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Abstract

We investigate the use of sequence analysis for behavior modeling, emphasizing
that sequential context often outweighs the value of aggregate features in under-
standing human behavior. We discuss framing common problems in fields like
healthcare, finance, and e-commerce as sequence modeling tasks, and address
challenges related to constructing coherent sequences from fragmented data and
disentangling complex behavior patterns. We present a framework for sequence
modeling using Ensembles of Hidden Markov Models, which are lightweight,
interpretable, and efficient. Our ensemble-based scoring method enables robust
comparison across sequences of different lengths and enhances performance in
scenarios with imbalanced or scarce data. The framework scales in real-world
scenarios, is compatible with downstream feature-based modeling, and is appli-
cable in both supervised and unsupervised learning settings. We demonstrate the
effectiveness of our method with results on a longitudinal human behavior dataset.

1 Introduction

Modeling human behavior is a complex task with applications spanning multiple domains such as
user research, healthcare, payments, trading, and e-commerce. Applications range from classifying
human activity (28), distinguishing humans from bots (16), detecting credit card fraud (25) etc.

Behavior is often captured as sequences of actions or events over time, and understanding patterns
within these sequences is crucial for tasks like classification, anomaly detection, and user modeling.
Disclaimer: This paper was prepared for informational purposes by the Artificial Intelligence Research group
of JPMorgan Chase & Co. and its affiliates ("JP Morgan”) and is not a product of the Research Department of
JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained herein. This document is not intended as
investment research or investment advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to any person,
if such solicitation under such jurisdiction or to such person would be unlawful.
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A key challenge in utilizing the captured sequences is class imbalance, where underrepresented
behavior profiles or a disproportionate number of anomalous examples hinder model generalization.

Many solutions leverage complex deep learning models (33), focusing on event-level classification
with extensive feature engineering (6). However, such event-level or feature-aggregated methods
frequently fall short in capturing the sequential dynamics essential for understanding and modeling
behavior. These approaches are also susceptible to overfitting, with performance rapidly degrading in
class-imbalanced scenarios.

Sequential context is crucial for effective behavior modeling. For example, in credit card fraud detec-
tion or anti-money laundering, a user’s transaction history provides deeper insights into behavioral
intent than isolated transactions or aggregated features. Yet, many datasets and approaches remain
confined to the event level, overlooking the broader sequential context. In this study, we advocate for
a sequence modeling approach to behavior modeling, particularly in scenarios where behaviors are
represented as action sequences derived from unstructured data. Aggregating this data into coherent
sequences that reflect an agent’s decision-making process is a non-trivial challenge. Our method is
tested in a real-world setting characterized by extreme class imbalance, with millions of diverse user
behavior examples contrasted against only a few hundred instances of the anomalous class.

We propose a novel and lightweight ensemble-based framework for behavior modeling, and show
efficacy on downstream (imbalanced) sequence classification tasks. While our approach is model-
agnostic, we leverage Hidden Markov Models (HMMs) for their simplicity, interpratibility, and
efficacy at capturing temporal dependencies and latent patterns. Our real-world deployment scales
to millions of sequences, while being compatible with downstream machine learning methods. We
demonstrate its effectiveness on a publicly available human behavior dataset (31).

Our contributions: (1) We introduce a behavior modeling framework based on sequences of
events/actions, applicable to various domains; (2) We outline its application to supervised and
unsupervised tasks; (3) We demonstrate its effectiveness on a longitudinal human behavior dataset.

2 Background & Related Work

HMMs Hidden Markov Models (HMMs) are statistical models for sequential data, which have
a long history of use in natural language processing, finance, and bioinformatics (24; 5; 32; 22).
HMMs have been used extensively for behavior modeling, including sensor surveillance (21), human-
computer interfaces (11), and web user interactions (15), with recent applications in social media bot
detection (19). While neural network-based approaches like CNNs, LSTMs, and Transformers have
shown success in settings like sentiment analysis (13) and network intrusion detection (27), they face
challenges such as high computational cost, overfitting, and reduced interpretability.

Resolution Event-level classification still dominates in areas like anti-money laundering and
network security, where sequence-level labels are often missing (1; 8). This lends itself to aggregate
feature based approaches, missing key historical context. While some work has tackled sequence
modeling in network intrusion detection with favorable results (26), much remains to be done.

Data Imbalance and Anomaly Detection Many real-world problems, including intrusion detection
(12), credit card fraud (25), and money laundering (2), involve detecting rare events and suffer from
class imbalance. One-class anomaly detection focuses on robustly modeling the nominal class
and identifying deviations (9), while more targeted approaches model both normal and anomalous
sequences to detect specific behavioral anomalies (10).

3 Approach

Consider a sequence observation O = {a1, a2, ..., aT }, where each ai is drawn from a discrete set of
actions A. Such sequences can represent various behaviors, such as user interactions in an app, trading
actions in financial markets, or other human decision-making processes. Our goal is to model these
behaviors, either discovering behavior clusters, or classifying behaviors when labels are available
(e.g., online bot detection, credit card fraud detection, physical activity recognition (20; 33; 18).
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Figure 1: Flow diagram of our sequence construction approach, as detailed in Section 3.1. We
disentangle the monolithic dataset D into data streams, then process these further into sets of
observation sequences. Our subsequent HMM-e ensemble training approach is detailed in Section
3.2. While we adopt this approach using HMMs, the framework itself is model agnostic. The training
data is broken into random subsets, and a diverse ensemble of learners is trained on these subsets.

3.1 Sequence Construction

One of the primary challenges lies not in modelling but in organizing coherent data streams from raw,
fragmented data D, which often contains interwoven behaviors from multiple agents/users.

For instance, in trading, D may span billions of transactions across participants, assets, and exchanges,
requiring grouping data streams by participant, and further by exchange or asset to capture specific
behaviors. In network analysis, interactions between devices and servers can be grouped by source IP
for individual user activity, or further by target IP to constitute specific behavior streams.

As illustrated in Fig. 1, we begin by disentangling D into separate data streams D1, ...,DH , each
corresponding to one of H agents. Feature engineering refines these data streams through dimension-
ality reduction, tokenization, or discretization, enhancing model generalization, particularly in the
presence of imbalanced or sparse datasets.Continuous features can also be normalized and estimated
directly, through techniques like Gaussian HMMs (23).

Once data is organized into streams Dh, sequences of observations O(1)
h , ...,O(n[h])

h are then extracted
from each stream, with domain knowledge or sessions guiding the sequence span (start and end points).
For example, web user behavior may span minutes to hours, whereas medical trial observations
could extend over days or weeks. Breaks in continuous data streams often demarcate sequences,
with shorter pauses treated as wait events and longer breaks as sequence endpoints. The number of
sequences can vary significantly across agents, reflecting differing activity levels (e.g. power users vs
intermittent monthly users).

3.2 Ensembles of Hidden Markov Models

Singleton HMMs First, considering binary sequence classification, we separate training data by
class and train two indivudal HMMs: one positive class HMM λ+, and one negative class HMM λ−.
Given an unseen sequence O, the predicted class c(O) is determined by comparing the likelihoods:

c(O) = 1{p(O | λ+) > p(O | λ−)} (1)

Variable Sequence Length HMMs excel at sequence analysis (5), but struggle when comparing
sequences of varying length, as length influences likelihood computation exponentially. We address
this through model-driven normalization, computing likelihoods for a given sequence across multiple
models, and deriving a rank-based composite score (rather than comparing sequence likelhihoods).

HMM Ensembles HMMs, while lightweight and efficient, can struggle to capture the complexity
of behaviors in training data when using a singular model (per class). Ensemble methods train
multiple models on subsets of the data (7), enabling each learner to specialize on distinct patterns
or behaviors, while collectively capturing the full data distribution. This results in a more robust
approach, particularly in scenarios with data imbalance, where monolithic models skew towards
modeling the majority class (or underfitting for class specific models) (17). We propose HMM-e, an
ensemble framework that computes composite scores from individual learners (14). While HMMs
are effective for our case, this framework is model-agnostic and can incorporate other model classes
such as neural networks, SVMs, or decision trees.
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3.2.1 Formalization and Algorithmic Framework

First, we train N models {λ+
1 , ..., λ

+
N} on the positive class and M models {λ−

1 , ..., λ
−
M} on the

negative class, taking care to ensure diversity among the models by training each on a randomly
selected subset of samples from the training data. Each model sees s% of the training data in its
relevant class. While we set N = M for all settings, these parameters (M,N, s) can be established
using typical hyperparameter optimization approaches. For any given sequence in the training data,
the probability of not being selected for any model’s random subset is (1−s)N . The expected number
of unsampled sequences is the same, so it is important to select s and N to keep this proportion of
the training data small.

For an unseen observation sequence O, we compute its likelihood scores under all models: {p(O |
λ+
1 ), ..., p(O | λ+

N )} and {p(O | λ−
1 ), ..., p(O | λ−

M )}. We then compute a composite score:

s(O) =

N∑
i=1

M∑
j=1

1{p(O | λ+
i ) > p(O | λ−

j )} (2)

The score s(O) represents the pairwise comparisons where positive-class models assign a higher
likelihood than negative-class models, taking values in [0, N ×M ]. A low score indicates that the se-
quence is more likely under the negative-class models, and vice versa. As likelihoods across different
sequence lengths are not directly compared, this composite score acts as an implicit normalization
technique. N and M should be chosen such that the score range adequately distinguishes the classes.

For our HMM and HMM-e approaches, we use 3 states in each of our models, and converge on an
ensemble size of 250 and a subset factor of 1%. We perform hyperparameter search for ensemble
size, trying other values in [10, 50, 100, 500, 1000]. We settle on 250 for its good performance at a
relatively low complexity.

Downstream Modeling using HMM-e Scores Given a corpus of sequences and corresponding
scores {O, s(O)}, we classify sequences using a threshold sthresh: c(Oi) = 1{s(Oi) ≥ sthresh}.
Alternatively, base learner likelihoods can serve as features for downstream classifiers. For each
sequence Oi, we define a feature vector

fi =
[
p(Oi|λ+

1 ), . . . , p(Oi|λ+
N ), p(Oi|λ−

1 ), . . . , p(Oi|λ−
M )

]
(3)

To account for sequence length sensitivity, fi is normalized by ||fi||2. This technique utilizes HMMs
as feature extractors, where each feature p(Oi|λj) represents the similarity between the sequence Oi,
and the random subset of training data underlying λj .

Figure 2: UMAP embeddings of features
fi, as discussed in Section 3.2.1, from a
500-model ensemble. Colors correspond
to clusters discovered via K-Means.

Clustering HMM-e Scores in Unsupervised Settings
In label-free settings, behavior clustering can be achieved
using unsupervised learning approaches. We train N mod-
els {λ1, ..., λN} on random s% data subsets and gener-
ate feature vectors of base learner likelihoods fi (Sec-
tion 3.2.1). Unsupervised clustering like K-Means can
be applied to discover behavioral groups, dimensionality
reduction (e.g., PCA) can be helpful when N is large.

4 Experiments

Data
We evaluate our approach on the GLOBEM dataset (31),
a longitudinal human behavior study featuring over 3,700
attributes from 497 participants across four years (2018-
2021). The dataset includes survey, smartphone, and wear-
able data, with a focus on depression detection (the task we
consider). Data includes mood assessments, step counts,
location variability, and sleep metrics. We utilize the data
standardization platform for reproducibility provided by
the authors (30).
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SVM (4) Random Forest (29) CNN (Reorder) HMM HMM-e
AUC-ROC 49.9 ± 2.9 53.6 ± 2.1 56.3 ± 0.8 51.8 ± 1.7 53.6 ± 1.3
Balanced Acc. 49.8 ± 1.2 50.7 ± 0.5 54.7 ± 1.6 51.8 ± 1.7 52.5 ± 0.9

Table 1: Balanced Accuracy and AUC-ROC on GLOBEM. Our approach outperforms baseline
machine learning methods and achieves similar results to the best-performing deep learning approach.

While GLOBEM includes thousands of features, we select just four features to employ, each evaluated
daily: smartphone moving/static time ratio, total screen time (minutes), total sleep time (minutes),
and total steps. We train Gaussian HMMs on these continuous features, depicted for three anonymous
participants in 4. Our small feature set allows us to learn meaningful correlations and avoid converging
to degenerate or redundant models due to insufficient samples. Most deep-learning based models
included in the benchmark leverage the 14-day history versions of the provided features, which sum
over the prescribed time period. This helps reduce the frequency of missing values, but results in a
lagging time series. We use the raw feature for the current day, rather than the 14-day history, which
we find boosts performance by ∼ 3% for our HMM-e approach. Sequences are constructed from a
28-day history of normalized features, aggregated by participant and preprocessed using the provided
data platform. We filter out days where more than half of these features are missing, and within each
study participant, fill remaining missing values using median imputation. After filtering, we have
5,393 training samples from 2018, 3,228 from 2019, 2,036 from 2020, and 1,192 from 2020, with
class ratios (not-depressed to depressed) of 1.13, 1.23, 1.29, and 1.14 respectively.

Evaluation We use the "all-but-one" validation scheme (30), training on three years and testing on
the fourth. Performance metrics include AUC-ROC and balanced accuracy (average of specificity
and sensitivity), which we adopt as in (31) for its robustness to class imbalance (3). We compare
our approach to the top-performing model from the GLOBEM study (31), Reorder, a CNN-based
deep learning algorithm, along with a traditional SVM-based method (Canzian et al. (4)) from the
benchmark. We also compare against a Random Forest-based approach included in the benchmark,
based on Wahle et al. (29). We train the Random Forest approach on our selected four features rather
than the original paper’s six, using 450 trees, with the number of leaf nodes selected via K-Folds
cross validation on a small training subset.

Results & Discussion Our approach using just four features outperforms machine learning ap-
proaches like (4) which uses up to 17 features, and performs comparably to or outperforms many other
machine learning approaches included in the benchmark in (31). Our mean AUC-ROC and balanced
accuracy using singleton HMMs beat out (4) by 1.9 and 2 percentage points, respectively. Using
HMM-e , our AUC-ROC and balanced accuracy beat the same by 3.7 and 2.7 percentage points. In
terms of balanced accuracy, HMM-e outperforms (29) 1.8 percentage points while achieving the same
AUC-ROC. We also achieve similar performance as the complex deep-learning approach Reorder,
falling 2.7 percentage points short in AUC-ROC and 2.2 in balanced accuracy. Notably, we achieve
this performance with traditional machine learning techniques, simpler models, and fewer features.

For each of our N ×M base learners with num_states states, on num_features features, we learn
num_states+ (num_states× num_states) + (num_states× num_features) parameters. In
our case, with 4 features and 3 states, this results in 6,000 total parameters – versus Reorder’s 10,099
parameters. On our hardware, detailed in C, HMM-e trains on 2019-2021 data in 5 minutes versus 18
minutes for Reorder, 3 minutes for Wahle, and 29 seconds for Canzian.

In an unsupervised setting, training HMM-e without class labels and using subsampled data, we
perform clustering with K-Means and dimensionality reduction with UMAP; results shown in Fig. 2.

5 Conclusion

We explore the connection between human behavior modeling and sequence analysis, providing a
general framework for extracting coherent sequences from fragmented data. We present HMM-e,
an ensemble learning approach that effectively models behavior sequences with minimal feature
engineering. Our experiments demonstrate that HMM-e outperforms traditional machine learning
baselines and delivers results comparable to complex deep-learning models, despite using fewer
features. This highlights the efficiency and potential of our approach for scalable and interpretable
sequence modeling in behavior-driven applications.
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A Supplementary Material: Extended Results

Method 2018 2019 2020 2021 Mean

Random Forest (Wahle et al.) AUC-ROC 51.9 51.8 55.8 54.9 53.6 ± 2.1
Balanced Acc. 51.2 50.0 51.1 50.7 50.8 ± 0.5

SVM (Canzian et al.) AUC-ROC 49.1 48.4 48.0 54.2 49.9 ± 2.9
Balanced Acc. 48.0 50.4 50.6 50.1 49.8 ± 1.2

CNN (Reorder) AUC-ROC 56.7 56.4 55.2 57.1 56.3 ± 0.8
Balanced Acc. 54.8 54.2 53.0 56.8 54.7 ± 1.6

HMM AUC-ROC 52.4 50.9 54.0 50.0 51.8 ± 1.7
Balanced Acc. 52.4 50.9 54.0 50.0 51.8 ± 1.7

HMM-e AUC-ROC 51.9 54.7 54.4 53.3 53.6 ± 1.3
Balanced Acc. 52.2 52.3 53.8 51.8 52.5 ± 0.9

Table 2: Balanced Accuracy and AUC-ROC on GLOBEM data. For each year indicated, we train on
the other 3 years, and hold out that year for testing.

In addition to the aggregated results in Table 1, we present results for each of the four years in the
GLOBEM dataset in Table 2. Each year indicated is the held-out test year, while the other three are
used for training. We compare our approaches against the best-overall-performing approach in the
GLOBEM study, Reorder (31). Reorder is a deep-learning based approach tailored for the GLOBEM
problem, built on a CNN backbone.

We also present results from (4), an SVM-based traditional machine learning approach. We find that
we are consistently able to outperform (4), and in terms of balanced accuracy, achieve comparable
results to Reorder with far fewer features and much less complex models.

We illustrate the training and inference pipelines of the HMM-e approach detailed in Section 3.2.1,
in Figure 3.

B Feature Selection

Figure 4 shows the four features we choose to model, across three anonymized participants from
the 2018 study. While many baseline models included in the benchmark choose to model tens or
even hundreds of features, we use a small feature set. This allows us to learn meaningful correlations
and avoid converging to degenerate models due to insufficient samples. We include two smartphone
features (screen time and location-based moving-to-static ratio) and two wearable features (sleep
time and steps). All of these features are computed daily.
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Figure 3: Flow diagram of our HMM-e ensemble training and inference approach, as detailed in
Section 3.2. While we adopt this approach using HMMs, the framework itself is model agnostic.
The training data is broken into random subsets, and a diverse ensemble of learners is trained on
these subsets. At inference time, pairwise matchups of likelihoods given by the models are compared,
giving the composite score s.
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Figure 4: Samples of the daily features we model, across 3 anonymized 2018 participants. For
visualization purposes, features are lightly smoothed using an exponential weighted moving average
with a half-life of 4 days. For modeling, features are normalized.

C Hardware and Software Stack

Our experiments are performed on an AWS r5.24xlarge EC2 instance featuring 96 virtual CPUs
and 768 GB of memory. Due to the lightweight nature of the models trained, we do not have to
leverage GPU acceleration. The environment is configured with Ubuntu 20.04 LTS as the operating
system, and we use Python version 3.8.10. Aside from standard machine-learning libraries like
Pandas, NumPy, Pytorch, Scikit-Learn, and Tensorflow, we also use HMMLearn to train our HMMs,
and Ray to parallelize training and data processing.
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