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Abstract

Comparison data elicited from people are fundamental to many machine learning tasks,
including reinforcement learning from human feedback for large language models and estimating
ranking models. They are typically subjective and not directly verifiable. How to truthfully
elicit such comparison data from rational individuals? We design peer prediction mechanisms
for eliciting comparison data using a bonus-penalty payment [11]. Our design leverages on
the strong stochastic transitivity for comparison data [60, 13] to create symmetrically strongly
truthful mechanisms such that truth-telling 1) forms a strict Bayesian Nash equilibrium, and
2) yields the highest payment among all symmetric equilibria. Each individual only needs to
evaluate one pair of items and report her comparison in our mechanism.

We further extend the bonus-penalty payment concept to eliciting networked data, designing
a symmetrically strongly truthful mechanism when agents’ private signals are sampled according
to the Ising models. We provide the necessary and sufficient conditions for our bonus-penalty
payment to have truth-telling as a strict Bayesian Nash equilibrium. Experiments on two real-
world datasets further support our theoretical discoveries.

1 Introduction

In the past two decades, researchers have been embracing the challenge of eliciting private in-
formation from individuals when there is no ground truth available to evaluate the quality of
elicited contributions, and have made amazing progress. Many mechanisms, collectively called peer
prediction [42], have been developed to incentivize individuals to strictly truthfully report their
information at a Bayesian Nash equilibrium (BNE), by artful design of payment functions that
only depend on reports from individuals. Moreover, in multi-task peer prediction mechanisms, the
truthful BNE gives each individual the highest expected payoff among all BNEs (i.e. it’s a strongly
truthful BNE). [11, 57, 30]

However, all prior multi-task peer prediction mechanisms require tasks being ex-ante identical,
and hence individuals’ private information is independently and identically distributed (iid) for
each task. Multi-task peer prediction leverages this structure of information to succeed at truthful
elicitation. But what if such structure of information doesn’t hold for an information elicitation
problem?

One notable application is to elicit pair-wise comparisons of multiple alternatives, such as pref-
erences for consumer products [53], translation [34], peer grading [55], and relevance of language
model outputs [9, 10]. Such pair-wise comparison data are crucial for estimating a ranking of the
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alternatives and for devising reward functions for reinforcement learning. Comparison tasks for dif-
ferent pairs are clearly not ex-ante identical — answers to the tasks demonstrate a certain degree
of transitivity (e.g. if a is preferred to a′ and a′ is preferred to a′′, then it’s more likely that a is
preferred to a′′), rendering existing peer prediction mechanisms not applicable.

In this paper, we design a peer prediction mechanism for eliciting comparison data. We model
individuals’ private information of pair-wise comparisons as Bayesian strongly stochastically tran-
sitive (Bayesian SST), which takes many widely used models (e.g. Thurstone [58], Bradley-Terry-
Luce [4, 38], and Mallows [39]) as special cases. Our mechanism uses a simple bonus-penalty
payment [11] (hence carrot and stick) that takes three reports as inputs and admits a strongly
truthful symmetric BNE. The key insight that we develop is a condition of information structure
that we call uniform dominance. When uniform dominance is satisfied, the bonus-penalty payment
is the only type of payment that induces a strictly truthful BNE. Information of individuals, i, j,
and k, satisfies uniform dominance if, conditioned on any realization of agent i’s information, the
probability for j’s information to agree with i’s is higher than the probability for k’s information
to agree with i’s. Bayesian SST allows us to group three pairwise comparisons, (a, a′), (a′′, a′) and
(a′′, a), together such that private information about these pairs satisfies uniform dominance. After
identifying uniform dominance as a central structure for incentivizing truthful elicitation, we further
generalize the bonus-penalty payment to truthfully elicit private information over social networks
that demonstrate homophily (i.e. friends tend to have similar opinions than non-friends) [40], and
our mechanism can be integrated with common survey techniques such as snowball sampling [24].

Our contributions. Our work is a leap forward for designing mechanisms for complex informa-
tion elicitation settings where ground truth verification is not available.

• We are the first to design mechanisms to truthfully elicit pairwise comparison data under
Bayesian SST and networked data under Ising models. In our mechanisms, truthful reporting
forms a BNE and yields a strictly higher payoff than any symmetric non-permutation equilib-
rium.

• We identify a key structure of information, uniform dominance, as a lever such that the simple
bonus-penalty payment is the unique payment inducing a strictly truthful BNE. This identifi-
cation may offer a path for developing truthful elicitation mechanisms for other settings in the
future.

• We use Griffiths’ inequality and Weitz’s self-avoiding walk [65] to prove the uniform dominance
property in the Ising model. The resulting correlation bounds may be of independent interest.

• We test our mechanisms on real-world data (sushi preference dataset [26, 27] and Last.fm
dataset [8]). Even though these datasets do not perfectly satisfy our theoretical assumptions, our
mechanisms still provide a stronger incentive for truthful reporting compared to misreporting.

Related work. Information elicitation has two settings according to whether verification is pos-
sible. Our paper focuses on elicitation without verification.

For information elicitation without verification, Miller et al. [41] introduce the first mechanism
for single task signal elicitation that has truth-telling as a strict Bayesian Nash equilibrium but
requires full knowledge of the common prior. Bayesian truth serum (BTS) [47] is the first strongly
truthful peer prediction mechanism, but requires complicated reports from agents (their private
signal and predictions on other’s reports). A series of works [48, 49, 67, 66, 68, 3, 51, 31] relax
certain assumptions of BTS but still require complicated reports from agents. Dasgupta and Ghosh
[11] introduces the multi-task setting where agents are assigned batch iid tasks and only report their
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signals. Several works extend this to multiple-choice questions [29, 33, 56, 11], predictions [37], or
even continuous value [50], and investigate the limitation and robustness [52, 6, 70, 17, 70]. Another
related line of work is co-training and federated learning, which wants to elicit models [32, 36], or
samples [64] when multiple iid data or feature of data are available. For more related works, see
Faltings [16].

One popular line of work considers information elicitation when verification is possible. Spot-
checking requires direct verification of the agent’s report [21]. Recent work on comparison data
elicitation [19] utilizes spot-checking concepts and focuses on incentivizing effort. Another form of
verification involves using additional samples to evaluate how the agent’s reports improve model
performance [1, 28]. Additionally, the verification may have a general relation to the agent’s signal,
e.g., proper scoring rules [23, 46, 35, 20].

2 Problem Formulation

We discuss our model for eliciting comparison data in this section and defer the extensions to
Section 5. Given a collection of items A and a set of strategic agents N . Agents privately observe
noisy comparisons between pairs of items. Our goal is to design mechanisms to truthfully elicit
agents’ private information. We will first introduce the information structure of agents’ private
information of pairwise comparisons in Section 2.1 and then define the information elicitation
problem in Section 2.2.

2.1 Bayesian SST Models for Comparison Data

We introduce Bayesian Strong Stochastic Transitivity (Bayesian SST) models to capture the struc-
ture of agents’ private information for comparison data.

Given the set of items A, the underlying unknown state about the items is θ ∈ Θ. θ can be
the vector of quality scores for the items (Example 2.2) or a reference ranking (Example 2.4). θ
is drawn according to a common prior PΘ: θ ∼ PΘ. Any realized θ has an associated stochastic
comparison function Tθ : A2 → {−1, 1}. For comparisons of two items a and a′, Tθ(a, a

′) and
Tθ(a

′, a) stochastically take value 1 or −1, with Pr[Tθ(a, a
′) = 1] = 1− Pr[Tθ(a

′, a) = −1]. For any
θ, Tθ is strongly stochastically transitive as defined below.

Definition 2.1 ([60, 13]). A stochastic comparison function, T : A2 → {−1, 1}, is strongly stochas-
tically transitive (SST) if for all a, a′, a′′ ∈ A with Pr[T (a, a′) = 1] > 1/2 and Pr[T (a′, a′′) = 1] >
1/2, we have

Pr[T (a, a′′) = 1] > max{Pr[T (a, a′) = 1],Pr[T (a′, a′′) = 1]}.

Intuitively, a comparison function is SST when for any three items a, a′, a′′, if a is more favorable
than a′ and a′ is more favorable than a′′, then a is even more favorable than a′′. The concept of
SST is a well-established property of comparisons in social science and psychology [18].

Each agent i ∈ N has the knowledge of (Tθ)θ∈Θ and PΘ. When asked to compare a pair
of items (a, a′), the agent observes an independent draw according to the stochastic comparison
function: Si = Tθ(a, a

′), where realization si = 1 represent item a is preferred over item a′ by
agent i. We assume items are a priori similar but ex-post distinct so that for all a, a′ ∈ A,
E[Tθ(a, a

′)] = E[E[Tθ(a, a
′) | θ]] = 0 and E[Tθ(a, a

′) | θ] ̸= 0 for all θ.

Examples of Bayesian SST models. Bayesian SST models are a general family of models that
take many classical parametric ranking models, including Bradley-Terry Luce [4, 38], Thurstone
(Case V) [58], and Mallows η-model [39], as special cases.
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Example 2.2 (Bradley-Terry-Luce, Thurstone model, and more [59]). Let θ ∈ RA = Θ where each
coordinate is independently and identically sampled from a fixed non-atomic distribution ν on R,
and each item a have a scalar quality θa ∈ R. Let F : R → [0, 1] be any strictly increasing function
such that F (t) = 1− F (−t) for all t ∈ R. Conditional on a fixed θ,

Pr[Tθ(a, a
′) = 1] = F (θa − θa′) for all a, a′ ∈ A.

This model recovers the Thurstone model [58] by setting F (t) = Φ(t) where Φ is the Gaussian CDF,
and the Bradley-Terry-Luce model [4] by setting F (t) = et

1+et , the sigmoid function. Moreover, this
model also contains any additive random utility model [2] where T (a, a′) = 1 if θa + Z > θa′ + Z ′

with iid noise Z and Z ′, because we can set F to be the CDF of the difference of two iid noise.

Proposition 2.3. For any strictly increasing F and non-atomic ν on R, the parametric model in
Example 2.2 is a Bayesian SST model.

Example 2.4 (Mallows η-model [39]). Let Θ be the set of rankings on A and η > 0 be a dispersion
parameter. Given a reference ranking θ ∈ Θ, the Mallows η-model generate a ranking ϕ ∈ Θ with
probability Pr(ϕ) ∝ exp(−ηd(θ, ϕ)) where d(θ, ϕ) =

∣∣{(a, a′) ∈ A2 : θ(a) < θ(a′) and ϕ(a) > ϕ(a′)}
∣∣

is Kendall’s tau distance, and θ(a) is the rank of item a. Therefore, to generate comparisons, we
first sample a uniform θ and

Pr[Tθ(a, a
′) = 1] =

∑
ϕ:ϕ(a)>ϕ(a′)

Pr(ϕ), for all a, a′ ∈ A.

Proposition 2.5. For any η > 0, Mallows η-model in Example 2.4 with uniform distribution on
reference ranking is an Bayesian SST model.

The proofs for Propositions 2.3 and 2.5 are closely related to strong stochastic transitivity [54, 7],
but are provided in the appendix for completeness.

2.2 Peer Prediction Mechanism Design

To truthfully elicit comparison data from agents, a peer prediction mechanism creates a game
between the agents outlined below: First, we choose an assignment E = {ei = (aui , avi) : i ∈ N}
where agent i ∈ N gets a pair of items ei = (aui , avi) ∈ A2 to compare. Then each agent i ∈ N
privately observes the realization of the comparison (signal) si ∈ {−1, 1}, which is an independent
realization of Tθ(aui , avi), and reports ŝi ∈ {−1, 1} potentially different from her signal. We use
Si = S(aui , avi) to denote the random variable of agent i’s signal, where the randomness of S(·, ·)
comes from both θ and Tθ. Let S represent the random vector of all agents’ signals, s = (si)i∈N be
all agents’ realized private signals and ŝ = (ŝi)i∈N be all agents’ reports. Finally, a peer prediction
mechanism (Mi)i∈N takes all agents’ reports ŝ and pays agent i with Mi(ŝ) ∈ R.

Each agent i’s strategy is a random function from her signal to a report σi : si 7→ ŝi, and the
randomness of their strategies is independent of each other’s and all signals. With slight abuse of
notation, we write σi(si, ŝi) = Pr[Ŝi = ŝi | Si = si] as the conditional probability of reporting ŝi
given private signal si. A strategy profile σ is a collection of all agent’s strategies. All agents are
rational and risk-neutral, so they want to maximize their expected payments. Thus, given prior
PΘ, randomness of Tθ and a strategy profile σ, agent i wants to maximize her ex-ante payment
denoted as Eσ,θ,Tθ

[Mi(Ŝ)] where Ŝ is the random vector of all agents’ report that depends on the
signals S and strategy profile σ.

We introduce three families of strategies, truth-telling, permutation, and uninformed strategy
profiles, which are central to understanding effective peer prediction mechanisms.
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• A strategy σi is truthful (or truth-telling) if it is a deterministic identity map, σi(si) = si. A
strategy profile is truthful if all agents’ strategies are truthful.

• A permutation strategy profile is where agents simultaneously relabel their signals and then
report the relabeled ones. A permutation strategy is indistinguishable from truth-telling unless
the peer prediction mechanism has additional knowledge about the prior signal distribution.[33]

• Finally, a strategy is uninformed if it has the same report distribution across all signals, and it is
informed otherwise. Common examples include consistently reporting all signals as a constant
value, such as 1 or −1, or using a random report regardless of the signal. Uninformed strategies
are undesirable as the reports bear no relationship to the private signals.

A strategy profile is symmetric if all agents use the same strategy. For example, both truth-telling
and permutation strategy profiles are symmetric.

We now introduce goals for a peer prediction mechanism that favors truth-telling more than
other strategies. First, we want the truth-telling (strategy profile) to be a strict Bayesian Nash
equilibrium (BNE) so that any agent’s payment would strictly decrease if she unilaterally changes to
any non-truthful strategy. Moreover, there may be multiple equilibria, and a desirable mechanism
should ensure that truth-telling is better than all other equilibria. In this paper, we aim for
symmetrically strongly truthful mechanisms defined below.

Definition 2.6. A peer prediction mechanism is symmetrically strongly truthful if truth-telling
is a BNE, and each agent’s expected payment in truth-telling is no less than the payment in any
other symmetric equilibrium with equality for the equilibrium with a permutation strategy profile.1

3 Bonus-penalty Payment Mechanism for Comparison Data

We now propose a bonus-penalty payment mechanism for eliciting comparison data. The
mechanism makes use of a bonus-penalty payment function, which can be seen as an agreement
payment and introduced by Dasgupta and Ghosh [11] in a different context (see discussion in
Appendix A). Formally, for any ŝi, ŝj , ŝk ∈ {−1, 1}, the bonus-penalty payment function is

UBPP (ŝi, ŝj , ŝk) = ŝiŝj − ŝiŝk = 2 (1[ŝi = ŝj ]− 1[ŝi = ŝk]) , (1)

which rewards when the first input agrees with the second but punishes when it agrees with the
third.

Mechanism 1 uses the bonus-penalty payment Equation (1) for each agent i by carefully choosing
agent j and k such that agent j’s signal is more likely to agree with agent i’s than agent k’s signal
is. The crux of finding such pair of agents is to show that if agent i prefers item a over a′, she
would expect that others will prefer any third item a′′ over a′, and prefer a over a′′. Thus, if agent
j has pair (a′′, a′) and agent k has pair (a′′, a), then agent j’s signal is more likely to take the same
value as i’s than agent k’s signal is. This is the main idea behind the proof of Theorem 1, where
we establish the symmetrically strongly truthfulness of Mechanism 1. To ensure the existence of
such pairs are assigned, we require the assignment E to be admissible where for all (a, a′) ∈ E ,
there exists a′′ ∈ A so that (a′′, a′) and (a′′, a) ∈ E .

Theorem 1. Given a collection of items A and a set of agents N with |A|, |N | ≥ 3, for any
admissible assignment matrix E and Bayesian SST model with (Tθ)θ∈Θ and PΘ, the BPP mechanism
for comparison (Mechanism 1) is symmetrically strongly truthful.

1Kong and Schoenebeck [30] shows that it is impossible to pay the truth-telling strategy profile strictly better
than other permutation strategy profiles without additional knowledge of the prior signal distribution.
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Mechanism 1: BPP mechanism for comparison data

Input: Let A be a collection of items, E be an admissible assignment, and ŝ be agents’
reports.

for agent i ∈ N with pair ei = (aui , avi) = (a, a′) do
Find a′′ ∈ A and two agents j and k so that ej = (a′′, a′) and ek = (a′′, a), and pay
agent i

Mi(ŝ) = UBPP (ŝi, ŝj , ŝk) = ŝiŝj − ŝiŝk. (2)

We defer the proof of Theorem 1 to Section 4. The admissible condition imposes little overhead
on downstream learning problems, including rank recovery [25] and identification of the top k
items [15]. Specifically, the size of assignment E is the number of comparisons and corresponds
to the sample complexity for these learning problems. If a learning algorithm requires a set of
pairs to compare EML, we can construct an admissible superset E that introduces a constant factor
overhead and can recover EML ⊆ E .2

We remark that the bonus-penalty payment function Equation (2) can be seen as a boolean
function for transitivity [45]; see Remark 3.1 for a formal statement. Hence, Theorem 1 implies
that agents’ manipulations can only decrease the probability of transitivity among their reports.

Remark 3.1. Note that a deterministic comparison function t : A × A → {−1, 1} satisfies tran-
sitivity on three items a, a′, a′′ ∈ A if and only if t(a, a′), t(a′, a′′), t(a′′, a) are not all equal, that is
NAE(t(a, a′), t(a′, a′′), t(a′′, a)) = 1 where

NAE(w1, w2, w3) =
3

4
− 1

4
w1w2 −

1

4
w1w3 −

1

4
w2w3.

The agent’s random noisy comparisons may or may not satisfy transitivity. The probability of
transitivity is the probability that they do.

We can show that the bonus-penalty payment in Equation (2) is equivalent to the above tran-
sitivity test when agents are truth-telling. Formally,

NAE(S(a, a′), S(a′, a′′), S(a′′, a))

=
3

4
− 1

4

(
S(a, a′)S(a′, a′′) + S(a, a′)S(a′′, a) + S(a′, a′′)S(a′′, a)

)
=
1

4

(
S(a, a′)S(a′′, a′)− S(a, a′)S(a′′, a)

)
+

3

4
+

1

4
S(a′′, a′)S(a′′, a) (S(a′, a′′) = −S(a′′, a′))

=
1

4
(sisj − sisk) +

3

4
+

1

4
sjsk =

1

4
Mi(s) +

3

4
+

1

4
sjsk (truth-telling)

Therefore, argmaxŝi E[NAE(ŝi,−Sj , Sk)|Si = si] = argmaxŝi E
[
1
4Mi(ŝi, Sj , Sk) +

3
4 + 1

4SjSk|Si = si
]
=

argmaxŝi E[Mi(ŝi, Sj , Sk)|Si = si].

4 Proof of Theorem 1: from Bayesian SST Model to Uniform
Dominance

To prove Theorem 1, we formalize the idea that agent j’s signal is more likely to agree with agent i’s
than agent k’s is as what we call uniform dominance in Definition 4.1. We’ll show that any Bayesian

2Specifically, given any assignment E0, we can construct a superset E so that for any (a, a′) ∈ E0 find an arbitrary
a′′ ̸= a, a′ and add (a, a′), (a′, a), (a, a′′), (a′′, a), (a′, a′′), (a′′, a′) into E . Thus, E is admissible and at most six times
larger than E0.
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SST model satisfies this property. Then, we’ll prove that BPP mechanism is symmetrically strongly
truthful when agents’ private signals satisfy uniform dominance.

Definition 4.1. Given a random vector (Si, Sj , Sk) ∈ {−1, 1}3 with joint distribution P , Sj uni-
formly dominates Sk for Si if Pr[Sj = 1 | Si = 1] > Pr[Sk = 1 | Si = 1] and Pr[Sj = −1 | Si =
−1] > Pr[Sk = −1 | Si = −1]. We call such an ordered tuple ⟨Si, Sj , Sk⟩ a uniformly dominant
tuple.3

Lemma 4.2 shows how to identify uniformly dominant tuples under Bayesian SST models.

Lemma 4.2. Under any Bayesian SST model, for any agent i and items a, a′ and a′′, agent j’s
signal Sj = S(a′′, a′) uniformly dominates agent k’s signal Sk = S(a′′, a) for signal Si = S(a, a′).

In other words, under any Bayesian SST model, the distribution of S(a, a′), S(a′′, a′), S(a′′, a)
satisfies uniform dominance for any a, a′, a′′. In the rest of this section, we can view (Si, Sj , Sk) as
an abstract random vector with some joint distribution P .

We now establish some implications of uniform dominance on the bonus-penalty payment.
Lemma 4.3 shows that truth-telling is the best response if other signals are reported truthfully.
Lemma 4.4 states that the expected payment is zero if everyone uses uninformed strategies (random
functions independent of input). Lemma 4.5 characterizes the best response under symmetric
strategy profiles (the same random function on each coordinate).

Lemma 4.3 (Truthfulness). Given a uniformly dominant tuple ⟨Si, Sj , Sk⟩ with distribution P , for
all si ∈ {−1, 1}, si = argmaxŝi∈{−1,1} EP

[
UBPP (ŝi, Sj , Sk) | Si = si

]
and EP

[
UBPP (Si, Sj , Sk)

]
>

0.

Lemma 4.4. Given a uniformly dominant tuple ⟨Si, Sj , Sk⟩, with joint distribution P if agent j
and k both use an uninformed strategy σ so that Ŝj = σ(Sj) and Ŝk = σ(Sk), for all si and ŝi in

{−1, 1}, Eσ,P

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
= 0.

Lemma 4.5. Given a uniformly dominant tuple ⟨Si, Sj , Sk⟩ with distribution P , for any strategy σ

and si ∈ {−1, 1} when agent j and k both use σ, argmaxŝi∈{−1,1} Eσ,P

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=

argmaxŝi∈{−1,1} {σ(si, ŝi)− σ(−si, ŝi)} .

We’d like to highlight that Lemmas 4.3 to 4.5 as well as the proof of Theorem 1 below hold for
any uniformly dominant tuple ⟨Si, Sj , Sk⟩, not necessarily derived from the Bayesian SST model.
This offers a path to generalize our mechanism for comparison data to other settings.

Proof of Theorem 1. By Lemma 4.2, for any agent i, the associated agent j’s signal Sj = S(a′′, a′)
uniformly dominates the associated k’s signal Sk = S(a′′, a) for signal Si = S(a, a′). By Lemma 4.3,
if agent j and k are truthful, agent i’s best response is truthful reporting, so truth-telling is a BNE.

Now we show that all other symmetric equilibria are permutation or uninformed equilibria. For
any symmetric equilibrium σ = (σι)ι∈N so that everyone uses the same strategy σι = σ for all ι ∈ N .
If σ is not deterministic so that σ(s, s), σ(s,−s) > 0 for some s ∈ {−1, 1}, agent imust be indifferent
between reporting s and −s when getting Si = s. σ(s, s) − σ(−s, s) = σ(s,−s) − σ(−s,−s) by
Lemma 4.5. This means σ(s, s) = σ(−s, s) and σ(s,−s) = σ(−s,−s), and σ is an uninformed
strategy. If the strategy is deterministic, there are two cases. If σ(s) = σ(−s), the strategy is also
uninformed. If σ(s) ̸= σ(−s), σ is either truth-telling s 7→ s or flipping s 7→ −s for all s.

3If we view Sj and Sk as two statistical tests for a binary event Si, the two inequalities in Definition 4.1 say that
Sj has a better type II and type I error than Sk respectively.
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Finally, by Lemma 4.4, any uninformed equilibrium’s expectation is zero. Additionally, because
Equation (1) is invariant when all inputs are flipped, the truth-telling and flipping/permutation
equilibria has the same expected payment which is positive by Lemma 4.3.

5 Generalization of Bonus-penalty Payment Mechanisms

We now leverage the key idea of uniform dominance to design peer prediction mechanisms for net-
worked data in Section 5.1. In Section 5.2, we summarize our design approach as a general scheme
that first identifies uniform dominance structures and then engages the bonus-penalty payment.
We prove the uniqueness of bonus-penalty payment: it is the only payment function, up to some
positive affine transformation, that induces truth-telling as a strict BNE for all uniform dominant
tuples.

5.1 Bonus-penalty Payment Mechanisms for Networked Data

Uniform dominance implies agent i’s signal is more likely to agree with agent j’s than with agent
k’s. Social networks are another natural domain exhibiting this property, as homophily [40] suggests
that agents’ opinions or signals in a social network are more likely to agree with their friends than
with non-friends. Leveraging this insight, we use a bonus-penalty payment scheme to elicit binary
networked data.

Mechanism 2: BPP mechanism for networked data

Input: Let (V,E) be a graph of agents in V , ŝ ∈ {−1, 1}V from all agent’s reports.
for agent i ∈ V do

Find agents j (friend) and k (non-friend) so that (i, j) ∈ E but (i, k) /∈ E, and pay
agent i

Mi(ŝ) = UBPP (ŝi, ŝj , ŝk) = ŝiŝj − ŝiŝk. (3)

Below, we provide a theoretical guarantee for our mechanism under a popular graphical model
for social network data, Ising model [14, 43], which captures the correlation between agents and
their friends. Formally, an Ising model consists of an undirected graph (V,E) and correlation
parameter βi,j ≥ 0 for each edge (i, j) ∈ E. Each agent is a node in the graph, N = V , and has a
binary private signal (1 or −1) jointly distributed as the following: For all s = (si)i∈V ∈ {−1, 1}V ,
Prβ[S = s] ∝ exp(H(s)) where the energy function is H(s) =

∑
(i,j)∈E βi,jsisj .

Theorem 2. If agents’ signals are sampled from an Ising model on undirected graph (V,E) with

correlation parameters β, Mechanism 2 is symmetrically strongly truthful, when
2β

d > ln e2(d+1)β+1

e2β+e2dβ

where β = min(i,j)∈E βi,j, β = max(i,j)∈E βi,j, and d is the maximal degree of graph (V,E).

Mechanism 2 does not require knowledge about parameters of the Ising model, but only the
connection of the network (V,E). Social network platforms, which already possess this knowledge,
can easily integrate our mechanism when conducting surveys. Additionally, snowball sampling [24],
which relies on participants referring their friends, is also naturally compatible with our mechanism.

The complete proof of Theorem 2 is quite technical and is deferred to the appendix, where we
also explain why the bound between β and d is necessary. Below, we provide a sketch of the proof.

Proof sketch for Theorem 2. As discussed in Section 4, we only need to show that for any agent i,
for all agent j with (i, j) ∈ E and k with (i, k) /∈ E, j’s signal uniformly dominates k’s signal for
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i’s signal. Because the energy function H(s) above remains invariant when the signs are flipped,
Pr[Si = 1] = Pr[Sj = 1] = Pr[Sk = 1] = 1/2, it is sufficient to prove that

Pr[Si = 1 | Sj = 1] > Pr[Si = 1 | Sk = 1]. (4)

We then prove a lower bound for the left-hand side and an upper bound for the right-hand side
separately. For the left-hand side, we use the Griffiths’ inequality [44] to show that the minimum
value of Pr[Si = 1 | Sj = 1] happens when j is the only friend of i. For the right-hand side, we use
Weitz’s self-avoiding walk [65] and reduce any graph with maximum degree d into a d-ary tree.

5.2 General Design Scheme and Uniqueness

The design of BPP mechanisms for comparison data and networked data has suggested a general
design scheme for other elicitation settings. That is, if one can identify a uniformly dominant
tuple for each agent, adopting the bonus-penalty payment gives a symmetrically strongly truthful
mechanism. We further show that the bonus-penalty payment is in some sense unique.

Mechanism 3: General design scheme using BPP

Input: Let ŝ be reports from agents in N .
for agent i ∈ N do

Find two agents j and k so that j’s signal uniformly dominates k’s for i’s, and pay
agent i

Mi(ŝ) = UBPP (ŝi, ŝj , ŝk) = ŝiŝj − ŝiŝk.

Theorem 3. If for each agent i the associated agent j’s signal uniformly dominates k’s signal for
i’s signal, the above scheme is symmetrically strongly truthful.

When an agent i has multiple pairs of (j1, k1), . . . , (jℓ, kℓ) so that jl’s signal uniformly dominates
kl’s for i’s for each l = 1, . . . , ℓ, we may pay agent i the average of bonus-penalty payment on all
pairsMi(ŝ) =

1
ℓ

∑ℓ
l=1 U

BPP (ŝi, ŝjl , ŝkl). This average maintains our symmetrically strongly truthful
guarantee while potentially reducing the variance in payments.

Theorem 3 shows that bonus-penalty payment is a sufficient condition for designing good elici-
tation mechanisms for information structures with uniform dominance. We now prove it is also a
necessary condition: any payment that induces truth-telling as a strict BNE under all uniformly
dominant tuples must be an affine transformation of the bonus-penalty payment.

Theorem 4 (Uniqueness). A payment U : {−1, 1}3 → R satisfies that, for all uniformly dominant
tuples ⟨Si, Sj , Sk⟩, si = argmaxŝi∈{−1,1} E [U(ŝi, Sj , Sk) | Si = si], if and only if there exist λ > 0

and µ : {−1, 1}2 → R so that

U(si, sj , sk) = λUBPP (si, sj , sk) + µ(sj , sk), for all si, sj , sk ∈ {−1, 1}

where choice of µ does not affect the set of equilibria.

6 Experiments

We present experiments on real-world data to evaluate our models and mechanisms. We hope to
cast insights on two questions empirically. Does our mechanism provide better rewards when all
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agents report truthfully than when all agents report randomly? Does our mechanism incentivize
truth-telling for each agent if all other agents are truthful? We evaluate Mechanism 1 and 2
by comparing three settings, truth-telling, uninformed, and unilateral deviation, using empirical
cumulative distribution functions (ECDF) on agents’ payments. Each point on ECDF denotes the
fraction of agents who get paid less than a particular value.

For both comparison and networked datasets (Figures 1 and 2), we find our mechanisms provide
better payments to agents under truthful settings than the other two settings. The ECDF under
truth-telling lies below the other two ECDFs, which is known as first-order stochastic dominance.
This implies that the truth-telling strategy results in higher average, quantiles (e.g., first quartile,
median, and third quartile), and a greater expectation of any monotone function on the empirical
distribution than the other two settings. We provide additional

6.1 SUSHI Preference Dataset for Comparison Data

We consider preference data for a collection of 10 sushi items (item set A) [26, 27], and focus on a
group of 249 agents. Each agent provides a complete ranking of all 10 types of sushi in the dataset.
These agents are female, aged thirty to forty-nine, who took more than three hundred seconds to
rank the items and mostly lived in Kanto and Shizuoka until age fifteen. We restrict the set of
agents to avoid significant violations of transitivity across different agents and to better align with
our model assumptions. In the appendix, we will present the experimental results for other groups
of users and further test whether the dataset satisfies transitivity.

For the first question, we use Mechanism 1 to compute each agent’s payment under the truth-
telling or uninformed strategy profile. For each agent i, we 1) randomly sample three items a, a′, a′′

and two agents j, k, 2) derive agent i’s comparison on the first two items (a, a′) from her ranking,
(and similarly for agent j’s comparison on (a′, a′′), and agent k’s comparison on (a, a′′)), 3) compute
bonus-penalty payment on these three comparisons, 4) repeat the above procedure 100 times and
pay agent i with the average of those 100 trials. For the uninformed strategy setting, we replace
every agent’s comparisons with uniform random bits and compute the payment. The left column
of Figure 1 presents the ECDF of payments for the agents in both settings. The figure shows
that in the uninformed random strategy setting only about 50% of the agents receive positive
payments, while in the original dataset (truthful strategy setting) over 75% of the users receive
positive payments. The right column of Figure 1 tests the second question if the agent has the
incentive to deviate when every other agent is truthful. The truth-telling curve is identical to the
left column of Figure 1. For unilateral deviation, each agent gets the above bonus-penalty payment
when her comparisons are replaced by uniform random bits. We plot the ECDFs of payments for
both settings in the right column of Figure 1. The figure shows that the ECDF of the unilateral
deviation payments is above the ECDF of human users’ payments, indicating that our mechanism
pays more to the truth-telling agents.

6.2 Last.fm Dataset for Networked Data

We test our BPP mechanism on the Last.fm dataset from Cantador et al. [8]. This dataset consists
of 1892 agents on Last.fm, forming a social network with 12704 edges and an average degree of
6.71. It records agents’ top fifty favorite artists whom they have listened to the most. We note
that, in the dataset, listener fractions for all artists are much smaller than non-listener fractions.
This bias differs from our Ising model in Section 5.1 where every agent has the same chance to get
both signals. Thus, the result can be seen as a stress test for our mechanism even when the data
deviate from the assumption of our theoretical results.
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Figure 1: SUSHI preference dataset

Figure 2 focuses on the most popular artist in the dataset, Lady Gaga, who has a listener fraction
of 32.3%. The results for additional artists are presented in the supplementary material. The left
column of Figure 2 tests the first question. Each agent has a binary signal about whether or not
she listens to a particular artist (Lady Gaga in this section). For the truth-telling setting, everyone
reports her signal truthfully and gets payment by the bonus-penalty payment (formally defined in
Section 5.1). For the uninformed setting, everyone gets the bonus-penalty payment when all reports
are iid according to the prior (0.322 for Lady Gaga). When everyone is truthful, more than 76%
of agents get positive payments and have an average payment of 0.37 for Lady Gaga, while when
agents report randomly, only half get positive payments, and have a near zero average payment.
These results suggest that agents got more incentive to choose the truth-telling equilibrium than
the uninformed equilibrium. The right column of Figure 2 tests the second question. The truth-
telling curve is identical to the left column of Figure 2. For the unilateral deviation setting, each
agent gets the bonus-penalty payment when she reports listener/non-listener uniformly at random.
The unilateral deviation’s payment is worse than the payments for truth-telling, decreasing from
0.37 to near zero for Lady Gaga.

Figure 2: Last.fm dataset for Lady Gaga
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7 Conclusion and Discussion

We introduce a symmetrically strongly truthful peer prediction mechanism for eliciting comparison
data without verification and extend it to eliciting networked data under Ising models. Our mech-
anisms are evaluated using real-world data. A key insight from our work is the identification of a
structure we term “uniform dominance,” which suggests a path for designing mechanisms in more
complex elicitation settings. For example, in time-series data, adjacent points tend to be more
related than distant ones, and in contextual settings, feedback from similar contexts is typically
more related than from different contexts.

A central assumption in this study is that agents are a priori similar. Hence, noisy comparisons
of item pairs are independent of the assigned agent’s identity. This assumption is reasonable
for items with widely agreed-upon rankings, such as quality assessments of large language model
(LLM) outputs. However, it may break down in settings where preferences are highly polarized,
such as political opinions or social choice problems4. Despite this, our additional experiments in
Appendix F, which relax the selection rule used in obtaining Figure 1, show that the mechanism
remains robust even when some dissimilarities among agents exist.

Agents in our model are assumed to focus solely on maximizing their payments, without account-
ing for efforts or external incentives such as minimizing others’ rewards or intentionally distorting
rankings. While our mechanism may be extended to handle binary effort as suggested in previous
work [11, 57], accommodating more than two effort levels would require additional assumptions
[69]. Moreover, one may hope to incorporate the designer’s utility, by factoring in downstream
learning problems along with elicitation payments. This would necessitate a significant overhaul of
the existing learning framework.

Our mechanisms achieve a symmetric, strongly truthful equilibrium. This does not rule out
the existence of non-symmetric equilibria with potentially higher utility. However, such equilibria
would require complex coordination among agents, making them less likely to arise naturally.

From a technical standpoint, our approach involves several assumptions that can be generalized
or relaxed. Our Bayesian SST model, which relies on strong stochastic transitivity, serves as a
non-parametric extension of several widely used parametric ranking models. In Appendix C.2, we
present both positive and negative results regarding weaker notions of transitivity (e.g., [5]). While
we assume admissible assignments, this can be relaxed to random assignments with full support.
Additionally, limited liability can be ensured in our mechanism. For example, adding a constant of
1 to the payment function in Equation (2) ensures that the payment is either 2 or 0.

4For example, when ranking phone features (e.g., innovation, performance, brand reputation, price, ease of use),
consumers often fall into two groups: early adopters, who prioritize cutting-edge technology, and late adopters, who
favor stability, affordability, and ease of use. Their opposing preferences violate the a priori similarity assumption.
Imagine an early adopter whose payment in Equation (2) depends on two late adopters. Since their preferences may
differ significantly, the early adopter might have an incentive to misreport her preferences.
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A Further discussion on BPP payment

In this section, we discuss the connection of bonus-penalty payment and existing peer prediction
mechanisms. First, if we substitute the third input with a uniformly random bit, denoted as
ŝk = Z ∼u {−1, 1}, the bonus-penalty payment simplifies to the agreement mechanism [62, 61, 63],
one of the most basic peer prediction mechanisms,

E
[
UBPP (ŝi, ŝj , Z)

]
= ŝiŝj = 21[ŝi = ŝj ]− 1.

However, the agreement mechanism is not symmetrically strongly truthful, as all agents always
reporting 1 and −1 can result in higher payments than truth-telling.

The bonus-penalty payment Equation (1) is originally proposed by [11, 57] for the multi-task
setting. Our BPP mechanism in Mechanism 3 can be seen as a generalization of multi-task setting.
In the multi-task setting, agents works on multiple tasks and for each task the private signals are
jointly identically and independently (iid) sampled from a fixed distribution and the each agent’s
strategy also are iid. Take two agents (Isabel and Julia) and two tasks as an example: Isabel
has a private signal (s1i , s

2
i ) and reports (ŝ1i , ŝ

2
i ) and Julia has (s1j , s

2
j ) and reports (ŝ1j , ŝ

2
j ) where

(sli, s
l
j) are iid from random vector (Si, Sj). Isabel and Julia decide their reports on each task using

random function σi, σj : {−1, 1} 7→ {−1, 1} respectively. Dasgupta and Ghosh [11] use the following
payments for Isabel

1[ŝ1i = ŝ1j ]− 1[ŝ1i = ŝ2j ] =
1

2
UBPP

(
ŝ1i , ŝ

1
j , ŝ

2
j

)
.

The payment is a special case of Mechanism 3 by taking the second input as ŝ1j and the third input

as ŝ2j . Additionally, S
1
j uniform dominates S2

j for S1
i if and only if

Pr[Sj = 1 | Si = 1] > Pr[Sj = 1], and Pr[Sj = −1 | Si = −1] > Pr[Sj = −1]

which is called categorical signal distributions [57].
Finally, similar to Shnayder et al. [57], we may extend to non-binary signal setting by extending

the payment to
UBPP (ŝi, ŝj , ŝk) = 2 (1[ŝi = ŝj ]− 1[ŝi = ŝk])

and the definition of uniform dominance to the following.

Definition A.1. Given a random vector (Si, Sj , Sk) ∈ Ω3 on a discrete domain, we say Sj uniformly
dominates Sk for Si if

Pr[Sj = s | Si = s]− Pr[Sk = s | Si = s] > 0 and

Pr[Sj = s′ | Si = s]− Pr[Sk = s′ | Si = s] < 0

for all s, s′ ∈ Ω with s ̸= s′.

However, the guarantee for truth-telling (informed truthfulness) is weaker than the binary set-
ting.

Theorem 5. Given any discrete domain Ω, if for each agent i the associated agent j’s signal uni-
formly dominates k’s signal for i’s signal (Definition A.1), Mechanism 3’s scheme is symmetrically
informed truthful so that

1. truth-telling is a strict equilibrium, and
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2. each agent’s expected payment in truth-telling is no less than the payment in any other sym-
metric equilibria and strictly better than any uninformed equilibrium’s.

Proof. First truth-telling is a strict equilibrium, because if Si = s,

argmax
ŝ

E
[
UBPP (ŝ, Sj , Sk) | Si = s

]
=argmax

ŝ
Pr[Sj = ŝ | Si = s]− Pr[Sk = ŝ | Si = s]

=s (by Definition A.1)

Additionally, because Pr[Sj = s | Si = s] − Pr[Sk = s | Si = s] > Pr[Sj = s′ | Si = s] − Pr[Sk =
s′ | Si = s] for all s′ ̸= s, summing over all possible s′ ∈ Ω on both sides gets Pr[Sj = s | Si =
s]− Pr[Sk = s | Si = s] > 0 and

E
[
UBPP (Si, Sj , Sk)

]
> 0.

For any informed equilibrium, by a direct computation E
[
UBPP (Ŝi, Ŝj , Ŝk)

]
= 0.

Finally, we show that the truth-telling has the maximum expected payment for each agents.
When all agent use a strategy σ : Ω → Ω, agent i’s expected payment is∑

si,ŝi∈Ω
Pr[Si = si]σ(si, ŝi)E

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=2

∑
si,ŝi∈Ω

Pr[Si = si]σ(si, ŝi)
∑
s∈Ω

(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si])σ(s, ŝi)

=2
∑
si∈Ω

Pr[Si = si]
∑

ŝi,s∈Ω
σ(si, ŝi)σ(s, ŝi)(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si])

Let fsi(s) :=
∑

ŝi∈Ω σ(si, ŝi)σ(s, ŝi) which is between 0 and 1, because fsi(s) ≤
∑

ŝi∈Ω σ(si, ŝi)
∑

ŝi∈Ω σ(s, ŝi) =
1. Then the expectation becomes∑

si,ŝi∈Ω
Pr[Si = si]σ(si, ŝi)E

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=2

∑
si∈Ω

Pr[Si = si]
∑
s∈Ω

(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si]) fsi(s)

≤2
∑
si∈Ω

Pr[Si = si] (Pr[Sj = si | Si = si]− Pr[Sk = si | Si = si])

=E
[
UBPP (Si, Sj , Sk)

]
The inequality holds because fsi ∈ [0, 1] and Definition A.1. Therefore, we complete the proof.

B Proofs in Section 2: Bayesian SST model and other models

The proofs of Propositions 2.3 and 2.5 are standard, and variations can be found in related literature.
We include proofs here for completeness.

Proof of Proposition 2.3. First given θ ∈ RA, for all distinct a, a′, a′′ ∈ A, Pr[Tθ(a, a
′) = 1],Pr[Tθ(a

′, a′′) =
1] > 1/2 implies that θa−θa′ > 0 and θa′ −θa′′ > 0 becuase F is strictly increasing and F (0) = 1/2.
Because θa − θa′′ = θa − θa′ + θa′ − θa′′ > max(θa − θa′ , θa′ − θa′′), we have

Pr[Tθ(a, a
′′) = 1] =F (θa − θa′′)
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>maxF (θa − θa′), F (θa′ − θa′′)

=maxPr[Tθ(a, a
′) = 1],Pr[Tθ(a

′, a′′) = 1]

and thus Tθ is strongly stochastically transitive for all θ with distinct coordinates which happens
surely as ν is non-atomic. Finally, since the distribution on θ is exchangeable on each coordinate,
E [E [Tθ(a, a

′)]] = 0 for all a, a′.

Proof of Proposition 2.5. First given θ ∈ Θ, for all distinct a, a′ ∈ A, if the rank of a is higher than
a′,

Pr[Tθ(a, a
′) = 1] = hη(θ(a

′)− θ(a) + 1)− hη(θ(a
′)− θ(a))

where hη(x) =
x

1−exp(−ηx) by Busa-Fekete et al. [7].

Claim B.1. For any η > 0 and x ∈ Z>0, the difference hη(x+ 1)− hη(x) is increasing and larger
than 1/2 where hη(x) =

x
1−exp(−ηx) .

By Claim B.1, Pr[Tθ(a, a
′) = 1],Pr[Tθ(a

′, a′′) = 1] > 1/2 implies that θ(a′) − θ(a) > 0 and
θ(a′′)− θ(a′) > 0. Thus, θ(a′′)− θ(a) > max(θ(a′′)− θ(a′), θ(a′′)− θ(a′)), and

Pr[Tθ(a, a
′′) = 1] = h(θ(a′′)− θ(a) + 1)− h(θ(a′′)− θ(a))

>maxh(θ(a′′)− θ(a′) + 1)− h(θ(a′′)− θ(a′)), h(θ(a′)− θ(a) + 1)− h(θ(a′)− θ(a))

=maxPr[Tθ(a, a
′) = 1],Pr[Tθ(a

′, a′′) = 1]

where the second inequality is due to Claim B.1. Therefore, Tθ is strongly stochastically transitive
for all θ. Finally, E [E [Tθ(a, a

′)]] = 0 for all a, a′ since θ is an uniform distribution on rankings.

Proof of Claim B.1. We first prove that the function hη(x) =
x

1−exp(−ηx) is increasing and strictly

convex on x ≥ 0. Because hη(x) = 1
ηh1(ηx), for all η, x, it is sufficient to consider η = 1. First,

h′1(x) = 1−(x+1)e−x

(1−e−x)2
> 0, so h1 is increasing. Second, as h′′1(x) = e−x((x−2)+(x+2)e−x)

(1−e−x)3
, to show

h′′1(x) > 0 for all x > 0, it is sufficient to show that g(x) = (x − 2) + (x + 2)e−x > 0. Because
g(0) = 0 and g′(x) = 1− (x+ 1)e−x > 0, g(x) > 0 for all x > 0. Therefore, h1 is strictly convex.

On the other hand, hη(x + 2) − hη(x + 1) > hη(x + 1) − hη(x) for all x by convexity, and
hη(2)− hη(1) =

1
1+e−η > 1

2 which completes the proof.

C Proofs in Section 3 and 4

C.1 Uniform dominance from Bayesian SST

Proof of Lemma 4.2. With a prior similar assumption for Bayesian SST model, we only need to
show

Pr[S(a′′, a′) = 1 | S(a, a′) = 1] > Pr[S(a′′, a) = 1 | S(a, a′) = 1], (5)

and the other case Pr[S(a′′, a′) = −1 | S(a, a′) = −1] > Pr[S(a′′, a) = −1 | S(a, a′) = −1] follows
by symmetry. To prove Equation (5), we can rewrite the conditional probability in expectations of
Tθ.

Pr[S(a′′, a′) = 1 | S(a, a′) = 1]

=

∫
Pr[Tθ(a

′′, a′) = 1, Tθ(a, a
′) = 1 | θ]dPΘ∫

Pr[Tθ(a, a′) = 1 | θ]dPΘ
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=

∫
Pr[Tθ(a

′′, a′) = 1 | θ] Pr[Tθ(a, a
′) = 1 | θ]dPΘ∫

Pr[Tθ(a, a′) = 1 | θ]dPΘ
(conditional independent)

=2

∫
Pr[Tθ(a

′′, a′) = 1 | θ] Pr[Tθ(a, a
′) = 1 | θ]dPΘ (a prior similar)

=2

∫
E [Tθ(a

′′, a′) | θ] + 1

2

E [Tθ(a, a
′) | θ] + 1

2
dPΘ (binary value)

=
1

2

∫
E
[
Tθ(a

′′, a′) | θ
]
E
[
Tθ(a, a

′) | θ
]
+ E

[
Tθ(a

′′, a′) | θ
]
+ E

[
Tθ(a, a

′) | θ
]
+ 1dPΘ

=
1

2

∫
E
[
Tθ(a

′′, a′) | θ
]
E
[
Tθ(a, a

′) | θ
]
+ 1dPΘ. (a prior similar)

Claim C.1. For any strongly stochastically transitive Tθ on A, and distinct a, a′, a′′ ∈ A

E
[
Tθ(a, a

′) | θ
]
E
[
Tθ(a

′′, a′) | θ
]
> E

[
Tθ(a, a

′) | θ
]
E
[
Tθ(a

′′, a) | θ
]
.

With Claim C.1, we have

Pr[S(a′′, a′) = 1 | S(a, a′) = 1] =
1

2

∫
E
[
Tθ(a

′′, a′) | θ
]
E
[
Tθ(a, a

′) | θ
]
+ 1dPΘ

>
1

2

∫
E
[
Tθ(a

′′, a) | θ
]
E
[
Tθ(a, a

′) | θ
]
+ 1dPΘ = Pr[S(a′′, a) = 1 | S(a, a′) = 1].

This completes the proof of Equation (5), and thus the uniform dominance.

Proof of Claim C.1. We let Q(α, α′) := E [Tθ(α, α
′) | θ] = 2Pr[Tθ(α, α

′) = 1 | θ] − 1 for all α, α′.
Note that Q(α, α′) > 0 if and only if Pr[Tθ(α, α

′) = 1 | θ] > 1/2 and Q(α, α′) = −Q(α′, α).
By symmetry, let Q(a, a′) > 0. It is sufficient to show that

Q(a′′, a′) > Q(a′′, a).

If Q(a′, a′′) > 0, by Definition 2.1 Q(a, a′′) > Q(a′, a′′) > 0 so Q(a′′, a′) > Q(a′′, a). Now consider
Q(a′, a′′) < 0. If Q(a′′, a) < 0, Q(a′′, a′) > 0 > Q(a′′, a). If Q(a′′, a) > 0, we have Q(a′′, a) >
0, Q(a, a′) > 0, and thus Q(a′′, a′) > Q(a′′, a) by Definition 2.1

C.2 Uniform dominance and weak notions of stochastic transitivity

There are weaker forms of stochastic transitivity, raising the question of whether they are sufficient
for uniform dominance as in Lemma 4.2. We show that general weak stochastic transitivity is not
sufficient. Additionally, we show that although the noisy sorting model from [5] is only weakly
stochastically transitive but does not satisfy Definition 2.1, it exhibits uniform dominance.

Definition C.2 ([13]). A stochastic comparison function, T : A2 → {−1, 1}, is weakly stochastically
transitive if for all a, a′, a′′ ∈ A with Pr[T (a, a′) = 1] > 1/2 and Pr[T (a′, a′′) = 1] > 1/2,

Pr[T (a, a′′) = 1] > 1/2.

Compared to Definition 2.1, the weak stochastic transitivity only require the item a is favorable
than a′′. Below we provide a simple weakly stochastically transitive example with a prior similar
property that does not satisfy the uniform dominance in Equation (5).
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Example C.3. Consider the set of three items and Θ consists of all ranking on A with uniform
prior where θ maps each items to its value. Given θ ∈ Θ so that if θ(a) > θ(a′) > θ(a′′),

Pr[Tθ(a, a
′) = 1] = Pr[Tθ(a

′, a′′) = 1] = 0.9 andPr[Tθ(a, a
′′) = 1] = 0.6.

Note that the model is weakly stochastically transitive, because an item with a larger value
is more favorable and the weak stochastic transitivity is reduced to transitivity on the values.
However, the model is not strongly stochastically transitive, because Pr[Tθ(a, a

′′) = 1] = 0.6 <
max{Pr[(T (a, a′) = 1],Pr[(T (a′, a′′) = 1]]} = 0.9. Finally, as the rank θ has a uniform prior, the
model satisfies a prior similar assumption.

To conclude the example, we show that Equation (5) does not hold for the above model. By
direct computation over all six possible ranking θ, we have

Pr[S(a′′, a′) = 1 | S(a, a′) = 1]

=
1

2

∫
E
[
Tθ(a

′′, a′) | θ
]
E
[
Tθ(a, a

′) | θ
]
+ 1dPΘ

=
1

2

(
1− 64

6

)
,

but Pr[S(a′′, a) = 1 | S(a, a′) = 1] = 1
2

(
1 + 64

6

)
. Therefore, we have Pr[S(a′′, a′) = 1 | S(a, a′) =

1] < Pr[S(a′′, a) = 1 | S(a, a′) = 1], and show that Equation (5) does not hold.

Though the above example shows that weak stochastic transitivity is not sufficient.5 Below we
show a popular weakly stochastically transitive model in Braverman and Mossel [5] has uniform
dominance as in Lemma 4.2.

Example C.4. Let Θ be the set of rankings on A and η > 0 be a parameter. Given a uniformly
distributed reference ranking θ ∈ Θ, the noise ranking model [5] ensures that for all θ(a) > θ(a′)

Pr[Tθ(a, a
′) = 1] =

1

2
+ η

Note that the above model does not satisfy the strict inequality in Definition 2.1, but by direct

computation, Pr[S(a′′, a′) = 1 | S(a, a′) = 1] = 1
2

(
1 + 4γ2

3

)
and Pr[S(a′′, a) = 1 | S(a, a′) = 1] =

1
2

(
1− 4γ2

3

)
, which satisfies Lemma 4.2.

C.3 Symmetrically strongly truthful from uniform dominance

Proof of Lemma 4.3. Suppose Si = 1. Because Pr[Sj = 1|Si = 1] > Pr[Sk = 1|Si = 1], Pr[Sj =
−1|Si = 1] < Pr[Sk = −1|Si = 1]. Therefore, argmaxŝ∈{−1,1} Pr[Sj = ŝ|Si = 1] − Pr[Sk = ŝi|Si =
1] = 1. Identical argument holds for the case of Si = −1 which completes the proof.

Additionally, the expected payment of truth-telling is

E
[
UBPP (Si, Sj , Sk)

]
=
∑
a

Pr[Si = si]
∑
sj ,sk

Pr[Sj = sj , Sk = sk | Si = si]U
BPP (si, sj , sk)

=2
∑
a

Pr[Si = si]
∑
sj ,sk

Pr[Sj = sj , Sk = sk | Si = si](1[si = sk]− 1[si = sk])

5In the above example, we can also decrease 0.9 to a smaller number that satisfies both uniform dominance and
weak stochastic transitivity.
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=2
∑
a

Pr[Si = si] (Pr[Sj = si | Si = si]− Pr[Sk = si | Si = si])

>0

The last inequality holds due to Definition 4.1.

Proof of Lemma 4.4. As σ is uninformed, let µ(s) = σ(s, s) = σ(−s, s) and µ(−s) = σ(s,−s) =
σ(−s,−s) for all s.

E
[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=
∑
ŝj ,ŝk

µ(ŝj)µ(ŝk)U
BPP (ŝi, Ŝj , Ŝk) =

∑
ŝj ,ŝk

µ(ŝj)µ(ŝk)(ŝiŝj − ŝiŝk) = 0

The first equality holds as the reports are independent of signals.

Proof of Lemma 4.5.

EP,σ

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=

∑
sj ,sk,ŝj ,ŝk

Pr[Sj = sj , Sk = sk | Si = si]σ(sj , ŝj)σ(sk, ŝk)U
BPP (ŝi, ŝj , ŝk)

=2
∑

sj ,sk,ŝj ,ŝk

Pr[Sj = sj , Sk = sk | Si = si]σ(sj , ŝj)σ(sk, ŝk) (1[ŝi = ŝj ]− 1[ŝi = ŝk])

(by Equation (1))

=2
∑
sj ,ŝj

Pr[Sj = sj | Si = si]σ(sj , ŝj)1[ŝi = ŝj ]− 2
∑
sk,ŝk

Pr[Sk = sk | Si = si]σ(sk, ŝk)1[ŝi = ŝk]

=2
∑
s,ŝ

(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si])σ(s, ŝ)1[ŝi = ŝ] (renaming dummy variables)

=2
∑
s

(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si])σ(s, ŝi)

Let δ = Pr[Sj = si | Si = si] − Pr[Sk = si | Si = si] > 0, because Sj uniformly dominates Sk

for Si. Additionally, Pr[Sj = −si | Si = si] − Pr[Sk = −si | Si = si] = 1 − Pr[Sj = si | Si =
si]− 1 + Pr[Sk = si | Si = si] = −δ. We have

EP,σ

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
=2
∑
s

(Pr[Sj = s | Si = si]− Pr[Sk = s | Si = si])σ(s, ŝi)

=2δ (σ(si, ŝi)− σ(−a, ŝi)) ,

so argmaxŝi∈{−1,1} EP,σ

[
UBPP (ŝi, Ŝj , Ŝk) | Si = si

]
= argmaxŝi∈{−1,1} {σ(si, ŝi)− σ(−si, ŝi)} which

completes the proof.

D Proofs in Section 5.1

Before diving into the proof, we introduce some notations. We further introduce Ising models with
bias parameter α ∈ RV

≥0 in addition to β where

H(s) =
∑
i,j∈V

βi,jsisj +
∑
i∈V

αisi
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and Prα,β[S = s] ∝ exp(H(s)), for all configuration s. Given i ∈ V , let the expectation and ratio
be

νi(α,β) = Eα,β [Si] = Pr
α,β

[Si = 1]− Pr
α,β

[Si = −1] and ρi(α,β) =
Prα,β[Si = 1]

Prα,β[Si = −1]

respectively which are monotone to each other. We will omit α,β when clear. Given a subset
U ⊆ V , sU ∈ {−1, 1}U is a configuration over the nodes in U , and sU = 1 if xι = 1 for all ι ∈ U .
We write Pr[·|SU = sU ], νi|SU=sU , and ρi|SU=sU for the conditional probability, expectation and
ratio when the configuration in U is fixed as specified by sU .

A lower bound for LHS Informally, we want to lower bound the correlation between adjacent
i and j (friends). Note that as we remove edges (setting coordinates of β to zeros), the correlation
should decrease, and the smallest correlation between neighboring nodes i and j happens when
E = {(i, j)}. Lemma D.1 formalizes this idea using the following monotone inequality [44, Theorem
17.2].

Theorem 6 (Griffiths’ inequality). For any i ∈ V , νi(α,β) = Eα,β [Si] is non-negative and non-
decreasing in all βj,k ≥ 0 and αj ≥ 0 with j, k ∈ V .

Lemma D.1. Given V and i, j ∈ V , for all α,β, and β′, if β′
e = βe when e = (i, j) and β′

e = 0
otherwise, we have

νi|Sj=1(α,β) ≥ νi|Sj=1(α,β′) and ρi|Sj=1(α,β) ≥ ρi|Sj=1(α,β′).

Proof. First, note that we can write the conditional expectation Eα,β [Si | Sj = 1] as marginal
expectation. Formally, consider αη so that αη

ι = αι if ι ̸= j and αη
j = αj + η. Because η → αη is

non-decreasing, η → νi(α
η,β) is non-decreasing by Theorem 6. In addition, Prαη ,β[Si | Sj = s] =

Prα,β[Si | Sj = s] for all s, and Prαη ,β[Sj = −1] = O(e−2η), so

νi|Sj=1(α,β) = Eα,β[Si | Sj = 1] = lim
η→+∞

νi(α
η,β).

Similarly,
νi|Sj=1(α,β′) = Eα,β′ [Si | Sj = 1] = lim

η→+∞
νi(α

η,β′).

On the other hand, consider βλ so that βλ
e = βe if e ̸= (i, j) and βλ

i,j = βi,j + λ. By Theorem 6,

νi(α
η,βλ) is non-decreasing in λ for all η. Because β0 = β′ and β1 = β, we have

νi|Sj=1(α,β′) = lim
η→+∞

νi(α
η,β′) ≤ lim

η→+∞
νi(α

η,β) = νi|Sj=1(α,β)

Because ρi =
1+νi
1−νi

is monotone in νi, the second part follows.

Given β′ defined in Lemma D.1, by some direct computation with α = 0

ρi|Sj=1(α,β) ≥ ρi|Sj=1(α,β′) = e2αi+2βi,j = e2β. (6)

An upper bound for RHS Now, we need to upper bound the correlation between non-adjacent
i and k (non-friends). We will use Weitz’s self-avoiding walks reduction [65] to upper bound the
correlation on general graph G by the correlation on trees.

Given a general graph G, and an arbitrary node i, we can construct the Self Avoiding Walk
Tree of G rooted at i, denoted TSAW (G, i), so that Pr[Si = 1 | SU = sU ] is the same in G as in the
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tree. We outline the construction. TSAW (G, i) enumerates all self-avoiding walks in G starting at i
which terminates when it revisits a previous node (closes a cycle). Then, TSAW (G, i) introduces a
leaf with a certain boundary condition. The self-avoiding walk never revisits a node immediately,
so there all the leaves with fixed boundary conditions are at least three hops away from node i.
Note that if G has maximum degree d, TSAW is a d-ary tree.

Theorem 7 ([65]). For any α, β, node i ∈ V , and configuration sU on U ⊂ V ,

Pr
α,β

[Si = 1 | SU = sU ] = Pr
TSAW (G,i)

[Si = 1 | SU = sU ].

First, with the above theorem, we have νi|Sk=1(α,β) = Eα,β[Si | Sk = 1] = ETSAW (G,i)[Si | Sk =
1]. By the monotone property in Theorem 6, setting all two-hop neighbors U in TSAW (G, i) to 1
(recalled that any boundary conditions for TSAW (G, i) being at least three hops away) increases
the conditional expectation,

ETSAW (G,i) [Si | Sk = 1] ≤ ETSAW (G,i) [Si | SU = 1, Sk = 1] .

Let T be the tree by truncating TSAW (G, i) at level 2. By the Markov property of Ising models,
the expectation is equal to the expectation on T .

Eα,β [Si | Sk = 1] ≤ ETSAW (G,i) [Si | SU = 1] = ET [Si | SU = 1] . (7)

Finally, we can recursively compute the probability ratio ρi (and thus expectation νi) on trees.
Specifically, given a rooted tree T ′, we define ρT ′ as the ratio of probabilities for the root to be
+1 and −1 respectively, and ρT ′|SU=sU for the ratio of conditional probabilities. As stated in
the following lemma, it is well known (see, for example, [22]) that the ratio of each node can be
computed recursively over the children’s ratio.

Lemma D.2. Given a tree T rooted at i with parameter (α,β) and boundary condition sU ,

ρT |SU=sU = e2αi

d∏
l=1

ρTl|SU=sU e
2βi,jl + 1

e2βi,jl + ρTl|SU=sU

where j1, . . . , jd are children of i and Tl is the subtree rooted at jl for all l.

By the monotone property in Theorem 6, the maximum of right-hand side of Equation (7)
happens when T is a complete d-ary tree with β = β. Therefore,

ρi|Sk=1(α,β) ≤

(
e2(d+1)β + 1

e2β + e2dβ

)d

. (8)

Finally, with Equations (6) and (8), we have ρi|Sj=1(α,β) ≥ e2β ≥
(
e2(d+1)β+1

e2β+e2dβ

)d
≥ ρi|Sk=1(α,β)

which implies Equation (4).

Remark D.3. Note that for any graph G there exists small enough β, β so that the condition in

Theorem 2 is satisfied, because the inequality become equality when β = β = 0, and ∂
∂β

2β
d > 0 =

∂
∂β ln e2(d+1)β+1

e2β+e2dβ
.

The bound between β and d is necessary as shown in Figure 3. On the other hand, by the
Markov property of the Ising model, the majority of all neighbor’s signals is a sufficient statistic,
and we can show the majority of all neighbor’s signals are uniformly dominant to a non-neighbor’s
signal. Therefore, we can get a symmetrically strongly truthful mechanism by replacing j’s reports
with the majority of reports from i’s neighbors.
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Figure 3: As fixing any β, β, we can construct a simple graph with V = {v0, . . . , vn−1} and E =
{(v0, vl), (vl, vn−1) : l = 1, . . . , n − 2} where agent v0 and vn−1 are not connected but share n − 2
common friends. We can show that the correlation between S0 and Sn−1 converge to 1 as the
number of common friends d increases, while the correlation between S0 and S1 is bounded away
from 1.

E Proof of Theorem 4

The sufficient condition is done by Lemma 4.3, because

argmax
ŝi∈{−1,1}

E
[
λUBPP (ŝi, Sj , Sk) + µ(Sj , Sk) | Si = si

]
= argmax

ŝi∈{−1,1}
E
[
λUBPP (ŝi, Sj , Sk) | Si = si

]
= argmax

ŝi∈{−1,1}
E
[
UBPP (ŝi, Sj , Sk) | Si = si

]
(λ > 0)

=si (by Lemma 4.3)

For the necessary, given U , define D(sj , sk) = 1
2 (U(1, sj , sk)− U(−1, sj , sk)) and µ(sj , sk) =

1
2(U(1, sj , sk) + U(−1, sj , sk)) for all sj and sk in {−1, 1}. Hence

U(si, sj , sk) = si ·D(sj , sk) + µ(sj , sk), ∀si, sj , sk ∈ {−1, 1} (9)

Given a joint distribution satisfying Definition 4.1, we let psi(sj , sk) = Pr[Sj = sj , Sk = sk | Si = si]

and additionally write psi =

[
psi(1, 1) psi(1,−1)

psi(−1, 1) psi(−1,−1)

]
. Then Definition 4.1 ensures that

p1(1,−1) > p1(−1, 1) and p−1(1,−1) < p−1(−1, 1).

Because U is truthful for all uniformly dominant tuples, we have

0 <E [U(1, Sj , Sk) | Si = 1]− E [U(−1, Sj , Sk) | Si = 1] = 2
∑
sj ,sk

D(sj , sk)p
1(si, sj)

0 >E [U(1, Sj , Sk) | Si = −1]− E [U(−1, Sj , Sk) | Si = −1] = 2
∑
sj ,sk

D(sj , sk)p
−1(si, sj).

(10)
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Suppose the following are true

D(1,−1) = −D(−1, 1) > 0 (11)

D(1, 1) = D(−1,−1) = 0 (12)

Let λ = D(1,−1) > 0. By Equations (11) and (12), we have

U(si, sj , sk) =si ·D(sj , sk) + µ(sj , sk) (by Equation (9))

=λ · si(sj − sk) + µ(sj , sk) (by Equations (9) and (11))

which completes the proof. Thus, we will construct three joint distributions satisfying Definition 4.1
to prove Equations (11) and (12).

The first joint distribution psi1 (sj , sk) with 0 < δ ≤ 1/2

p1 =

[
0 1/2 + δ

1/2− δ 0

]
and p−1 =

[
0 1/2− δ

1/2 + δ 0

]
.

Then Equation (10) on the first distribution reduces to

0 <D(1,−1)p11(1,−1) +D(−1, 1)p11(−1, 1) =
1

2
(D(1,−1) +D(−1, 1)) + δ(D(1,−1)−D(−1, 1))

0 >D(1,−1)p−1
1 (1,−1) +D(−1, 1)p−1

1 (−1, 1) =
1

2
(D(1,−1) +D(−1, 1))− δ(D(1,−1)−D(−1, 1)).

As we take δ to zero, we prove D(1,−1) = −D(−1, 1). Then plugging in with nonzero δ, we have
D(1,−1) > 0 and complete the proof of Equation (11).

The second joint distribution psi2 (sj , sk) with 0 ≤ ϵ ≤ 1 is

p1 =

[
1− ϵ 3

4ϵ
ϵ
4 0

]
and p−1 =

[
1− ϵ ϵ

4
3ϵ
4 0

]
.

With Equation (11), Equation (10) reduces to

0 <(1− ϵ)D(1, 1) +
ϵ

4
(D(1,−1)−D(−1, 1))

0 >(1− ϵ)D(1, 1)− ϵ

4
(D(1,−1)−D(−1, 1)).

By taking ϵ to zero, we prove D(1, 1) = 0. We can prove D(−1,−1) = 0 using the similar trick and
complete the proof of Equation (12).

F Additional empirical results

F.1 Comparison data

Here we test if the dataset satisfy transitivity property. We denote the proportion of rankings such
that item a is higher than item a′ in the dataset by pa>a′ . If pa>a′ > 1/2, pa′>a′′ > 1/2, and
pa>a′′ > 1/2, we say the triple of items {a, a′, a′′} empirically satisfies transitivity. If pa>a′ > 1/2,
pa′>a′′ > 1/2, and pa>a′′ > max{pa>a′ , pa′>a′′}, we say the triple of items {a, a′, a′′} empirically
satisfies strong transitivity. We first test the transitivity of the SUSHI subdataset selected in
Section 6.1. We find that 100% of the item triples empirically satisfy transitivity, and 69.17% of the
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item triples empirically satisfy strong transitivity. This suggests that our transitivity assumption
for the comparison data is mostly aligned.

Moreover, we conducted an experiment on the entire SUSHI dataset without any selection
criteria and demonstrated the results in Figure 4. Observe that the ECDF of payments from
original human users also dominates the payments under the uninformed strategy and the unilateral
deviating strategy. This is consistent with our experimental results in Section 6.1. However, there
are two minor difference. First the separation of truth-telling from the other two is slightly less
prominent than Figure 1 with the selection criteriaThis may be due to a slightly lower degree of
transitivity across agents with different backgrounds. In particular, we found the average value of
pa>a′′−max{pa>a′ , pa′>a′′} is 0.0559 without the selection criteria which is less than 0.0604 with the
selection criteria in Figure 1. Second, the fraction of agents receiving positive payments is slightly
higher than in Figure 1 (0.785 and 0.763 respectively). This aligned with or empirical (strong)
transitively which are 1 and 0.7667 compared to the above 1 and 0.69117. Furthermore, we also
conducted experiments on other groups of users by changing the selection criteria. Those interested
can refer to Figure 5, Figure 6 and Table 1 for the results, which further verify the effectiveness of
our mechanism.

Selection criteria Number of users Average utility Fraction of positive utility

All (No selection) 5000 0.138 78.5%

Female, 30-49, Kanto/Shizuoka 249 0.137 76.3%

Male, 30-49, Kanto/Shizuoka 185 0.167 82.2%

Female, 5-29, Kanto/Shizuoka 146 0.175 84.2%

Female, 50+, Kanto/Shizuoka 26 0.13 80.8%

Female, 30-49, Tohoku 30 0.174 83.3%

Female, 30-49, Hokuriku 23 0.105 69.6%

Table 1: Summary of truth-telling utility in Appendix F.1.

Figure 4: ECDF comparisons on all users without any selection.
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F.2 Networked data

Alongside Figure 2, Figure 7 and Table 2 present empirical results for the top five popular artists in
the dataset, excluding Lady Gaga, who are Britney Spears, Rihanna, The Beatles, and Katy Perry.
All these settings show similar results. However, the Beatles’ data is less conclusive as the payment
distribution under the uninformed strategy profile is close to the truth-telling. This observation is
also documented in Daskalakis et al. [12] which notes that the Ising model performs much better
for rock artists than for pop artists. The authors conjecture that this may be due to the highly
divisive popularity of pop artists like Lady Gaga and Britney Spears, whose listeners may form
dense cliques within the graph.

Note that there is a buck of agent with a payment of around 0.5 under the truth-telling. This
is because many non-listeners have no listener friends, and payment is 1 − [(1 − p) − p] = 2p is
twice the popularity p ≈ 0.25. Moreover, the jump is most minor for the Beatles, and indicates less
agreement between non-listeners. Additionally, by the definition of bonus-penalty payment, we can
see the payment of deviation is the minus of the truthful payment, so that the ECDF is symmetric
around (0, 0.5).

Artists Fraction of listener Average utility Fraction of positive utility

Lady Gaga 32.2% 0.37 76%

Britney Spears 27.6% 0.420 82.6%

Rihanna 25.6% 0.422 83.4%

The Beatles 25.4% 0.137 68.5%

Katy Perry 25.0% 0.361 79.9%

Table 2: Summary of truth-telling utility in Appendix F.2.

Figure 8 further shows the scatter plot of average payment and fraction of agents with positive
payments across the top fifty popular artists where all settings have more than 60% percent of
agents get positive payment. However, for less popular artists, the performance of our mechanism
declines. This is expected, as we cannot provide effective incentives when only one agent listens to
an artist.
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Figure 5: In each of the rows, we present the ECDF comparisons after changing the selection
criteria for the user group as follows: from female to male, from ages 30–49 to ages 5–29, from ages
30–49 to ages 50+, respectively.
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Figure 6: In each of the rows, we present the ECDF comparisons after changing the location criteria
for the user group as follows: from mostly living in Kanto or Shizuoka to Tohoku until age 15, and
from mostly living in Kanto or Shizuoka to Hokuriku until age 15, respectively.
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Figure 7: Last.fm dataset for other top five popular artists excluding Lady Gaga.
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Figure 8: Average payment and fraction of positive payment under the truth-telling across top fifty
popular artists.
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