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Abstract

Personalized learning represents a promising educational
strategy within intelligent educational systems, aiming to en-
hance learners’ practice efficiency. However, the discrepancy
between offline metrics and online performance significantly
impedes their progress. To address this challenge, we in-
troduce Agent4Edu, a novel personalized learning simula-
tor leveraging recent advancements in human intelligence
through large language models (LLMs). Agent4Edu features
LLM-powered generative agents equipped with learner pro-
file, memory, and action modules tailored to personalized
learning algorithms. The learner profiles are initialized us-
ing real-world response data, capturing practice styles and
cognitive factors. Inspired by human psychology theory, the
memory module records practice facts and high-level sum-
maries, integrating reflection mechanisms. The action module
supports various behaviors, including exercise understand-
ing, analysis, and response generation. Each agent can in-
teract with personalized learning algorithms, such as com-
puterized adaptive testing, enabling a multifaceted evaluation
and enhancement of customized services. Through a com-
prehensive assessment, we explore the strengths and weak-
nesses of Agent4Edu, emphasizing the consistency and dis-
crepancies in responses between agents and human learn-
ers. The code, data, and appendix are publicly available at
https://github.com/bigdata-ustc/Agent4Edu.

1 Introduction
Intelligent education platforms like Coursera.com and Leet-
Code.com provide a rich array of learning resources, such
as courses and exercises, within a flexible online environ-
ment. The accessibility and convenience of these platforms
have attracted a growing number of learners. A key online
learning activity is “practice”, where learners independently
select and answer exercises. The platforms record their re-
sponses, such as the correctness of their answers. By ana-
lyzing response data, many personalized learning services,
such as exercise recommendations, knowledge tracing, and
computerized adaptive testing, can be tailored to meet each
learner’s specific needs, enhancing the learning process and
increasing learner satisfaction. For instance, on LeetCode,
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analyzing a learner’s historical programming experiences al-
lows the platform to recommend exercises of appropriate
difficulty levels, thus optimizing learning gains.

The effectiveness of personalized learning services hinges
on the availability of high-quality response data for the cor-
responding algorithm training. However, the scarcity of of-
fline response data and potential biases in its correlation with
online practice introduces a significant gap between offline
metrics and actual online performance. This discrepancy im-
pedes the integration of research with real-world applica-
tions. To bridge this gap, a promising approach is to simulate
learner response data. Imagine an online platform equipped
with a configurable simulation system that faithfully cap-
tures human learners’ response patterns while seamlessly in-
teracting with personalized learning algorithms. Such a sim-
ulator undoubtedly has the potential to revolutionize the tra-
ditional research paradigm in intelligent education, provid-
ing innovative avenues for response data collection, person-
alized algorithm development and evaluation.

Several approaches to simulating learner response data
have been proposed and have achieved notable suc-
cess (Piech et al. 2015; Zhao et al. 2023). However, two
major limitations exist in current approaches: (1) Simpli-
fied Simulations. Most existing studies predict learners’ re-
sponses (e.g., correct or incorrect answers) without consid-
ering the detailed answer processes by which humans use
their knowledge to understand, analyze, and solve prob-
lems. Hence, these simulations may lack reliability and in-
terpretability. (2) Dependency on Real Response Data.
An ideal simulator should be capable of simulating learner
responses even when real-world datasets are insufficiently
available, thereby enhancing its applicability. However, cur-
rent methods require high-quality real-world data to train
the simulation strategy. As a result, these methods can only
generate learner response data similar to existing real-world
datasets and struggle to generalize to more challenging sce-
narios, such as zero-shot simulations.

Recent advancements in large language models (LLMs)
have demonstrated remarkable capabilities in autonomous
interaction and decision-making (Brown et al. 2020; Ouyang
et al. 2022; Yue et al. 2023; Jin et al. 2023; Long et al. 2024).
These advancements underscore the potential of leverag-
ing LLM-powered agents to simulate human social behav-
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iors, such as daily life in Smallville (Park et al. 2023) and
software development (Qian et al. 2023). LLM-based user
simulators possess rich pre-trained knowledge and human-
like intelligence, enabling them to perceive and simulate
intricate human practice processes. Furthermore, their in-
context learning ability allows LLMs to perform zero-shot
simulations with minimal reliance on real-world data (Wang
et al. 2023c). Consequently, LLM-based generative agents
present a promising approach for addressing the current lim-
itations of learner response simulators.

In this paper, we introduce Agent4Edu, a personalized
learning simulator designed for intelligent educational sys-
tems, comprising two key components: an LLM-powered
generative agent and a personalized learning environ-
ment (see the framework in Figure 1). From a learner per-
spective, the LLM-powered generative agent is responsible
for simulating learners’ response data by capturing their re-
sponse patterns and inferring problem-solving actions. Each
agent is initialized based on available learner response data
and consists of three modules: a learner profile, memory, and
action module. The learner profile module stores learners’
past practice styles (e.g., activity) and cognitive factors (e.g.,
ability), aligning with human learners’ learning status. The
memory module, inspired by psychological theories (Baker
2001) and human learning mechanism (Wang et al. 2023d),
records past practice experiences and summarizes learn-
ing status through reflections. This facilitates coherent ob-
servations, monitors knowledge proficiency evolution, rein-
forces memory, and simulates human forgetting. The action
module enables agents to choose, understand, analyze, and
solve exercises recommended by personalized learning algo-
rithms, leading to more reliable and interpretable response
generation. Our agent can also utilize tools, such as em-
ploying the psychological IRT model (Baker 2001) to as-
sess ability within the Profile module and using DNeural-
CDM (Wang et al. 2023a) to trace knowledge proficiency
evolution within the Memory module. From a personalized
learning perspective, the learning environment can be con-
figured with any personalized learning algorithm, allowing
agents to interact directly and simulate a real learning en-
vironment. Notably, despite extensive research on simulat-
ing user behavior with generative agents, we are the first to
focus specifically on educational scenarios to generate re-
sponse data for individual learners.

Our main contributions are summarized as follows:

• We develop Agent4Edu, a personalized learning simulator
that leverages LLM-powered generative agents to simu-
late human learners’ response data as well as demonstrate
the practice process. Additionally, the agent interacts with
personalized learning environments to evaluate and im-
prove intelligent tutoring algorithms.

• Our generative agents, featuring profile, memory, and
action modules specifically designed for “Education”,
can not only generate response data but also accurately
simulate human choices, understanding, analysis, and
problem-solving for exercises, outperforming existing
learner simulation methods.

• To systematically evaluate Agent4Edu, we conduct com-

prehensive experiments from both the agent and person-
alized learning perspectives. From the agent perspective,
we assess the consistency between the agents and human
learners. From the learning perspective, we evaluate and
improve personalized learning algorithms for computer-
ized adaptive testing, based on generative agents and sim-
ulated data. Extensive experimental results demonstrate
the effectiveness of Agent4Edu.

2 Related Work
Learner Response Data Simulation Learner Simulation
aims to address the shortage of high-quality practice data
in intelligent educational systems and has been applied in
numerous previous studies (Zhao et al. 2023; Yao et al.
2024). Memory-based (Reddy, Levine, and Dragan 2017) re-
lies on manually crafted rules to predict learners’ responses
or memory behavior. EERNN (Su et al. 2018) and KES (Liu
et al. 2019) utilize RNN-based models to forecast learn-
ers’ performance. DAISim (Zhao et al. 2023) constructs
learner simulations as Markov decision processes, simulta-
neously considering learners’ long and short-term question-
answering patterns. However, the memory-based simulator
is overly simplistic and cannot simulate complex interac-
tions. Most other learner simulators simplify the student an-
swering process and face challenges in conducting zero-shot
simulations due to their reliance on data. In this paper, we
employ an LLM-powered agent to simulate the student prac-
tice process, addressing these limitations.
Personalized Learning Services Intelligent educational
systems offer learners personalized learning services, in-
cluding Computerized Adaptive Testing (CAT) (Chang and
Ying 1996), exercise recommendation (Huang et al. 2019)
and learning path suggestions (Liu et al. 2019), to help learn-
ers enhance their skills. In this work, we select the represen-
tative and popular CAT services as our personalized learning
scenarios for our study and experiments. CAT is an advanced
educational measurement method that evaluates the knowl-
edge level of examinees in minor exercises, which has been
widely used in various standardized tests (e.g., GMAT and
GRE) (Zhuang et al. 2024; Bi et al. 2020; Lord 2012; Chang
and Ying 1996). However, current CAT models require high-
quality practice data to train a cognitive diagnosis model for
evaluating learner ability or knowledge proficiency, which
is often challenging to gather. Therefore, in this paper, we
employ the CAT service within learning systems to assess
the quality of the data generated by our agents. Addition-
ally, we investigate the potential for enhancing CAT models
using simulated data.
LLM-based Agents LLM-based generative agents demon-
strate the remarkable capabilities to perceive their environ-
ment, make decisions, and take actions, thus, emerging a
substantial amount of research (Wang et al. 2024b). The
development of generative agents (Park et al. 2023), de-
signed with profile, memory, action, and reflective capa-
bilities, represents pioneering work in simulating human
daily life. Within this general framework, agents tailored
to specific tasks (Qian et al. 2023; Wu et al. 2023; Wang
et al. 2023b; Huang et al. 2023; Zhang et al. 2023b,a)
and simulations (Gao et al. 2023; Wang et al. 2023d; Park



et al. 2023; Liu et al. 2023; Wang et al. 2023c) have been
constructed. Recent research highlights bringing generative
agents to educational settings (Li et al. 2024; Dan et al. 2023;
Kieser et al. 2023). For example, (Qadir 2023; Rahman and
Watanobe 2023) conclude the applications of ChatGPT to
engineering education. (Baidoo-Anu and Ansah 2023) focus
on the literature review over the published paper. Socrati-
cLM (Liu et al.) embodies a “Thought-Provoking” teaching
paradigm, engaging students in active problem-solving, akin
to a real classroom teacher. The most relevant part of our
work is EduAgent (Xu, Zhang, and Qin 2024) which uti-
lizes LLM-based agents to simulate learners studying Pow-
erPoint presentations and videos, predicting their quiz out-
comes to assess performance. However, this approach re-
lies on expert-annotated cognitive factors to initialize agents,
disregarding the understanding and analysis of exercises. In
contrast, our Agent4Edu extracts cognitive factors from data
using tools and captures practice styles, allowing it to sim-
ulate the detailed exercise understanding and analysis pro-
cess and interact effectively with personalized learning al-
gorithms.

3 Agent4Edu
Agent4Edu is a personalized learning simulator, aimed at
accurately simulating learners’ response data and facilitat-
ing responsive personalized learning algorithms. It contains
two key components: (1) LLM-powered generative agents
that capture learners’ practice patterns and cognitive pref-
erences to simulate their response, and (2) a personalized
learning environment that interacts with agents to support
accurate and interpretable evaluations and improvements of
mainstream intelligent algorithms (e.g., computerized adap-
tive testing). The framework of Agent4Edu is illustrated in
Figure 1. All the prompts are listed in Appendix C.

3.1 Task Formulation
Suppose there are |U | learners, |E| exercises in an in-
telligent educational system. For a learner u ∈ U ,
his/her response data are denoted as a time-ordered set
lu = {(e1, ce1 , yu,e1), (e2, ce2 , yu,e2), . . . , (en, cen , yu,en)},
where ei ∈ E represents the exercise that learner u practiced
at step i, and yu,ei is u’s response to exercise ei, which is
usually denoted as a binary value, i.e., if learner u answers
ei correctly, yi = 1 otherwise yi = 0. ce denotes textual
information of each exercise e ∈ E, e.g., textual content
and corresponding knowledge concepts. We provide ce in a
< key, value > form, as the example in Figure 1.

Based on the above conditions, the simulator’s overarch-
ing goal is to faithfully distill the human learners’ learning
patterns and cognitive preferences, and accurately generate
their future response data on unseen exercises. Please note
that existing personalized learning algorithms usually as-
sume that learners only submit each exercise once, so re-
peated submission is not considered in our simulation.

3.2 LLM-powered Agent
The generative agent in Agent4Edu uses LLM as its foun-
dational architecture, enhancing its functionality tailored for

the personalized learning scenario through three specialized
modules: learner profile, memory, and action modules. To
mimic actual personalized practice responses akin to hu-
mans, we construct an individual agent agentu for each
learner u. Each agent integrates a learner profile module
aimed at reflecting personalized practice patterns and cog-
nitive factors. Additionally, each agent is equipped with a
memory module designed to store past practice records and
summarize high-level ideas. To simulate learner practice be-
havior more cohesively, the agent is also equipped with an
action module.

Learner Profile Module The learner profile module rep-
resents some overall learning features of human learners,
which are typically stable and derived from long-term learn-
ing experiences. We configure each agent agentu’s profile
based on its corresponding learner u’s response data1. Each
agent’s initial configuration is divided into two categories:
explicit practice styles and implicit cognitive factors.

Practice styles are statistical features explicitly derived
from the available practice record lu of each learner u, such
as learning activity (Baker 2001; Gao et al. 2021), practice
diversity (Bi et al. 2020), success rate, and preference. Activ-
ity indicates learners’ enthusiasm for learning and provides
clues for simulating their practice behaviors. For example,
learners with higher enthusiasm for learning usually perform
better. Mathematically, the activity level of learner u is de-
fined as Pu

act =
|lu|
|E| . Practice diversity reflects the knowledge

coverage practiced by learners, represented as Pu
div = |Ku|

|K| ,
where |Ku| is the number of knowledge concepts practiced
by learner u. Higher diversity indicates greater curiosity
in learners. Success rate correlates with the probability of
learners answering questions correctly, making it another es-
sential characteristic. The success rate for learner u is math-
ematically represented as Pu

suc =

∑
yu,ei

∈lu
yu,ei

|lu| . Preference
refers to the knowledge concepts that learners practice most
frequently.

Cognitive factors are implicit features studied in psychol-
ogy (Baker 2001; Chen et al. 2024), which significantly im-
pact learner u’s practice performance. We select problem-
solving ability and knowledge proficiency (Cheng et al.
2024) for this study. Problem-solving ability is assumed
to be stable during the learning process, while knowledge
proficiency typically evolves with learning progress (Huang
et al. 2020). Therefore, in the profile module, we only con-
figure the ability factor Pu

ab, with knowledge mastery being
considered in the subsequent memory module. To obtain im-
plicit ability, we assign a psychological IRT model (Baker
2001) trained on the observed learner response records, as
the tool for the agent, allowing it to infer each learner u’s
ability factor from the response data lu. The training and use
of the IRT tool are detailed in Appendix B.

Notably, we segment the values of each of the above fea-
tures into several tiers in order to better prompt the gen-
erative agent inspired by (Wang et al. 2023d). For a de-

1Note that if zero-shot simulations are performed and user data
is unavailable, the profile needs to be randomly generated.
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Figure 1: The overall framework of Agent4Edu.

tailed exposition, refer to Appendix A.1. Additionally, to en-
sure broad applicability and protect privacy, certain personal
identifiers (such as name, gender, age, and occupation) are
intentionally anonymized in this work (Zhang et al. 2023a;
Li et al. 2023). While these attributes may help shape other
types of agents, they are not primary factors affecting prac-
tice performance in education. Our approach, based on both
behavioral practice styles and psychological cognitive set-
tings, can support a comprehensive representation of real
learners.

Memory Module The Memory module allows the LLM-
based agent agentu to observe and summarize its corre-
sponding learner u’s past practice experiences step by step.
This module provides insightful clues to the agent for re-
sponse simulation on unseen exercises. We follow the hu-
man learning mechanism (Atkinson 1968a; Cowan 2008;
Huang et al. 2020; Wang et al. 2023d) to design three types
of memories for each agent: factual memory, short-term
memory, and long-term memory. Each memory is initially
set to empty.
• Factual Memory: In our simulation, factual memory is de-
fined as the true learner’s past response records (i.e., obser-
vations). When the agent obtains a new response record of
learner u at step i, i.e., lu,i = (ei, cei , yu,ei), the response
record is transmitted to the factual memory for processing.

Inspired by human learning mechanisms, if an agent re-
peatedly practices similar questions or knowledge, their
memory is strengthened (Huang et al. 2020). Therefore,
we introduce an additional counter fu,i (initially set to 1)
for each record lu,i in factual memory to track the num-
ber of times it has been reinforced, a simple yet effec-
tive method that has been successfully used in user pref-
erence simulation (Wang et al. 2023d). Formally, for each
agent agentu, assume it has observed n factual memories is
Mu = {lu,1, lu,2, . . . , lu,n}, then it is allowed to receive a
new response record lu,n+1. We first calculate the similarity

between lu,n+1 and each existing factual memory lu,i in the
current memory Mu. The similarity between records can be
defined as a metric that can be evaluated by LLMs, cosine
similarity between text vectors, and other similar measures.
In this case, we use the similarity relationships between the
knowledge concepts involved in the records for the calcu-
lation. Specifically, we employ the statistical tool2 released
by RCD (Gao et al. 2021) to determine whether two knowl-
edge concepts are similar. If there is a similarity between the
knowledge concepts involved in two records, the two records
are considered similar. For similar records, we increment the
counter for lu,i by 1 (i.e., fu,i ← fu,i + 1), indicating that
it has been reinforced by lu,n+1, and then add lu,n+1 to fac-
tual memory; otherwise, lu,n+1 is directly recorded without
any reinforcement. After processing and saving a new re-
sponse record, factual memory triggers updating short-term
and long-term memories.

We emphasize that the agent can only save response
records into factual memory but cannot directly retrieve it,
thereby allowing the retention of all exercise textual in-
formation and responses without being constrained by the
LLM’s context length limitations.
• Short-term Memory: Human short-term memory refers
to the recent and temporary information that can be re-
tained and recalled over a relatively brief period (Atkin-
son 1968b). Therefore, in our simulation, short-term mem-
ory is employed to retain the details of the agent’s most re-
cent observed s records. Assuming the current factual mem-
ory of agent agentu is Mu = {lu,1, lu,2, . . . , lu,n}, then
the short-term memory storage is defined as Mu,short =
{lu,n−s+1, . . . , lu,n}.
• Long-term Memory: Long-term memory is formed through
the reinforcement of memories from repeated practice
and self-reflection inspired by to human long-term memo-
ries (Matelsky et al. 2023). It possesses a wide receptive

2https://github.com/bigdata-ustc/RCD



field, allowing it to retain information observed long ago
and generate high-level insights. We design the long-term
memory using three types of information: (1) Reinforced
Facts: During each update of long-term memory, the agent
agentu first goes through the current factual memory Mu.
When the count fu,i of a record lu,i exceeds a preset thresh-
old F , indicating that the memory has been reinforced F
times, it is converted into long-term memory. (2) Learn-
ing Process Summary: We utilize the LLM embedded in
the agent to summarize the agent’s learning status from both
short-term and long-term memories by Memory Reflection.
Each step of the summary replaces the previous summary.
The summary consists of linguistic descriptions of the prac-
tice process and new insights from the agent itself. It over-
looks practice details to filter out noise, irrelevant content, or
potentially misleading information. Furthermore, compress-
ing memory conserves significant space and enhances op-
erational efficiency. (3) Knowledge Proficiency: We allow
the agent to use an optimized DNeuralCDM (Wang et al.
2023a) based on the observed learner response data as a tool
to obtain the learner’s dynamic proficiency (segmented into
several tiers) evolution of specific knowledge concepts af-
ter each step of practice. The knowledge proficiency is a
kind of dynamic cognitive factor significantly reflecting hu-
man responses in education (Piech et al. 2015; Wang et al.
2024a). The training and use of DNeuralCDM are given in
Appendix B.

Additionally, each factual record in long-term memory
may be forgotten following the human forgetting curve the-
ory (Averell and Heathcote 2011; Huang et al. 2020) that hu-
man memory decay starts rapidly and then gradually slows
over time. We define a forgetting function associated times-
tamp i and current observed step n, i.e., g(lu,i) = 1

1+e−(n−i) ,
to simulate human learners’ forgetting. For each factual
record in the long-term memory Mu, it is forgotten if g(lu,i)
exceeds a predetermined threshold λ and its reinforcement
frequency fu,i in factual memory is then reset as 1.

Overall, the factual response records are specific, while
learning memory summaries are more general. By combin-
ing them, the agent can accurately perceive the learner’s
practice process. Please note that traditional simula-
tors (Piech et al. 2015; Zhao et al. 2023) can be regarded as
owning the short-term memory but no long-term memory.

To help agents interact with the personalized learning en-
vironment, we introduce three memory operations:
• Memory Retrieval: This operation assists the agent in ex-
tracting related information from memory. We allow the
agent to retrieve the short-term and long-term memories
finding reinforced facts and conducting summary.
• Memory Writing: The raw observations are firstly input
into the factual memory as facts. Then the recent facts are
stored in short-term memory and the reinforced facts are
written into long-term memory.
• Memory Reflection: This operation occurs exclusively
within long-term memory containing two aspects of reflec-
tions: (1) Summary Reflection is performed to summarize
high-level ideas based on short-term and long-term mem-
ories, and (2) Corrective Reflection is performed when the
agent’s action is inconsistent with the real learner, which will

be introduced in Action Module.

Action Module To equip the agent with learner profiles
and memory modules, enabling it to exhibit human-like
problem-solving behaviors and responses based on current
observations, we design a specialized action module for each
agent within Agent4Edu tailored for personalized learning.
This module encompasses three main categories of actions:
• Cognitive-driven Actions: In our simulation, personalized
learning algorithms recommend one exercise to the agent at
each step. The agent read the exercise’s content and decides
whether or not to practice it, based on current cognitive fac-
tors. If the exercise is too challenging relative to the agent’s
assessed ability and knowledge proficiency, the agent can
opt to reject the recommended exercise.
• Reading and Understanding Exercises. Simulating the
process of reading and understanding exercises, similar to
how humans approach them, provides valuable and inter-
pretable insights into the agents. During each practice ses-
sion, the agent is first required to identify and describe a
knowledge concept assessed by the current exercise. If the
agent correctly matches the exercise’s knowledge concept, it
demonstrates an understanding of the exercise context akin
to human learners. If the agent fails to do so, a corrective
reflection is triggered to guide the agent towards the cor-
rect knowledge concept. This method reduces the risk of in-
accuracies and ensures the agent’s credibility in simulating
learner response (Zhang et al. 2023a).
• Analyzing and Solving Exercises. Analyzing and solving
exercises are crucial aspects of the learning process. Un-
like previous simulation methods that directly predict the
learner’s response in terms of answer correctness, our simu-
lation requires the agent to emulate the learner’s answering
process, which enhances both interpretability and credibil-
ity. To simulate this complex answer process more effec-
tively, we improve agent’s reasoning ability through a chain-
of-thought approach (Wei et al. 2022). Initially, the agent
combines its profile and memories to formulate an initial
solution idea for the exercise. Then, it writes the final an-
swer to the exercise based on the solution idea. Afterwards,
the agent predicts whether its answer is correct (i.e., perfor-
mance prediction). If the predicted response does not match
the real learner’s response, a corrective reflection is trig-
gered. Note that, if standard answers of exercises are avail-
able, a scoring program can be designed to directly assess
the correctness of the agent’s answer.

3.3 Personalized Learning Scenarios
Agent4Edu simulates agent and learning environment inter-
action (see Appendix D for a case study). The learning en-
vironment is designed as a standalone module that incorpo-
rates a series of personalized algorithms. These algorithms
can recommend exercises to agents based on their past prac-
tice data. For instance, our experiments utilize computerized
adaptive testing (CAT) strategies (Bi et al. 2020) for per-
sonalized learning. The module features an open interface,
allowing researchers and practitioners to integrate external
personalized learning algorithms seamlessly. This adaptabil-
ity ensures that Agent4Edu serves as a versatile platform for



comprehensive evaluations and the future collection of valu-
able learner response data.

4 Experiment
Dataset Our dataset, called EduData, is provided by iFLY-
TEK Co., Ltd. It comprises 18,045 time-ordered response
records from 500 Chinese high school students in the sub-
jects of mathematics and physics. Each record includes the
exercise ID, correctness, and timestamp. There are 1,032 ex-
ercises and 458 knowledge concepts in total, with each ex-
ercise testing one knowledge concept. Additionally, to fa-
cilitate reasoning and reflection for LLM-based agents, the
platform provider has furnished us with the textual content
of the exercises. In the experiment, we translate all Chinese
text of exercises into English.

Experimental Setup We use GPT-3.5-turbo and GPT-4
through OpenAI’s API service 3 to construct the agent for
experimentation. When operating under the GPT-3.5-turbo
configuration, all response data is utilized for experiments.
Due to cost considerations, we simulate the task records of
only 100 learners under the GPT-4 setting. The temperature
parameter of GPT is 0 to avoid randomness. Empirically,
we set the short-term memory size to 5, the threshold F for
memory enhancement is 5, and the threshold λ for forgetting
in long-term memory is 0.99. Note that, in our experiments,
unless explicitly specified, the LLM used is GPT-3.5-turbo.

4.1 LLM-based Agent Simulation Evaluation
Motivation: The LLM-based agent is the core component
of Agent4Edu. Exploring whether the agent can truly simu-
late human learners’ practice response is crucial for enhanc-
ing intelligent educational systems. We evaluate the effec-
tiveness of the generative agent, including response simula-
tion, exercises’ knowledge understanding, zero-shot simula-
tions, and ablation experiments.

Learner Simulation Evaluation The agent aims to gen-
erate simulated learner response data that closely approx-
imates real responses. To validate the effectiveness of the
simulation, we compare it with two traditional supervised
simulation methods, including DAISIM (Zhao et al. 2023)
and KES (Liu et al. 2019). Additionally, to enrich our
baseline for a compelling comparison, we include several
Knowledge Tracing (KT) models, such as DKVMN (Zhang
et al. 2017), EERNN (with Markov) (Su et al. 2018) and
SAKT (Pandey and Karypis 2019), which are similar to the
learner simulator in terms of response prediction.

In the experimental setup, each learner’s records are di-
vided into a 90% training set and a 10% test set. Each base-
line model which is data-driven is trained on the training
data, with the last 20% records of each learner’s training data
used for model validation. The agent has access to all train-
ing data to generate profiles and update its memory through
reflection. During the testing phase, each trained baseline is
tasked with predicting learners’ binary responses (correct or

3The detailed GPT versions: GPT-3.5-turbo-1106 (up to Sep.
2021) and GPT-4-turbo (up to Dec. 2023).

Table 1: Prediction scores (%) on evaluating simulation per-
formance. The best results are bold, the second-best results
are marked by an underline, and ↑ means the higher score
the better performance, the same as below. Agent4Edu100
indicates a basic exploratory on simulating 100 learners.

Model ACC ↑ F1-score ↑ ROUGE-3 ↑
KES 50.11 58.32 25.77
DKVMN 64.39 76.70 37.24
EERNN 65.72 76.06 43.55
SAKT 65.52 78.33 31.09
DAISIM 65.63 78.25 31.72
Agent4Edu (GPT-3.5-turbo) 66.70 79.84 37.97
Agent4Edu (GPT-3.5-turbo)100 65.40 78.72 35.14
Agent4Edu (GPT-4)100 66.51 79.53 34.86

incorrect) to unseen exercises in the test data. For our gen-
erative agent, exercises from the test data are sequentially
sent to it, and it performs the designed three actions to solve
them. If the agent rejects an exercise due to its difficulty,
we label its response as an “incorrect answer”. The eval-
uation metrics are selected from two perspectives. Firstly,
we use accuracy (ACC) and F1-score to measure predic-
tion accuracy. Secondly, we assess the similarity between
the simulated and real data distributions using ROUGE-3,
inspired by (Zhao et al. 2023). We repeatedly run each base-
line model five times in the same setups and the Table 1
reports the average scores.

The experimental results indicate that Agent4Edu (GPT-
3.5-turbo) demonstrates strong competitiveness compared to
the supervised baselines, particularly in terms of ACC and
F1-score. This suggests that the LLM-based agent has the
potential to generate learner response data that closely re-
sembles real-world datasets. Furthermore, among the base-
lines, EERNN performs exceptionally well by effectively
modeling the exercise content as supplementary clues. Fi-
nally, an exploratory simulation conducted using Agent4Edu
(GPT-3.5-turbo and GPT-4) on a subset of data with 100
learners shows that they enable the simulated distribution to
closely approach the real distribution. Among them, GPT-4
performs better in terms of ACC and F1-score.

Additionally, we evaluate whether the simulated distribu-
tion of the agent’s practice success rate aligns with the actual
distribution of learner data. We use the real response success
rate as the ground truth and then replace the corresponding
responses in the real sequence with the predicted responses
from the test data to calculate the agent’s simulated success
rate, as shown in Figure 2 (a). The comparison between the
ground truth values and the agent’s results indicates that the
simulated data effectively captures the learners’ practice pat-
terns related to success rate.

Understanding Exercise-related Knowledge To evalu-
ate whether the agent understands a specific exercise, the
agent is tasked with generating the knowledge concept tested
by the exercise. Specifically, we create a candidate list con-
taining one actual knowledge concept related to the exercise
and two random knowledge concepts unrelated to the ex-
ercise. The agent must then select the relevant knowledge



Agent4Edu

Human

23.00%

37.33%

39.67%

Agent4Edu

Human

12.33%

42.67%

45.00%

Answering Summarization

Agent4Edu Win Agent4Edu LoseTie

0.5

0.6

0.7

complete w/o prof

w/o mem w/o enh

w/o fgt w/o ref

(c)

Knowledge Pre. Response Pre.

A
C

C

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s 

R
at

e
Su

cc
es

s 
R

at
e

(a)

1 250

1 500250

(b)

Ground-truth

Agent4Edu

500

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

Figure 2: (a) Comparison between the success rate distributions of ground-truth and agent-simulated response data. (b) Using
LLMs as judges to identify whether the records of the agent’s simulations originate from real humans. (c) The ablation studies.

Table 2: The ACC of knowledge prediction.

Model ACC ↑
Agent4Edu (GPT-3.5-turbo) 73.88
Agent4Edu (GPT-3.5-turbo)100 74.57
Agent4Edu (GPT-4)100 82.43

concept from this list based on its understanding (detailed
prompts are provided in Appendix C). We use ACC as the
metric to evaluate the agent’s knowledge predictions for all
exercises in the test set, treating it as a binary classifica-
tion task. This section uses the same agents from the section
“Learner Simulation Evaluation”. The experimental results
presented in Table 2, indicate that all the agents can cor-
rectly identify the knowledge being tested in most practice
exercises. This demonstrates the strong human-like ability
and rich knowledge of LLMs to comprehend exercises. Fur-
thermore, under the same conditions with 100 learners, the
agent with GPT-4 is more accurate than the one with GPT-
3.5-turbo, indicating that GPT-4 has a stronger semantic un-
derstanding ability compared to GPT-3.5-turbo.

Zero-shot Simulation Zero-shot simulation presents a
significant challenge in real-world applications, particularly
when learners are in a cold-start situation where their re-
sponse data is unavailable. This limitation restricts the ap-
plicability of previous simulation models. To validate the
zero-shot simulation capability of the agent, we initial-
ize 10 agents with randomly generated profiles and have
them sequentially answer 10 randomly selected exercises
with IDs {120, 250, 113, 1330, 568, 1881, 771, 593, 1, 595}.
In this zero-shot scenario, we disable the corrective reflec-
tion mechanism and tools, due to the absence of learner
response data. The summary reflection remains usable for
the agent. Three GPT-3.5-turbo models, with a temperature
parameter of 0.5, act as annotators, tasked with evaluating
whether each simulated record (including exercise answers
and practice summaries) is written by a real human. Records
deemed to be human-written are labeled as “Agent4Edu
Win”, non-human records are labeled as “Lose”, and am-
biguous records are labeled as “Tie”.

Table 3: Multifaceted evaluations of CAT strategies.

Model satisfaction AoD gain

FSI 39 70 48
KLI 39 66 43
MAAT 42 68 45

The results depicted in Figure 2 (b) indicate that the
agent’s performance in summarization is closely aligned
with the real human responses, making differentiation be-
tween the two challenging. However, the agent exhibits cer-
tain limitations in answering exercise tasks compared to
summarization tasks, primarily due to the complexity of rea-
soning required to solve exercises.

Ablation Study We conduct ablation studies to evaluate
the impact of key components within the GPT-3.5-turbo-
powered agent. The results illustrated in Figure 2 (c) show
the accuracy of the agent’s exercise-related knowledge pre-
diction and response prediction under various conditions:
without the profile module (w/o prof), without the memory
module (w/o mem), without the memory enhancement (w/o
enh), without the memory forgetting (w/o fgt), and without
reflection (w/o ref). These findings confirm the effectiveness
of each component in improving the agent’s predictive per-
formance on learners’ response data. However, the ablation
experiments indicate that the impact on knowledge predic-
tion is not significant. This can be attributed to the fact that
the original GPT-3.5-turbo model already possesses a sub-
stantial amount of knowledge, which is sufficient to support
exercise comprehension.

4.2 Personalized Learning

Motivation The primary objective of Agent4Edu is
to comprehensively and accurately evaluate personalized
learning algorithms and use the generated data to enhance
their effectiveness. We aim to validate this objective from
two perspectives: (1) through an agent-based multifaceted
evaluation of personalized learning services, and (2) by as-
sessing the potential improvements in personalized learning
algorithms based on the simulated data.



Multifaceted Evaluation Human learners have multi-
faceted evaluations of different personalized learning ser-
vices, such as whether the recommended task difficulty is
too challenging. Assuming that a generative agent can ac-
curately simulate the behavior of real learners, its evalua-
tion of personalized algorithms tends to align with human
evaluations. We utilize the Computerized Adaptive Testing
(CAT) which aims to estimate learners’ ability or knowledge
proficiency with minor exercises, as the experimental envi-
ronment, including FSI (Lord 2012), KLI (Chang and Ying
1996), and MAAT (Bi et al. 2020). We use 100 randomly
initialized agents to generate virtual data for pretraining the
cognitive diagnosis model (i.e., the IRT model (Baker 2001))
in the CAT algorithm for learner evaluation. Based on this,
each adaptive algorithm iterates through 10 rounds to rec-
ommend 100 randomly initialized agents (zero-shot simu-
lation), with one exercise recommendation per round. Upon
the conclusion of personalized testing, each agent is required
to evaluate each CAT algorithm. To achieve this, we design
three evaluation metrics, including satisfaction, appropriate-
ness of difficulty (AoD), and whether there was any gain. Ta-
ble 3 presents a comprehensive evaluation of various strate-
gies, where the element in the i-th row and j-th column rep-
resents the number of agents that consider the correspond-
ing CAT algorithm i to meet the metric j. Clearly, the agent
demonstrates higher satisfaction in recommending MAAT.
This observation aligns with the common understanding in
the research community that MAAT considers both the dif-
ficulty of exercises and the diversity of knowledge (Bi et al.
2020), making the overall service more reasonable. Addi-
tionally, FSI focuses on recommending exercises that are
moderately difficult and likely to provide gain. These find-
ings highlight the LLM-powered agent’s fine-grained evalu-
ation level for learning algorithms.

Personalized Learning Algorithm Improvement We
investigate whether the simulated data generated by
Agent4Edu can enhance personalized learning algorithms.
We select CAT as our personalized learning assessment task
due to their representativeness in intelligent education. If the
generated data can improve the performance of CAT models,
it will indicate the effectiveness of our proposed Agent4Edu.

To set up, we select 60% of the learners’ data from
EduData to train the cognitive diagnosis models (i.e.,
the IRT model) for learner evaluation in CAT algorithms
(i.e., FSI (Lord 2012), KLI (Chang and Ying 1996), and
MAAT (Bi et al. 2020)). The remaining 40% of learners’
data is used to test the CAT models. Furthermore, for each
learner in the test data, we simulate their responses to 20 ran-
domly selected unseen exercises based on their profiles. Us-
ing this strategy, we generate simulated learner data, which
are then merged with the training data from the original Edu-
Data to form the augmented dataset, EduData+. We train the
IRT model in each CAT model using both the original Edu-
Data and EduData+, and then evaluate each CAT strategy by
recommending 5 and 10 test exercises for each learner.

Table 4 lists the IRT prediction performance after retrain-
ing on the testing records via CAT, where F1-score repre-
sents scores on EduData, and F1-score+ represents scores on

Table 4: The improvement of CAT services.

Testing length is 5 Testing length is 10
Model F1-score F1-score+ Imp. F1-score F1-score+ Imp.
FSI 80.11 82.39 +2.28 81.10 82.51 +1.41
KLI 79.45 81.84 +2.39 80.63 82.82 +2.19
MAAT 81.77 81.97 +0.20 81.71 81.88 +0.17

EduData+. The results demonstrate that CAT strategies can
be effectively enhanced with the assistance of Agent4Edu.
This suggests that Agent4Edu is capable of generating high-
quality learner response data, even with randomly initialized
agents (in zero-shot scenarios), thereby enriching the pro-
vided dataset.

5 Conclusion
In this paper, we introduce Agent4Edu, an innovative per-
sonalized learning simulator that leverages LLM-powered
generative agents to simulate learners’ response data, as
well as detailed problem-solving behaviors. Our generative
agents are equipped with learner Profile, Memory and Ac-
tion modules specifically tailored for personalized learning
scenarios. These agents exhibit human-like choosing, under-
standing, analyzing and answering exercises, which accu-
rately predict their future responses. Additionally, the gen-
erative agent can interact with personalized learning en-
vironments to evaluate and enhance intelligent services.
Through comprehensive and meticulous evaluation, we ex-
plore the strengths and weaknesses of Agent4Edu, empha-
sizing the consistency and discrepancies in practice behav-
iors observed between agents and learners. In the future, we
plan to research multi-learner agent cooperation and multi-
modal practice solutions using generative agents. We hope
that our research will provide new insights into the field of
intelligent education.
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