease
This dataset is used for predicting heart disease presence, with 303 samples and 13 features such as age, sex,
cholesterol levels, and blood pressure. The label indicates disease presence (1,2,3,4) or absence (0).

8. Thyroid
The Thyroid dataset focuses on thyroid disease detection, with instances labeled for three classes: normal,
hyperthyroid, and hypothyroid. There are 3772 training samples and 3428 testing samples, over 21 features.

4.3 Appendix C: Hyperparameter tuning

In this section, the hyperparameter tuning for LZ distance metric based decision tree and LZ causal metric based
decision tree are elaborated. For LZ distance metric based decision tree, we used stratified five fold crossvalidation
using random split. In the case of LZ causal metric based decision tree, as well as the Gini entropy based Decsion
tree, we used five fold crossvalidation using timeseries split. Table 3 provides the best hyperparameters obtained after
crossvalidation experiments for LZ distance metric based decision tree and LZ causal metric based decision tree
corresponding to the datasets considered in this research. Hyperparameter tuning was done taking a range of 1 to 10 for
the minimum number of samples per node, with a step size of 1. Maximum depth of tree was taken from 1 to 20 with
the step size of 1.
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Table 3: Tuned Hyperparameters and Training Performance Metrics for LZ-Distance-Metric based Tree, LZ-Causal-
Metric Based Tree and Gini Impurity Based Tree across datasets

Datasets Min Samples Max Depth Average F1 score on train data Variance of F1 Score

Iris
LZ Distance Metric 2 11 0.94 0.004
LZ Causal Metric 9 6 0.89 0.016

Gini Impurity 9 4 0.953 0.002

Breast Cancer Wisconsin LZ Distance Metric 9 4 0.89 0.0006
LZ Causal Metric 2 6 0.91 0.0007

Gini Impurity 4 8 0.931 0.0008

Congressional Voting Dataset LZ Distance Metric 7 4 0.930 0.002
LZ Causal Metric 5 9 0.965 0.0001

Gini Impurity 9 9 0.979 0.0002

Car Evaluation LZ Distance Metric 2 14 0.66 0.005
LZ Causal Metric 2 9 0.514 0.0004

Gini Impurity 2 9 0.832 0.002

KRKPA7 LZ Distance Metric 2 18 0.90 0.0002
LZ Causal Metric 4 9 0.862 0.002

Gini Impurity 3 9 0.968 0.0

Mushroom LZ Distance Metric 9 9 1.0 0.0
LZ Causal Metric 9 9 0.992 0.0

Gini Impurity 9 7 1.0 0.0

Heart Disease LZ Distance Metric 6 19 0.226 0.0002
LZ Causal Metric 6 9 0.26 0.009

Gini Impurity 3 9 0.301 0.002

Thyroid LZ Distance Metric 9 20 0.664 0.002
LZ Causal Metric 5 9 0.642 0.0005

Gini Impurity 2 5 0.966 0.001

AR Dataset LZ Distance Metric 2 9 0.503 0.004
LZ Causal Metric 2 6 0.70 0.008

Gini Impurity 2 6 0.55 0.004

4.4 Appendix D: Performance Metrics

This section contains the accuracies, F1 scores, precision score and recall score for LZ-Distance-Metric based Tree,
LZ-Causal-Metric Based Tree and Gini-Entropy Based Tree acroos various datasets.
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Table 4: Performance metrics for LZ-Distance-Metric based Tree, LZ-Causal-Metric Based Tree and Gini-Entropy
Based Tree across datasets

Datasets Algorithm Accuracy F1 Score Precision Recall

Iris
LZ Distance Metric based DT 1.0 1.0 1.0 1.0
LZ Causal Metric based DT 0.933 0.943 0.956 0.939

Gini Impurity based DT 0.967 0.958 0.978 0.944

Breast Cancer Wisconsin LZ Distance Metric based DT 0.947 0.948 0.939 0.943
LZ Causal Metric based DT 0.939 0.934 0.937 0.932

Gini Impurity based DT 0.938 0.934 0.936 0.932

Congressional Voting Records LZ Distance Metric based DT 0.979 0.979 0.979 0.979
LZ Causal Metric based DT 0.957 0.957 0.96 0.958

Gini Impurity based DT 0.872 0.871 0.896 0.875

Car Evaluation LZ Distance Metric based DT 0.829 0.682 0.734 0.664
LZ Causal Metric based DT 0.76 0.510 0.570 0.496

Gini Impurity based DT 0.945 0.883 0.914 0.865

KRKPA7 (Chess) LZ Distance Metric based DT 0.895 0.895 0.895 0.896
LZ Causal Metric based DT 0.876 0.876 0.877 0.875

Gini Impurity based DT 0.961 0.961 0.960 0.962

Mushroom LZ Distance Metric based DT 0.996 0.996 0.995 0.997
LZ Causal Metric based DT 1.0 1.0 1.0 1.0

Gini Impurity based DT 1.0 1.0 1.0 1.0

Heart Disease LZ Distance Metric based DT 0.567 0.217 0.210 0.235
LZ Causal Metric based DT 0.617 0.254 0.325 0.263

Gini Impurity based DT 0.55 0.292 0.293 0.308

Thyroid LZ Distance Metric based DT 0.946 0.688 0.827 0.640
LZ Causal Metric based DT 0.940 0.607 0.818 0.556

Gini Impurity based DT 0.992 0.951 0.946 0.957

AR Dataset LZ Distance Metric based DT 0.467 0.444 0.444 0.445
LZ Causal Metric based DT 0.717 0.716 0.719 0.718

Gini Impurity based DT 0.45 0.446 0.45 0.448

4.5 Appendix E: LZ Distance Metric based decision tree and Gini entropy based decision tree

The following section contains the LZ distance metric based decision tree and the Gini entropy based decision tree for
the heart disease dataset, seen in Figure 6 and Figure 7 respectively.

15



Causal Discovery and Classification Using Lempel-Ziv Complexity

Figure 6: LZ Distance metric based decision tree generated for the heart disease dataset.

Figure 7: Gini Entropy based decision tree generated for the heart disease dataset.

4.6 Appendix F: Feature Ranking for Mushroom Dataset

This section contains the causal strength ranking for the features of the Mushroom dataset, seen in Table 5.

Table 5: Ranking of Features of the Mushroom dataset based on Causal Strength to whether the mushroom is poisonous.
Feature Causal Strength
Odor 0.3181
Cap Surface 0.3041
Spore print color 0.2444
Ring Number 0.0374
Gill color 0.0374
Habitat 0.0187
Stalk color above ring 0.0187
Stalk surface above ring 0.0094
Stalk shape 0.0094
Cap colour 0.0023
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4.7 Appendix G: Limitations

1. We consider an AR(1) process generated using the following equations:

X(t) = aX(t− 1) + ηY (t− 1) + ϵX,t (11)
Y (t) = bY (t− 1) + ϵY,t (12)

For a coupling coefficient η = 0, we found that the measure is sensitive to the parameter a (the coefficient of
X(t− 1)). We fixed the parameter b = 0.6 (the coefficient of Y (t− 1)) and varied a from 0.1 to 0.9, with a
step size of 0.1. When using 2 bins to generate the symbolic sequence, the measure showed a spurious causal
relationship. We hypothesize that this may be due to the binned sequence failing to capture the underlying
dynamics of the real-valued data, leading to arbitrary causal inferences. Figure 8 illustrates the sensitivity
observed using the proposed measure.

Figure 8: LZ Penalty vs. Coupling coefficient for the AR(1) process, averaged across 1000 independent trials with
η = 0. The coefficient a (of X(t− 1)) is varied from 0.1 to 0.9 in increments of 0.1.

2. The decision trees that utilises LZ based Causal Measure as well as the LZ-based distance metrics are unable to
capture the dynamics of imbalanced data. This may occur as both algorithms minimize either the Lempel Ziv
Penalty between the symbolic sequence representation of the feature and the symbolic sequence representation
of the target or the edit distance between the grammar sets of the same. In case of data imbalance, it may
achieve this minimization by collapsing the feature representation into a homogeneous sequence of zeros, or
otherwise fail to capture the appropriate thresholding.

3. Validity of the proposed causal decision tree model: At present the validity of the proposed causal decision
tree model relies on the interpretation of the domain expert. In the future work, we plan to investigate the
notion of causal interpretability of the proposed decision tree model from an algorithmic point of view.

4.8 Appendix H: Code Availability

The python code used in this research are available in the following GitHub repository: https://github.com/
i-to-the-power-i/causal-lz-p-decision-tree.
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