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Abstract

This study empirically examines the “Evaluative AI” framework, which aims to enhance the

decision-making process for AI users by transitioning from a recommendation-based approach to

a hypothesis-driven one. Rather than offering direct recommendations, this framework presents

users pro and con evidence for hypotheses to support more informed decisions. However, findings

from the current behavioral experiment reveal no significant improvement in decision-making per-

formance and limited user engagement with the evidence provided, resulting in cognitive processes

similar to those observed in traditional AI systems. Despite these results, the framework still holds

promise for further exploration in future research.

1 Introduction

In recent years, AI has gained substantial attention for

their increasingly sophisticated performance in various

applications (Albrecht, 2016; Barredo Arrieta et al.,

2020; MacCarthy, 2019; Rong et al., 2022). However,

their significant limitation compared to simpler meth-

ods is their commonly opaque “black box” nature,

making it difficult to understand how inputs gener-

ate outputs (Guidotti et al., 2018). This is particu-

larly problematic in high-stakes areas like medicine,

economics, or law, where understanding the decision-

making process is crucial (Rudin, 2019). As a result,

the lack of transparency and comprehensibility often

leads to distrust and underreliance among potential

users, despite the accuracy of these decision-support

systems (Jacovi et al., 2021; Mahmud et al., 2022;

Zhang et al., 2020).

This challenge has spurred the development of

several explanatory methods and a surge in inter-

est in Explainable AI (XAI). Initially, it was hoped

that XAI would enhance understanding and trust in

AI models, thereby improving decision-making qual-

ity among users. However, as summarized by recent

studies (Bertrand et al., 2023; Lai et al., 2023b; Rogha,

2023; Schemmer et al., 2022, 2023; Vasconcelos et al.,

2023), the results are mixed. While XAI might indeed

improve understanding (Ribeiro et al., 2018), higher

transparency can make models less comprehensible

(Poursabzi-Sangdeh et al., 2021). Explanations can

improve subjective perception (Bertrand et al., 2023),

but also might increase cognitive load (Ghai et al.,

2020; Herm, 2023; You et al., 2022) and reduce effi-

ciency (Lai et al., 2023b). This has led to a situation

where users often engage superficially with explana-

tions and develop an overreliance on AI (Bansal et al.,

2021; Buçinca et al., 2021; Chen et al., 2023; Chromik

et al., 2021), shifting from the original problem of un-

derreliance.

Given that AI is not infallible and often makes

better decisions than humans (Mnih et al., 2015; Nori

et al., 2023), a calibrated level of trust is essential for

a trade-off that encourages user to rely more on AI,

while avoiding blind trust (Vered et al., 2023; Wis-

chnewski et al., 2023). To address the issue of over-

reliance, various strategies have been developed, such

as cognitive forcing functions (Buçinca et al., 2021)

and user-adapted, selective explanations (Lai et al.,

2023b). This paper discusses another approach to

improve human-AI interaction: the “Evaluative AI”

framework proposed by Miller (2023). Critiquing the

limited success of existing XAI methods, Miller argues

that these methods do not align well with the cognitive

processes involved in decision-making. He suggests a

paradigm shift from recommender-driven systems to a

hypothesis-driven approach, based on the Data/Frame

Theory (Klein et al., 2007) and abductive reasoning
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(Peirce, 2009), to better support decision-makers in

exploring hypotheses rather than receiving direct rec-

ommendation by AI.

This study empirically investigates the effective-

ness of the proposed framework in enhancing decision-

making by examining its impact on performance, effi-

ciency, and subjective perception. The focus is on one

specific element of the framework: offering evidence

for and against potential option without providing di-

rect recommendations. Rather than giving a recom-

mendation and explaining it, the framework refrains

from making any recommendations. Instead, it offers

evidence supporting and opposing each option, which

is only displayed if requested by the decision-maker.

This studies research question is:

• RQ: Can a decision support system that offers

evidence for and against potential options, with-

out providing direct recommendations, improve

the decision-making process?

Currently, only three studies directly apply

Miller’s framework: Castelnovo et al. (2023) developed

a contrastive explanation technique for ranking classi-

fications, and Le et al. (2024b) created a tool for image

classification, though neither has undergone empirical

testing.

During the development of the present study, an

empirical evaluation by Le et al. (2024a) was con-

ducted, comparing a hypothesis-driven approach with

recommendation-driven and explanation-only meth-

ods. They found that the hypothesis-driven approach

improved decision quality without increasing decision

time, and participants cognitively engaged with the

evidence, thereby considering the uncertainty of the

underlying models. This current study differs in sev-

eral respects. Compared to Le et al. (2024a), the task

here is significantly more objective and realistic for

participants. While their task involved classifying a

subjective house price into low, medium, or high us-

ing six features, the task in this study is to estimate

whether an income is above or below the median based

on 20 features.

This study provides a more detailed picture, as it

includes a control group without any AI assistance and

a group that receives both recommendations and evi-

dence. Another difference lies in the incentive design;

in this study, more incentive per task was offered to

simulate a higher-stakes situation. In a pretest, it was

found that evidence presented in bar chart format (as

used in Le et al. (2024a)) was not well understood, so

textual descriptions of the evidence were added here.

Lastly, in Le et al. (2024a) experiment, low-level evi-

dence was shown by default, which could potentially

lead to anchoring effects and influence the decision-

making process. In this study, no evidence is shown

by default, allowing decision-makers the freedom to

choose and gives further opportunities for behavioral

analysis.

The results of the present study paint a different

picture than those of Le et al. (2024a). Overall, the

findings indicate that the “Evaluative AI” framework

in this experiment did not improve decision-making

performance. They also reveal that participants en-

gaged only superficially with the provided pro and

con evidence, despite all AI systems influencing the

decision-making processes leading potentially to cog-

nitive offloading.

2 Background and Related

Work

The concept of developing explainability methods

based on decision-making processes to create more

human-centered XAI is not entirely novel. According

to Vered et al. (2023) XAI researchers fail to align ex-

planations with the human reasoning process. Vascon-

celos et al. (2023) analyze the problem of overreliance

from a cost-benefit tradeoff perspective. According to

their framework, overreliance can result from a strate-

gic decision in which users weigh the value of engaging

with a recommendation and its explanation against

the potential benefits. Miller (2019) advocated for an

interdisciplinary approach by aligning with established

knowledge about explanations in disciplines like phi-

losophy and psychology. He posited that explanations

in XAI should be primarily contrastive, selective, and

tailored to fit the social context.

Wang et al. (2019) also developed a XAI frame-

work, drawing on prior research in human decision-

making. A key aspect of their framework is its

emphasis on forward reasoning, as informed by the

hypothetico-deductive model, contrasting with back-

ward reasoning approaches (Croskerry, 2009; Pop-

per, 2014). This methodology suggests that form-

ing hypotheses based on available information (for-

ward reasoning) is more effective than initially devis-

ing hypotheses and then seeking confirmation within

the data (backward reasoning). In this context,

recommender-based XAI systems align more closely

with backward-oriented reasoning, as they present rec-

ommendations directly to the user as initial hypothe-

ses. Gouveia and Maĺık (2024) contend that most AI
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systems currently lack the ability to provide explana-

tions based on abductive reasoning. However, they

suggest that Large Language Models (LLMs) could

become valuable in this regard in the future.

Miller (2023) aims to initiate a paradigm shift to-

wards hypothesis-driven XAI with his framework. He

believes that recommender-driven XAI is not aligned

with cognitive thinking processes and thus limits

agency, which can be crucial in medium/high-stakes

and low-frequency decisions. He is motivated by, in

his opinion, the disappointing results of previous XAI

systems on the decision-making process. This may be

because users engage minimally with the explanations.

Some researchers have addressed this issue and pro-

posed several solutions. Notably, the cognitive forcing

functions by Gajos and Mamykina (2022) and Buçinca

et al. (2021), which, while increasing cognitive engage-

ment, do not meet Miller (2023) criteria for a good

decision support system.

The framework is built on several decision research

theories. For instance, Miller (2023) uses “cardinal de-

cision issues” (Yates and Potworowski, 2012) to define

what a good decision support system should look like.

It should help identify options and narrow the decision

space, identify possible outcomes, assess the probabil-

ities and consequences of these outcomes, and assist

in finding a trade-off, making this understandable for

the user. These criteria are connected with theories

about cognitive processes during decision-making, es-

pecially focusing on abductive reasoning — the process

of forming hypotheses and assessing their probabilities

to explain observations. Furthermore, Miller (2023)

connects this with Klein et al. (2007) findings, that

decision-makers initially intuitively narrow the deci-

sion space and then go through all remaining options,

seeking pros and cons for the options.

XAI systems built on this framework should not

provide recommendations (e.g., the patient has dis-

ease A). Instead, they should highlight the most likely

options (referred to as hypotheses), such as indicating

that diseases A and C are the most probable. Ad-

ditionally, they should support the decision-maker in

exploring these options by providing for and against

evidence (e.g., it could be disease A because..., but

against this is...). Most importantly, the decision-

maker should have the autonomy to decide which op-

tions to investigate and when.

Several studies address these elements. Cresswell

et al. (2024) utilized conformal prediction to iden-

tify the most likely options in an image classification

problem, demonstrating that this approach improved

decision accuracy. Lai and Tan (2019) showed that

heatmaps as text classification explanations (although

they are not, per se, pro and con arguments according

to the framework) slightly improve user performance

with further gains when combined with recommenda-

tions, achieving the best results. Similarly, Lai et al.

(2020) highlighted the positive impact of explanations

alone but found no additional benefit from integrat-

ing recommendations. On the other hand, Carton

et al. (2020), using an AI that performs worse than

humans, found no benefits from explanations, rec-

ommendations, or their combination. Buçinca et al.

(2021) experimented with a similar approach where

decision-makers could receive recommendations along-

side explanations either on demand or after a waiting

period. This method decreased overreliance but did

not improve performance compared to a baseline XAI

condition. Gajos and Mamykina (2022) found that

providing an explanation without the recommenda-

tion led to better decisions and learning gains. Ma

et al. (2023) showed that presenting recommendations

when the AI is more likely to be correct for a specific

observation, while still providing the explanation, en-

couraged participants to think more independently, re-

sulting in lower overreliance. Spatola (2024) on other

hand, found that explanatory guidance by an AI chat-

bot did not improve outcomes and that users are often

focused on efficiency, but risk over-assimilation, that

can lead to lower performance in the long term. Fi-

nally, as described detaily, Le et al. (2024a) demon-

strated that presenting evidence for multiple hypothe-

ses while hiding the recommendation can increase de-

cision accuracy.

3 Method

3.1 Overview

To answer the research question of whether the frame-

work’s element regarding evidence for and evidence

against can improve the decision-making process, an

incentivized between-subjects experiment was con-

ducted online. A mixed methods approach is used

to quantitatively assess the participants’ behavior and

qualitatively understand how they decided. Partici-

pants were asked to probabilistically estimate, based

on the 20 personal characteristics of four individuals,

whether each of them earned a net income above the

population median. To do this, participants were in-

structed to estimate the probability as a percentage

of how likely it was that this was the case. The par-
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ticipants received a fixed payout of £3, along with a

performance-based bonus — the more accurate their

estimates, the higher their bonus payout.

Income estimation is a common task in research

studies because it is simple for participants to under-

stand (Ma et al., 2023; Zhang et al., 2020). This task

is especially useful when large sample sizes are needed,

as recruiting experts in a specific field can be challeng-

ing. Therefore, laypeople are often recruited instead.

Since Miller (2023) sees the Evaluative AI frame-

work as applicable in medium/high-stakes and low-

frequency decisions, the number of tasks participants

were required to complete was intentionally set to four.

While similar studies use more tasks (such as 12 (Le

et al., 2024a) or 14 (Buçinca et al., 2024)), this study

aims to create a higher-stakes situation artificially by

offering a relatively high potential bonus payment per

task.

A simple logistic regression is used as the AI

model. The output of the trained model is shown as a

recommendation. SHAP (SHapley Additive exPlana-

tions) (Lundberg and Lee, 2017) was used to generate

pro and con evidence, classifying individual personal

characteristics into supporting or opposing arguments.

For better understanding, SHAP values were displayed

both graphically and as text.

To empirically test whether AI, based on the evalu-

ative AI framework as proposed, can improve decision

quality, participants were randomized into five groups.

In the first group, which served as the control group,

participants worked without any assistance, while in

the other four groups, participants received different

forms of AI as decision support.

The specific treatment groups are explained in the

section on Experimental Conditions, followed by a de-

scription of the hypotheses metrics used for the em-

pirical evaluation in Hypotheses and Dependent Vari-

ables. The experiment’s procedure, from the partici-

pant’s perspective, is detailed in Procedure. The sec-

tions on Dataset and Regression Model for Income As-

sessment describe the dataset used for the task and the

AI developed. Finally, the recruitment of participants

is discussed in Participants. The experiment was pre-

registered before data collection1. The ethics board

of the University of Paderborn approved the research

project.

3.2 Experimental Conditions

The participants in the experiment were randomly as-

signed to one of the following groups:

• In the Control group, participants completed

the task alone without any assistance.

• In the Recommendation Only group, partici-

pants received only AI recommendations.

Below the features and the input field for the

estimated probability, the AI assistance was dis-

played: “The AI suggests a probability of x%”.

• In the Evidence Only group, participants re-

ceived all evidence for and against each option

directly.

Evidence for and against was presented side by

side. At the top, a bar chart with the normalized

SHAP values and feature values was displayed,

and below that, a text describing the AI’s evi-

dence was shown.

• In the Recommendation and Evidence group,

the AI resembled a classical XAI system where

both the recommendation and the evidence were

displayed directly.

In this case, the recommendation is displayed at

the top, with the pro and con evidence shown

below it.

• The Evaluative AI group, that represented the

framework, is similar to the Evidence Only

group, but participants do not receive the evi-

dence directly, but choose when to view it. Two

buttons were displayed, allowing participants to

view the pro and con evidence separately. The

possible click times were tracked.

Multiple screenshots of the experimental interface

can be found in the Apendix Screenshots.

3.3 Hypotheses and Dependent

Variables

Decisions and decision-making processes can be eval-

uated in various ways (Lai et al., 2023a). This study

follow previous work and primarily focus on the per-

formance of the decisions, meaning how good the deci-

sions are, the efficiency, meaning how much time is re-

quired to make the decisions and cognitive load, mean-

ing how much cognitive effort is required for the de-

cision. Based on the framework, the first hypothesis

is:

• H1: The best decisions will be made in the

Evaluative AI group.

The performance of these probabilistic estimations

will be evaluated using the Brier score, which consid-

ers the estimated probabilities and the actual incomes.

1https://osf.io/k2jhf
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This approach was also used by Le et al. (2024a).

Compared to simple binary yes-or-no decisions, prob-

abilistic responses allow for directly measuring partic-

ipants’ confidence, thereby providing a more detailed

answer. Let pi be a participant’s estimated probability

that the income of individual i is above the median,

and let oi be the actual outcome, where oi = 1 if the

income is above the median and oi = 0 if the income

is below the median. The Brier score is then defined

as:

1

N

N∑
i=1

(pi − oi)
2

where N is the total number of individuals in the

task. Thus, the better the assessments, the lower the

score.

Based on their Brier score, participants receive a

bonus payment as a monetary incentive. With random

guessing—always indicating 50% — the Brier score

would be 0.25. At this score (and above), the bonus

payment is £0. The lower the Brier score, the higher

the payout, up to a Brier score of 0, which corresponds

to £6.

• H2: The slowest decisions will be made in

the Evaluative AI group.

It is also plausible to assume that such a AI sys-

tem will require more time. On one hand, participants

in Evaluative AI might choose to forgo the assistance

entirely or partially, which should lead to a shorter de-

cision time compared to the condition where the pros

and cons are fully visible from the start. On the other

hand, in Evaluative AI , there is an additional decision

on whether to view the evidence, which takes time.

The dependent variable, time, is calculated here as the

average time participants need to complete the tasks.

• H3: The highest cognitive load will be ob-

served in the Evaluative AI group.

As speculated by Miller (2023), such a decision

aid system requires more effort from the user. There-

fore, it can be expected that the cognitive load will

increase. This is similar to the hypothesis regarding

time; although there is less information available at

the start, there are more decisions for the participant

to make. Cognitive load is assessed subjectively using

the NASA-TLX scale (Hart, 2006; Schuff et al., 2011).

This is done once after the tasks are completed.

3.4 Decision-Making Process

To understand how the participants arrived at their

decisions within the experimental task, a qualitative

component was added. After completing the task, par-

ticipants were asked to describe their decision-making

process in words. The exact question was: “Please

describe your decision-making process for the previous

estimates. How did you make your decisions?” This

was a mandatory field. For the analysis, qualitative

content analysis was used to classify the responses.

This allows us to quantify the statements and identify

further differences between the treatments (Mayring,

2015). The classification was carried out by the author

with the assistance of the LLM GPT-4o (Chew et al.,

2023; Tai et al., 2024).

3.5 Procedure

Start. The experiment was conducted online using

oTree software (Chen et al., 2016). Participants were

recruited through Prolific.com and directed to the ex-

periment via the platform. They were first required

to enter their Prolific ID, read the privacy policy, and

then complete a survey on demographic data.

Introduction. The participants were randomly

assigned to one of the five treatments. The study be-

gan with a general instruction (see Appendix A). Par-

ticipants were then given 5 comprehension questions

(4 in control condition), with a maximum of two in-

correct responses allowed per question. If participants

incorrectly answered at least one of these comprehen-

sion questions three times, they were disqualified from

continuing the study. In such cases, participants were

instructed to return their submissions to the Prolific

website, and their data were excluded from subsequent

analyses. The instructions and questions were struc-

tured according to the treatment. Next, the explana-

tion of the personal characteristics of the individuals to

be assessed within the experimental task was provided.

In addition to the explanation, the average values of

the features were also displayed. The instructions and

the explanation of these characteristics could be ac-

cessed during the task.

Experimental Task. Participants were intro-

duced to four individuals one after the other and,

based on their personal characteristics, were asked to

estimate the likelihood (in percentage) that each in-

dividual earned a net income above the median. Par-

ticipants adjusted their percentage estimate using a

slider, which was initially set to a default value of 50%.

Participants received feedback on their estimates only

after the fourth round.

Depending on the treatment, the AI assistance was

displayed below if available, the recommendation was

shown first, followed by the pros and cons on the left
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and right sides, respectively.

Desicion-Making Process. After completing

the tasks, participants were asked to describe their

decision-making process during the task. For this pur-

pose, a mandatory free-text field without a character

minimum or maximum was provided.

NASA-TLX. Finally, participants completed the

NASA-TLX questionnaire.

3.6 Dataset

While many previous studies that also used income es-

timates relied on the widely used adult dataset (Becker

and Kohavi, 1996), a new dataset was compiled for

this study. This dataset is more recent and includes

additional variables.

The data used comes from the SOEP dataset

(Goebel et al., 2019). The sample for this experiment

includes 7,708 individuals, all of whom are neither re-

tired nor unemployed. The SOEP data can be re-

quested from the German Institute for Economic Re-

search (DIW), and the code for generating the dataset

and model is available in the public repository.

The dataset was divided into a training sample,

which was used to train the AI (logistic regression),

and a test sample, which was used to evaluate the AI.

From the test sample, an experimental sample of 20

individuals was randomly selected (under the condi-

tion that the AI performs similarly on this sample as

it does on the entire test sample and that the sample

is sufficiently diverse). From these 20 individuals, 4

were randomly assigned to participants for the exper-

imental task.

The dataset contains the following variables: Body

weight, Body height, Is male, Age, Has part-time work,

Work change last year, Time pressure at work, Sick

days last year, Number of children, Married, Divorced,

Smoking, Drinks alcohol, Eats meat, Student or PhD,

Has university degree, Health status, Interested in pol-

itics, Health satisfaction, Life satisfaction.

3.7 Regression Model for Income

Assessment

For this task, a simple logistic regression model was

used as AI (more complex learning algorithms, such

as XGBoost, did not lead to any significant improve-

ment). The trained model achieved an ROC AUC of

0.85 and a Brier score of 0.155 on a test dataset. In

the experimental sample, a ROC AUC of 0.83 and a

Brier score of 0.178 was obtained. If one were to use a

decision threshold of 50%, one would be correct in 15

of 20 cases.

The model’s generated class probabilities for each

individual were used as recommendations. For and

against evidence is based on SHAP. SHAP can gener-

ate feature-based and local explanations for the out-

put of models. In this case, for each individual being

assessed, it generates a value for each characteristic,

indicating the extent to which that characteristic con-

tributes to the output. Positive contributions are con-

sidered positive evidence, while negative contributions

are considered negative evidence. These contributions

are displayed separately in bar charts.

Figure 1 shows the average absolute SHAP values

of the features across the 20 individuals in the exper-

imental sample.

Similar to Buçinca et al. (2024), the SHAP-based

pro and con evidence were converted into text form

and displayed below the bar charts. The SHAP values

and the actual values were taken into account in this

process. Since the dataset was standardized, the fea-

tures were comparable. The LLM GPT-4o was used to

convert the numerical pro and con evidence into text

(the code can also be found in the online appendix).

3.8 Participants

The studies were conducted in October 2024. Partic-

ipants were recruited from the platform Prolific.com.

The Paderborn University Institutional Review Board

approved the study.

Before recruiting participants, the required sample

size was computed in a power analysis for a ANOVA

using G*Power (Faul et al., 2007). To correct for test-

ing multiple hypotheses, a Bonferroni correction was

applied. The default effect size f = 0.25 (i.e., indi-

cating a medium effect) was specified, with a signifi-

cance threshold α = 0.005 (i.e., due to testing multi-

ple hypotheses), a statistical power of (1 − β) = 0.9,

and the investigation of 5 different experimental con-

ditions/groups. This resulted in a required sample size

of 375 participants for the study.

Since the SOEP data used in this study comes from

the German population, only participants from Ger-

many were recruited. Additionally, the study was con-

ducted in German, which meant that only participants

who are fluent in German were recruited. To ensure

high-quality participation, only participants with an

approval rating of over 95% and who had completed

at least 50 studies were selected.
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Mean Absolute SHAP Values for Features

Figure 1: Mean Absolute SHAP Values for Features in Model Interpretation. The horizon-

tal bar chart ranks features based on their mean absolute SHAP values, which indicate the

average impact of each feature on the model’s predictions.

4 Results

The collected experimental data (excluding partici-

pants’ personal data) and the analysis codes are avail-

able in the online appendix. The analysis was con-

ducted using Python with various packages, and the

complete list with version numbers is also available in

the online appendix. All p-values reported here were

adjusted using the Bonferroni correction.

For the experiment, a total of 439 participants

were initially recruited. Of these, 21 were excluded

due to failing the comprehension questions, and 42

others voluntarily withdrew at various points. One

participant was removed because they did not provide

an answer to the question about their decision-making

process. This resulted in the final number of 375 par-

ticipants, matching the number required according to

the power analysis.

250 (66%) of the participants were male, and the

average age was 32.7 years. On average, participants

received a bonus payment of £1.79. The distribution of

participants across the groups was not entirely even:

there were 62 participants in Control , 77 in Recom-

mendation Only , 64 in the Evidence Only , 81 in Rec-

ommendation and Evidence, and 91 in Evaluative AI .

4.1 Decision Performance

Brier score is used to determine the decision perfor-

mance — the better the estimates, the lower the score.

Figure 2 illustrates the average Brier scores per treat-

ment with 95% confidence intervals. While random

guessing would result in a score of 0.25 and the logis-

tic regression on the experimental sample achieved a

score of 0.178, only the participants in Recommenda-

tion Only performed better on average (M = 0.173,

SD = 0.098). The second best was Evidence Only

(M = 0.185, SD = 0.09), followed by Control (M =

0.2, SD = 0.098) and Recommendation and Evidence

(M = 0.201, SD = 0.115), with Evaluative AI be-

ing the lowest (M = 0.23, SD = 0.139). The sta-

tistical testing of the differences for the first hypoth-

esis followed the analysis steps proposed by Sawyer

(2009). The Shapiro-Wilk test indicated that the data

were not normally distributed, so the non-parametric

Kruskal-Wallis test was used. According to this test,

there is no significant difference between the groups in

terms of the Brier score (p = 0.154), and therefore, H1

is rejected.

4.2 Decision Time

Decision time was measured as the average time par-

ticipants took from the start of a task to the sub-

mission of their estimate. There were no major out-

liers that needed to be removed from the data. Fig-

ure 3 illustrates the average decision times in sec-

onds per treatment with 95% confidence intervals.

Significance bars indicate significant differences be-

tween the treatments. Participants in Recommenda-

tion Only (M = 41.198, SD = 24.58) and in Control

(M = 41.343, SD = 27.458) were the fastest, fol-

lowed by Evaluative AI with a larger difference (M =

51.736, SD = 25.915), Evidence Only (M = 56.406,

SD = 26.997), and Recommendation and Evidence

(M = 57.185, SD = 27.599). The tests for signifi-

cance followed the same steps as for the first hypothe-

sis. Again, the Shapiro-Wilk test indicated that the

data were not normally distributed. The Kruskal-

Wallis test showed that significant differences exist be-
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Figure 2: Comparison of Brier Scores Across Different Treatments. The bar chart presents

the Brier score performance (lower values indicate better predictive accuracy) for various

treatment groups: Control , Recommendation Only , Evidence Only , Recommendation and

Evidence, and Evaluative AI . Error bars denote the 95% confidence intervals. Horizontal

dashed lines indicate benchmarks for AI Model (red) and Random Guess (green) perfor-

mance. The results suggest similar performance levels across treatments, with no significant

deviations observed.

tween the groups (p < 0.001). Dunn’s post hoc test

indicated significant differences between Control and

Evidence Only (p < 0.01), Recommendation and Ev-

idence (p < 0.001), and Evaluative AI (p < 0.01),

as well as between Recommendation Only and Evi-

dence Only (p < 0.01), Recommendation and Evi-

dence (p < 0.001), and Evaluative AI (p < 0.01).

Although there are significant differences between the

treatments, H2 is also rejected.

4.3 Cognitive Load

Cognitive load was assessed subjectively using the

NASA-TLX scale, and the average values with con-

fidence intervals are shown in Figure 4. Participants

experienced the lowest average cognitive load in Con-

trol (M = 0.264, SD = 0.12), followed by Recommen-

dation and Evidence (M = 0.27, SD = 0.12), Recom-

mendation Only (M = 0.275, SD = 0.119), Evalua-

tive AI (M = 0.28, SD = 0.125), and Evidence Only

(M = 0.292, SD = 0.126). The Shapiro-Wilk test in-

dicated that the data were not normally distributed,

and the Kruskal-Wallis test showed no significant dif-

ferences between the treatments. Therefore, H3 is also

rejected.

4.4 Decision-Making Process

After completing all four tasks, the experiment partic-

ipants were asked how they arrived at their decisions.

Figure 5 shows the percentage of times participants in

each treatment group (excluding Control) mentioned

the AI in their decision-making process. Although

AI was mentioned the least in Recommendation Only

(37.66%) compared to Evidence Only (50%), Recom-

mendation and Evidence (53.09%), and Evaluative AI

(50.55%), this difference is not statistically significant

according to a pairwise chi-squared tests.

The participants mostly talked about which fea-

tures they focused on for their assessment, and this dif-

fers significantly between Control and the other groups

(pairwise chi-squared test, always p < 0.001). While in

Control , 91.93% of the participants mentioned at least

one feature, the percentages were 66.23% in Recom-

mendation Only , 59.38% in Evidence Only , 50.62% in

Recommendation and Evidence, and 54.95% in Eval-

uative AI . An analysis of the number of mentioned

features shows a similar pattern. On average, par-

ticipants in Control mentioned 3.08 features, com-

pared to 2.01 in Recommendation Only , 1.69 in Ev-

idence Only , 1.89 in Recommendation and Evidence,

and 1.59 in Evaluative AI . The differences between

the groups with AI and Control are also significant

according to the chi-squared test (with Recommenda-

tion Only , p < 0.05; otherwise, p < 0.001). Figure 6

and Figure 7 illustrate the proportion of participants

who mentioned features and the average number of

features used.

Figure 8 shows the frequency of each feature men-
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Figure 4: Cognitive Load (NASA-TLX) Across Different Treatments. The bar chart illus-

trates the cognitive load scores, as measured by the NASA Task Load Index (TLX), for

each treatment group: Control , Recommendation Only , Evidence Only , Recommendation

and Evidence, and Evaluative AI . Error bars show the 95% confidence intervals, providing
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Significant differences between the Control group and other treatments are marked with

p-values (p < 0.05, p < 0.001).

tioned in the participants’ descriptions. Over 30% of

the descriptions included the features Has university

degree, Age, and Has part-time work. The fourth most

mentioned feature was Life satisfaction, at 16.8%, af-

ter which the frequency steadily declines. The distri-

bution per treatment in Figure 9 confirms the obser-

vation that features were mentioned more frequently

in Control ; however, there are no major differences

between the features and the treatments.

4.5 Usage of Evaluative AI

In contrast to Evidence Only , participants in Evalua-

tive AI were not shown the pro and con evidence di-

rectly; instead, they had the freedom to display them

at any time using buttons. The button clicks were

tracked to analyze usage behavior.

Of the 91 participants in Evaluative AI , 57

(62.64%) clicked on the evidence in every round to

display it. The remaining participants were relatively

evenly distributed in terms of the number of clicks

during the task. Figure 10 shows the distribution of

clicks.

An examination of individual participants shows

that, in most cases, they clicked on both pieces of

evidence within a few seconds of each other. Figure

Figure 11 illustrates the average time in seconds that

participants in Evaluative AI took to view the evi-

dence, broken down by the four tasks and the two

types of evidence. It was also observed that partici-

pants took more time to click on the evidence during

the first of the four tasks compared to the remaining

tasks (Kruskal-Wallis test, p < 0.001).

5 Discussion

The aim of the present study is the empirical eval-

uation of the “Evaluative AI” framework proposed

by Miller (2023), specifically focusing on the assess-

ment of pro and con evidence elements, which con-

trasts with traditional recommender-driven AI sys-

tems. The results of the behavioral experiment dif-

fered from the hypotheses: the AI based on the “Eval-

uative AI” framework did not improve participants’

decision-making performance compared to treatments

without AI assistance or with other types of AI sup-

port. Decision-making speed was also not the slow-

est, but it was significantly slower than in the con-

trol group and the group that received only AI rec-

ommendations. Cognitive load was not higher; there

were no differences between the groups in this respect.

The qualitative analysis of decision-making processes

shows that the AI was similarly relevant for partic-

ipants across the AI groups. Interestingly, partici-

pants often focused on the available features, and it

was found that those without AI assistance discussed

these features significantly more than participants in

the other groups.

Performance. The most striking results concern

performance. The fact that 73.44% of participants

performed better than random guessing suggests that

they had some relevant knowledge and made an effort
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Figure 8: Frequency of Features Mentioned in the Decision-Making Process. The horizon-

tal bar chart shows the percentage of participants mentioning specific features during the

decision-making process.
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0 to 8) during Evaluative AI .

in completing the tasks. Unlike many studies that

demonstrate AI recommendations can improve per-

formance (Hemmer et al., 2024, 2021; Malone et al.,

2023), especially Le et al. (2024a) conducting a sim-

ilar evaluation, there was no significant improvement

compared to the control group without AI assistance.

One possible explanation could be that the AI was not

significantly better than the participants.

The underlying ML model, however, is on par in

quality (with an accuracy of 75%) with models used in

similar studies: Buçinca et al. (2021) and Zhang et al.

(2020) also report 75% accuracy, Wang and Yin (2021)

69%, Bansal et al. (2021) 75–87%, Liu et al. (2021)

56–84%, and Lai and Tan (2019) 87%. In the con-

trol group, 43.55% of participants outperformed the

AI, while in the recommendation-only group, 55.84%

did so, suggesting the potential for complementary

human-AI teamwork (Hemmer et al., 2024).

On one hand, a bad performing AI could explain

the lack of significant improvement. On the other

hand, observations from other studies indicate that

even when AI outperforms the control group by up to

15.5 percentage points, participants with AI assistance

do not necessarily show better results (Goh et al.,

2024). This might stem from algorithmic aversion

(Castelo et al., 2019; Mahmud et al., 2022), though

this explanation is inconsistent with the qualitative

results, as many participants considered the AI’s in-

put.

Even though it may seem disappointing from the

perspective of the “Evaluative AI” framework that

performance did not improve, this result aligns with

the mixed findings in XAI research. While the frame-

work itself does not directly focus on explanations but

rather on the overall decision-making process, stud-

ies show that the effects of explanations are not con-

clusive. For instance, while Lai and Tan (2019) and

Lai et al. (2020) found that explanations (with and

without recommendations) positively impacted perfor-

mance, there are also opposing findings: Bansal et al.

(2021) reported increased performance due to AI rec-

ommendations, but no further improvement from ex-

planations, and Zhang et al. (2020) similarly found no

effect from XAI. One reason could be the SHAP ex-

planations used; Kaur et al. (2020) found that even

data scientists struggled with bar chart-like tools. To

counter this, textual explanations were also provided

in the present study.

Decision Time and Cognitive Load. The fact

that participants noticed the explanations is evident

in the analysis of processing speed: all groups with

explanations were slower than both the control group

and the recommendation-only group. Carton et al.

(2020) reported an increased decision time due to rec-

ommendations, but a simultaneous reduction with an

explanation for the recommendation. Cheng et al.

(2019) and Slack et al. (2019) found that increased

transparency costs more time.

Despite differences in decision time, however, there

were no significant differences in subjectively mea-

sured cognitive load, contradicting findings by Herm

(2023), who observed a linear relationship between

task time and cognitive load. One reason for the differ-

ing result in this study could be that, although there

were significant time differences between treatments

with and without explanations, the differences were

13



small (about 17 seconds on average between Control

and Recommendation and Evidence). This may not be

sufficient to place a greater cognitive demand on par-

ticipants, especially given that there were only four

tasks in total, so the overall time difference was mini-

mal.

Decision-Making Process and Engagement.

The qualitative analysis of the decision-making pro-

cesses reveals that participants engaged cognitively

with recommendations and weighed pro and con ev-

idence. First, between 37 and 53% of participants

across various treatments mentioned the AI in their

descriptions. More importantly, participants who had

AI support relied significantly less on specific features

in their descriptions. This suggests cognitive offload-

ing (Risko and Gilbert, 2016) may have occurred,

along with a potential automation bias (Lyell and

Coiera, 2017). Automation bias leads to uncalibrated

use of AI, often resulting in overreliance. Reduc-

ing overreliance is one of the key motivations behind

the “Evaluative AI” framework. Nonetheless, partic-

ipants’ cognitive processes in Evaluative AI did not

appear markedly different from those in other treat-

ments.

One reason for this could be that not all users en-

gaged with the pro and con evidence. 62.6% of par-

ticipants reviewed both sides of the evidence in all

rounds. This pattern of superficial engagement with

explanations is not new (Buçinca et al., 2021). The

lack of interest in provided evidence among some par-

ticipants could be due to a degree of algorithm aver-

sion. Even though instructions explained the AI’s per-

formance, participants did not experience it person-

ally and may therefore have lacked trust. Participants

may also have made a cost-benefit assessment; accord-

ing to Vasconcelos et al. (2023), participants evalu-

ate whether engaging with provided evidence is worth

their time. Although this study attempted to cre-

ate a high-stakes environment with substantial task-

based bonuses, these incentives may not have been

high enough to motivate participants toward deeper

engagement.

6 Limitations and Future

Work

Although the “Evaluative AI” framework is theoret-

ically well-founded, with Le et al. (2024a) report-

ing promising results in similar studies, the present

study reveals that implementing and examining such

a framework in practice is challenging. There are sev-

eral points future researchers and practitioners should

consider.

Contrary to expectations, no performance im-

provements could be measured using an AI system

based on the framework. One aspect worth dis-

cussing is the fundamental machine learning model

used, along with the generated evidence. The model

applied here did not significantly outperform the par-

ticipants, which may have contributed to the absence

of notable improvements. Nevertheless, it was compa-

rable to models from related literature. Even though

Goh et al. (2024) noted that improvements are not

guaranteed under these circumstances, this compari-

son may be an essential baseline to achieve.

The pro and con evidence should be presented

in a way that is clear and accessible to users. This

study found that many participants did not make use

of them. While XAI research offers various options

for optimally presenting explanations, research specif-

ically focusing on hypothesis-driven AI could investi-

gate ways to improve the clarity and usability of these

presentations. Mixed-methods approaches should also

be applied to better understand participants’ decision-

making processes.

Another relevant point is the importance of testing

AI systems across enough domains to ensure external

validity. Previous research has shown multiple times

that results can be influenced by the domains in which

they are applied (Bogard and Shu, 2022; Kornowicz

and Thommes, 2024; Le et al., 2023).

One further limitation is the use of laypeople for

empirical evaluation. Miller (2023) argued that the

framework should ideally be applied in medium/high-

stakes situations, which likely require domain-specific

knowledge. Lastly, the decision problem could be ex-

panded from binary to multi-class decisions. For ex-

ample, Miller (2023) presents a diagnostic scenario

involving multiple diseases, where several hypotheses

can be individually assessed.

7 Conclusion

The present study examines the effectiveness of the

“Evaluative AI” framework, focusing on the provision

of pro and con evidence within a hypothesis-driven

AI approach. Results from the behavioral experiment

paint a sobering picture: decision-making performance

did not improve; instead, all participants who received

evidence from the AI were slower in making decisions,

although cognitive load remained unaffected. Qualita-
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tive data indicated that all AI systems led to a form

of cognitive offloading and potential automation bias,

with a significant portion of participants engaging only

superficially with the evidence presented.

Although the study questions the empirical valid-

ity of the proposed framework, there are limitations

that should be addressed in future research. These in-

clude developing appropriate AI systems, investigat-

ing the presentation of pro and con evidence, con-

sidering alternative forms of decision-making, involv-

ing domain-specific experiments, and better simulat-

ing high-stakes situations. Despite the present find-

ings, the evaluative AI framework is a well-conceived

model with the potential to be a promising direction

for AI-based decision support.
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A Instructions

Dear Participant,

Thank you for your interest in our study. This page provides you with detailed instructions to guide you

through the study. Please read them carefully before you begin.

Study Overview

This study focuses on income estimation, where you assess whether a person’s net income is above the median

income. The median income is the point at which half of the employed population earns more and the other

half earns less. In this study, ”above the median” means that the person’s income belongs to the richer half of

the population.

This involves individuals from Germany. The median income is €1615 net per month. This includes all

employed persons over 18 years old who are not receiving a pension.

You will participate in 4 rounds. In each round, you will receive information about a real person. Your

task is to estimate the probability, using percentages, that this person’s income is above the median.

At the end of the study, your estimates will be compared with the actual data to determine whether the

person’s income is indeed higher than the median. Based on this comparison, you will receive a bonus payment.

The bonus is calculated using the so-called Brier Score. For example, if you always say the probability is 50%,

the Brier Score is 0.25, and in this case, you will not receive a bonus. The better your probability estimates,

the smaller the Brier Score and the higher your bonus payment. With a Brier Score of 0, you have estimated

perfectly and will receive a bonus of £6. Regardless of your performance, you will receive a fixed compensation

of £3 for participating in the study.

[ if treatment is not Control ]

Artificial Intelligence (AI) Support

You will receive support from an Artificial Intelligence (AI) for your income estimates. The AI was trained

using data from over 1,500 individuals to estimate as accurately as possible whether their income is above the

median. The AI is not perfect; it is correct 77% of the time.

[ if treatment is Recommendation Only ] The AI will provide you with recommendations on the probability

that each person’s income is above the median. For example, the AI might say that it believes the probability

is 65%. [ endif ]

[ if treatment is Evidence Only or treatment is Evaluative AI ] The AI will provide you with arguments

for (pro) and against (contra) each person’s income potential to assist you in your estimation.[ if treatment is

Evaluative AI ] You can open the arguments with the respective buttons. [ endif ] [ endif ]

[ if treatment is Recommendation and Evidence ] The AI will provide you with recommendations on the

probability that each person’s income is above the median. For example, the AI might say that it believes the

probability is 65%. Additionally, it will provide you with arguments for (pro) and against (contra) the income

potential to assist you in your estimation. [ endif ]

[ if treatment is not Recommendation Only ] The AI bases its arguments on its learned knowledge and the

characteristics of the evaluated individuals. For each characteristic, the AI indicates whether it is more likely

to lead to an income above the median (positive arguments) or more likely to lead to an income below the

median (negative arguments). Each characteristic of the individuals is rated with a number. The more positive

the number, the more the AI views the characteristic as conducive to an income above the median. Conversely,

the more negative the number, the more the AI views the characteristic as conducive to an income below the

median. These numbers are displayed separately in bar charts. Additionally, below each chart, there is a text

that briefly explains the arguments. [ endif ] [ endif ]

Survey After completing all task rounds, you will be asked to fill out a survey.

B Screenshots
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Figure 11: Time to Click (s) by Task Number and Evidence Type with 95% Confidence

Intervals. This bar chart shows the average time taken (in seconds) to click on negative ev-

idence (red) or positive evidence (green), across four tasks. Significant differences between

evidence types and task numbers are highlighted with p-values (p < 0.01, p < 0.001).

Figure 12: Translated interface in Control : The features with their values are listed at the top, followed

by the input field for the participant below.
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Figure 13: Translated interface in Recommendation Only : The features with their values are listed at

the top, followed by the input field for the participant, and below that, the AI recommendation.
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Figure 14: Translated interface in Evidence Only : Due to space constraints in the screenshot, the

features and input field were not included, only the presentation of the pro and con evidence.
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Figure 15: Translated interface in Recommendation and Evidence: Due to space constraints in the

screenshot, the features and input field were not included, only the recommendation and the presen-

tation of the pro and con evidence.
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Figure 16: Translated interface in Evaluative AI : Due to space constraints in the screenshot, the

features and input field were not included, only the button for the con evidence and the already

displayed pro evidence.
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