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AI-Compass: A Comprehensive and Effective
Multi-module Testing Tool for AI Systems
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Seyit Camtepe, Praveen Gauravaram, and Huaming Chen†

Abstract—AI systems, in particular with deep learning techniques, have demonstrated superior performance for various real-world
applications. Given the need for tailored optimization in specific scenarios, as well as the concerns related to the exploits of subsurface
vulnerabilities, a more comprehensive and in-depth testing AI system becomes a pivotal topic. We have seen the emergence of testing
tools in real-world applications that aim to expand testing capabilities. However, they often concentrate on ad-hoc tasks, rendering
them unsuitable for simultaneously testing multiple aspects or components. Furthermore, trustworthiness issues arising from
adversarial attacks and the challenge of interpreting deep learning models pose new challenges for developing more comprehensive
and in-depth AI system testing tools. In this study, we design and implement a testing tool, AI-COMPASS, to comprehensively and
effectively evaluate AI systems. The tool extensively assesses multiple measurements towards adversarial robustness, model
interpretability, and performs neuron analysis. The feasibility of the proposed testing tool is thoroughly validated across various
modalities, including image classification, object detection, and text classification. Extensive experiments demonstrate that
AI-COMPASS is the state-of-the-art tool for a comprehensive assessment of the robustness and trustworthiness of AI systems. Our
research sheds light on a general solution for AI systems testing landscape.

Index Terms—Deep learning testing tool, adversarial robustness, model interpretability, neuron analysis.

✦

1 INTRODUCTION

In recent years, the remarkable improvement of deep learn-
ing models have revolutionized the landscape of various
industry sectors and application domains, showcasing their
unparalleled potential in solving complex problems and
driving innovation [1]–[8]. The dynamic interplay between
data-driven insights and sophisticated model architectures
has propelled deep learning to the forefront of modern
technology, enabling groundbreaking advancements across
a myriad of novel applications [9]–[11]. From enhancing
medical diagnostics through image analysis to enabling
autonomous vehicles to navigate and make informed de-
cisions, the transformative capabilities of deep learning
models have left an indelible mark on society [12]–[15]. To
contextualize this transformative power, consider the case
of natural language processing where models like GPT-3
have demonstrated human-level proficiency in generating
coherent and contextually relevant text, ushering in a new
era of interactive and responsive AI systems [16], [17]. Such
remarkable feats underscore the urgent need for a compre-
hensive assessment framework that can holistically evalu-
ate the multifaceted dimensions of deep learning models,
delving into the intricate interplay of vast datasets, intricate
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model architectures, and immense computational resources
that underpin their unprecedented success [18]–[20].

The comprehensive assessment of deployed machine
learning (ML) models, particularly deep learning models,
is of paramount importance [21]. Such assessments serve
as a crucial precautionary measure to uncover potential
pitfalls and unanticipated consequences that could arise
from utilizing inadequately evaluated models [22], [23].
Conducting a thorough performance and security evalua-
tion ensures a nuanced understanding of the models’ ca-
pabilities, limitations, and potential biases, empowering in-
formed decision-making and responsible deployment [24].
Neglecting a comprehensive assessment when deploying
deep learning models can lead to detrimental outcomes.
Biased predictions, unreliable results, and unexpected be-
haviors may emerge, eroding user trust, triggering legal
and ethical challenges, and compromising the models’ real-
world performance [25]. Real-world examples vividly illus-
trate these perils. In healthcare, deploying a poorly assessed
AI diagnostic system could endanger patients through mis-
diagnoses [26]. For instance, malicious actors may mislead
the ML tumor detection system into erroneously classifying
benign tumors as malignant ones by introducing imper-
ceptible perturbations to the original medical images. This
has the potential to misguide the physician’s judgment,
subsequently leading to irreversible harm to the patient’s
health [27]. While inadequately evaluated autonomous ve-
hicles might make flawed decisions, resulting in acci-
dents [28]. For example, attackers can launch attacks on
autonomous driving systems by introducing imperceptible
perturbations to traffic signs. By applying imperceptible
perturbations to stop signs as perceived by human eyes,
the ML system may misclassify them as yield signs. This
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could lead to severe traffic accidents, posing a threat to user
safety [29]. The financial sector is also at risk, as untested
deep learning algorithms in market predictions could yield
severe economic repercussions [30]. These instances under-
score the urgency of a robust assessment framework, which
is essential for mitigating risks and ensuring the safe and
effective deployment of deep learning models [31].

To achieve a comprehensive assessment of deep models,
it is imperative to delve into three pivotal dimensions: ad-
versarial robustness, model explainability, and neuron anal-
ysis [32]–[34]. Adversarial robustness stands as a bulwark,
ensuring consistent performance even amid uncertainties
and adversarial scenarios, thus fortifying its real-world ap-
plicability [35]. Meanwhile, model explainability serves as a
beacon of transparency, demystifying the decision-making
process and fostering trust, especially in contexts where ac-
countability is paramount [36]. Simultaneously, the intricate
realm of neuron analysis grants us a profound understand-
ing of the model’s inner workings, at the level of individual
neurons, elucidating the pathways of feature extraction and
representation learning [37]. The convergence of these facets
not only empowers a comprehensive evaluation but also
equips stakeholders with the insights needed to navigate
the nuanced landscape of deep learning models, promoting
informed deployment and harnessing their transformative
potential across diverse domains [38].

In order to enhance the capability for testing Deep
Learning Systems (DLS) in real-world applications, numeric
testing tools have been developed. Taking medical image
analysis as an example, DLTK [39], as an open-source DL
toolkit, provides a range of tools for testing and validating
the quality of DLS, including model evaluation, model
interpretation, and model visualization. DLTK provides a
detailed diagnostic report for medical images, reducing
the risk of misjudgment by explaining the model’s be-
havior. DeepXplore [40] is an automated white-box testing
framework for DLS that employs optimization techniques
such as gradient ascent to detect potential failures in the
system. As an effective approach for automated testing
of deep neural network (DNN)-driven autonomous cars,
DeepTest [41] designs a test generation framework that
combines mutation operators, metamorphic relations, and
real-world driving scenarios to generate test cases with
higher neuron coverage. However, even though the DLS
testing tools are constantly being upgraded, resembling an
arms race in multiple fields as described above, the inherent
ad-hoc, task-oriented nature of existing tools persists as an
unavoidable limitation, often making them unsuitable for
fulfilling multi-task testing requirements. For example, the
testing objective of DeepXplore is monotonous, and it is
exclusively applicable to white-box testing, which makes it
unsuitable as a general-purpose testing tool in a black-box
environment. Furthermore, DeepXplore does not provide an
explanation for how a model’s defects are detected. Both
DLTK and DeepTest have limited testing capabilities in ap-
plication scenarios unrelated to medical image analysis and
DNN-driven autonomous driving, lacking sufficient tests of
adversarial robustness or model interpretability. As far as
we know, existing testing tools can only conduct individual
module tests on a model’s adversarial robustness, inter-
pretability, or neuron analysis, rather than explaining the

relationships among these three aspects. In order to enable
multidimensional evaluation and selection of models, we
are dedicated to integrating these modules for multi-task
testing and constructing a comprehensive testing tool. In
addition, pruning has been proven to facilitate the interpre-
tation of model decisions and reduce the occurrence of over-
fitting during adversarial sample training [42], [43]. For the
first time, we introduce an approach to neuron analysis with
pruning techniques, thereby exploring potential connections
among the modules.

In this paper, we propose AI-COMPASS, a comprehen-
sive and effective multi-module testing tool for DLS. Specif-
ically, combined with the basic utility module including
indicator evaluation and mutation operations [44], [45],
for the first time, we design modules for adversarial ro-
bustness, model interpretability and neuron analysis, to
extensively evaluate the performance of DLS [46]. Through
a thorough validation involving 6 deep learning models
across 3 datasets, we demonstrate that AI-COMPASS is ca-
pable of testing image classification, object detection, and
text classification tasks in DLS. Compared to existing DLS
testing tools, AI-COMPASS not only conducts fundamental
DLS testing but also delivers precise evaluations of model
robustness against adversarial attacks. Furthermore, it pro-
vides trustworthy model interpretability reports, including
a quantified assessment of the tested model’s interpretabil-
ity, along with attributional result charts for illustration.

The main contributions of this paper are as follows:

• We present a comprehensive and effective frame-
work, AI-COMPASS, for automatically testing the
quality of DLS. Specifically, combined with the basic
utility module, for the first time, we design mod-
ules for adversarial robustness, model interpretabil-
ity, and neuron analysis, making a significant step
towards building robust and trustworthy DLS.

• Inspired by the pruning algorithm, we conduct an
in-depth analysis of neural network redundancy. We
comprehensively investigate the changes in adver-
sarial robustness and model interpretability resulting
from neuron pruning approach, thus providing valu-
able insights for model architecture optimization.

• We demonstrate that our AI-COMPASS can be effec-
tively applied for multi-modal scenarios. The testing
results in image classification, text classification, and
object detection tasks verify the high scalability of
our AI-COMPASS and solve the ad-hoc problem in
existing testing tools.

• We have conducted extensive experiments and gen-
erated detailed test reports to demonstrate the supe-
riority of our AI-COMPASS in testing DLS.

• The code is released for future research and enhance-
ments by scholars and industry professionals.

This study extends our previous conference paper [46].
In Section 2, we provide an overview of related work on
testing frameworks to afford readers a more comprehen-
sive understanding of the field. Section 3 introduces the
preparatory background, furnishing foundational knowl-
edge regarding adversarial attacks, model interpretability,
and pruning algorithms. In Section 4, we expand the con-
ceptual diagram of ML-compass [46] to assist readers in
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TABLE 1
Existing testing tools for DLS assessment

Basic Metric Mutants Neural Analysis Robustness Analysis
(white-box)

Robustness Analysis
(black-box) Interpretability Multi-Model

DeepXplore [40]
NeuronFair [47]
DeepGauge [48]
DeepTest [41]
DeepMutation [44]
DeepMutation++ [45]
InterpretDL [49]

Ours (AI-Compass)

: The test tool has the function; : The test tool does not have the function.

gaining a clearer and more comprehensive grasp of the
AI-COMPASS architecture. Section 5 delves into the meth-
ods and principles underpinning each module and sub-
module to provide a more profound understanding of the
framework’s foundational principles. Section 6 explains the
experimental setup and analyzes the experimental results.

In this study, we primarily undertake the following
innovations in expending ML-compass:

• Involving more metrics in model utility evaluation.
• Introducing mutant methods in the model utility

evaluation to simulate real-world scenarios.
• Incorporating black-box transfer attacks in the ro-

bustness evaluation to reveal potential model vul-
nerabilities in practice.

• Integrating more interpretability methods in the in-
terpretability evaluation, using Insertion & Deletion
Score as a metric to quantitatively assess model in-
terpretability.

• To enable neuron analysis, we employed additional
pruning algorithms.

• Introducing a comprehensive evaluation, utilizing
radar charts for a more intuitive display of model
testing results, facilitating user selection of suitable
models.

• Exploring additional testing possibilities for models
by combining pruning algorithms with the robust-
ness and interpretability analysis.

2 RELATED WORK

In this section, we introduce the existing testing tools for
assessing deep learning models. Based on their functional-
ities, existing DLS testing tools could be categorized into
three groups, focusing on adversarial robustness, model
interpretability, and neuron analysis, separately.
Testing tools for adversarial robustness. Adversarial at-
tacks refer to malicious attempts by adversaries to introduce
subtle yet meaningful perturbations to input data, with the
aim of inducing misclassification or erroneous predictions
from the model. Currently, mainstream adversarial attacks
can be categorized into white-box attacks and black-box
attacks. In a white-box setting, relevant information such
as the structure and parameters of the target model are
transparent. Leveraging this characteristic, white-box attack
algorithms can generate high-quality adversarial examples

to assess the target model’s resilience against various types
of attacks. Therefore, white-box attacks serve as an ideal
approach to evaluate the robustness of models against ad-
versarial attacks. By continuously challenging and attacking
models, researchers and software developers can uncover
and address hidden flaws, thereby contributing to the con-
struction of more secure and reliable DLS that safeguard
the security of users and data. The Adversarial Robustness
Toolbox (ART) [50] is an open-source testing tool dedicated
to evaluating and enhancing the robustness of deep learning
models. It offers a range of white-box attack algorithms and
defense mechanisms tailored for deep learning models, such
as FGSM [51], DeepFool [52], and C&W [53], which are of
significant relevance for assessing the robustness of systems.
TextAttack [54], as a testing tool focused on adversarial ex-
ample generation and model robustness testing for natural
language processing tasks, is suitable for white-box attack
algorithms like HotFlip [55] and TextFooler [56], providing
support for security testing in text-based applications.

Compared to the white-box conditions, model informa-
tion in the black-box setting is difficult to obtain. Further-
more, black-box attack algorithms can be used to simulate
real-world security threats and exploit scenarios, which is
crucial for enhancing model robustness. Foolbox [57] is
a Python library for generating adversarial samples and
evaluating models, which supports various black-box attack
algorithms and demonstrates excellent performance across
multiple deep learning frameworks such as PyTorch, Keras,
and TensorFlow. TextBugger [58] is a black-box adversarial
sample generation framework specifically designed for text
classification tasks. It can be employed to assess the robust-
ness of deep learning models in text-related tasks. However,
the aforementioned DLS testing tools are limited in their
applicability as they are designed for specific environments
(white-box or black-box) for adversarial robustness evalua-
tion. They do not constitute a universal testing tool and are
incapable of effectively assessing model interpretability.
Testing tools for Model Interpretability. Performing in-
terpretability analysis on models is an effective approach
to understanding the process by which models generate
predictions for different inputs. Moreover, interpretability
analysis of models serves as a tool for elucidating the rea-
sons behind errors encountered during DLS testing, thereby
enhancing the trustworthiness of models and constituting a
vital component of Explainable AI (XAI) research. Presently,
several DL testing tools have been developed to elucidate
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the internal workings and decision processes of DLS, aiming
to ensure system quality and reliability. InterpretDL [49]
provides a range of functionalities, including feature im-
portance analysis, sample explanations, and model visual-
ization, enabling users to analyze model predictions and
gain insights into the underlying patterns and informa-
tion embedded within the model. NeuronFair [47]addresses
reliability and fairness concerns that may arise when ap-
plying DNNs in sensitive domains, which serves as a
fairness testing framework for building fairer and more
trustworthy DLS. However, InterpretDL and NeuronFair
often rely on specific DL frameworks, which can be limiting
for researchers and practitioners using customized or less
common frameworks. In addition, the interpretability of DL
models is a complex issue. InterpretDL and NeuronFair do
not provide a complete explanation for every decision made
by the model, as the effectiveness of model interpretation
may be constrained by model complexity. Similarly, the
aforementioned methods solely assess the interpretability of
DLS, lacking consideration for adversarial robustness.
Testing tools for neuron analysis. A testing tool providing
neural analysis utilizes the properties of neurons, including
the parameter of each neuron or the performance of each
neuron’s output under the specific testing input. Many test-
ing tools primarily focus on this aspect. DeepXplore [40] is
the first testing tool to propose neural coverage and use the
joint optimization method with gradient ascent to generate
testing examples. DeepGauge [48] uses neuron states to
supervise the purpose of multi-granularity testing coverage.
DeepTest [41] uses transformation operations to get higher
neural coverage under the specific field of DNN-driven
autonomous cars. Although neural coverage is a widely
utilized criterion among testing tools, several studies [59],
[60] have revealed that relying solely on neural coverage
can lead to the generation of misleading testing examples.
Overemphasizing neural coverage may result in a limited
number of test inputs, potentially overlooking defects in
DLS. Based on the premise, Jin et al. [61] use shapley
value to define excitable neural, which can be regarded as
other types of neural analysis. In our research endeavor,
we harness the pruning property inherent in DLS, which
entails the removal of extraneous neurons from the neural
networks through neural analysis. By employing this ap-
proach, we aim to discern the intricate relationship between
the network’s robustness and the presence of indispensable
neurons.

3 PRELIMINARIES

In this section, we introduce preliminaries of adversarial
attacks, interpretability methods, and neuron pruning meth-
ods for evaluating adversarial robustness, model explain-
ability, and model’s neuron analysis.

3.1 Adversarial attacks

During the development of ML and DL, DNNs have been
proved to have state-of-the-art results in massive fields
such as image classification [62], speech recognition [63],
natural language processing [64], and recommendation sys-
tems [65]. As a multiple-layer unsupervised neural network,

the output of DNN is available by layer-to-layer mapping,
which can effectively extract the hidden features from the
input space and achieve outstanding performance beyond
human. Besides, several optimal training methods such as
dropout regularization [66] and mini-batching [67] serve to
reduce the computation cost of DNNs, allowing the model
to have a high prediction accuracy and a fast convergence
speed. However, the complex decision boundary of DNNs
raises a threat in software quality [68]. Adversarial samples
with human-add perturbations as well as noises existed
in real-world enable an issue of incorrect model predic-
tions [69]. For example, a DL software system is easily
fooled in an image classification task due to its vulnerability
towards adversarial samples in the pixel space [70]. The
instability of DNNs in the face of adversarial attacks will
cause serious security problems, especially in some practical
applications that require low false-positive rates (e.g., au-
tonomous driving [71] and cancer detection [72]). It is thus
necessary and urgent to explore a deep learning testing tool
that can measure the adversarial robustness of DLS.

Nowadays adversarial algorithms are a major approach
to test the robustness of models under attack because
of the ability to generate promising adversarial samples.
Generally, according to the model information that can be
accessed, adversarial algorithms can be divided into two
categories: white-box attacks [51], [53], [73]–[77] and black-
box attacks [78]–[86]. In the white-box environment, the
model information(e.g., parameters and structure) can be
visited by the attacker. On the contrary, in the black-box
environment it is difficult to obtain model details.
White-box adversarial attacks. Gradient-based white-box
attacks aim to apply advanced gradient operations to in-
crease the success rate of attack. The FGSM [51] algo-
rithm and some of its derivatives such as I-FGSM [73],
MI-FGSM [75], TI-FGSM [76], SINI-FGSM [80], etc. have
been proved to have an excellent success rate in the white
box model. PGD [74] and C&W [53] algorithms focus on
restricting perturbations or using special mathematical con-
straints to improve the robustness of adversarial examples.
In addition, AdvGAN [77] generates adversarial samples by
learning a generator network instead of perturbing input
samples directly.
Black-box adversarial attacks. As query-based algorithms
in black-box attacks, QEBA [78] and ZOO [79] rely on small
batches of queries to obtain model information to train
adversarial samples. While SSA [84], DIM [81], PIM [82],
RAP [87] and NAA [83] are trained on a surrogate model
to test the effectiveness of adversarial samples when trans-
ferred into the target model.

3.2 Model interpretability

Recently, DNNs remain to be difficult to be interpreted due
to the complex hidden layer parameters and incomprehen-
sible nonlinear structure. It is currently unclear how deep
models interpret the relationship between their inputs and
outputs. Exploring the ambiguous decision-making process
of DNNs is an important task in Explainable Artificial
Intelligence (XAI) research. For DL software quality testing,
a trustworthy system not only needs high accuracy, but also
requires to have easy-to-interpret properties in the process



5

of obtaining the results [88]. Therefore, the verification of
model interpretability is an important factor for in-depth
exploration of the eligibility of DL systems.

To get the corresponding information for the model
features and predictions, local approximation methods and
gradient based methods are two common directions to-
wards interpreting DNNs. The former attempts to obtain
an approximate explanation of the complex target model
through a relatively simple and interpretable model, while
the latter aims to use the gradient information of the model
to obtain the specific relationship between the input features
and the outputs.
Local approximation methods. Linear models and decision
tree models are widely used in local approximation methods
due to the high interpretability of these models [89]–[91].
Other approximation methods add perturbations to training
data to obtain the most sensitive part of the inputs with
respect to the model outputs [92]–[94].
Gradient based methods. As two early gradient based
methods, Grad-CAM [95] and Score-CAM [96] are both class
activation mapping (CAM) based methods which aim to
explain the relationship between gradient information and
intermediate layers of DNN feature maps. Saliency Map [97]
(SM) applies gradient directly to obtain the visualisation of
the particular features with respect to the model outputs.
Guided Backpropagation [98] uses non-negative gradients
of the model to get the desired explanation. However,
Guided Backpropagation is poorly interpretable for features
in negative gradient directions. In addition, only using
gradient information is limited for current deep models
with increasingly complex structures and diverse appli-
cation scenarios. For example, SM suffers from gradient
saturation and interpretation distortions caused by some
noise or changes in external conditions.

To solve the misinterpretation of gradients in specific
regions existing in earlier gradient analysis methods, the
IG [99] attribution algorithm first extends the original
simple gradient calculation into a linear gradient integral
from baseline features to input features, improving the
interpretability of the model. Introducing prior knowledge
as a prior probability distribution for feature attribution,
EG [100] has obtained further interpretability improvement
on the basis of IG. BIG [101] is firstly proposed to use
adversarial attack to determine suitable decision boundaries
and apply the attribution method based on IG to find
the exact information leading to these decision boundaries.
AGI [102] noted that the IG method must seek a specific
reference point in the attribution path as a starting point
for iteration. In different models, the selection of reference
points is complex and unique, which is not conducive to
the generalization of IG. Therefore, AGI uses the gradient
information of the adversarial sample to integrate along the
path with the steepest gradient, so that the contribution
of all input features can be calculated without selecting a
reference point.

3.3 Algorithm pruning

The initial purpose of the pruning algorithm was to reduce
the computational cost of the DL system. The pruning
algorithm means preserving valuable parameters in the

model while removing redundant parameters [103]. Some
work [43], [104] proves that connections between model
pruning and robustness exist. From another perspective,
the pruning algorithm naturally determines which neuron
undertakes the work of model decision-making. As many
testing tools have claimed, neural coverage can help in-
crease the quality of testing examples. In order to gain a
comprehensive understanding of DLS, it is recommended
to employ a pruning algorithm that imposes a stringent
constraint on the neurons prior to conducting efficient
robustness testing. By implementing pruning techniques,
we can alleviate concerns regarding testing methodology
bias and focus our efforts on identifying and eliminating
redundant parameters.

It is important to note that pruning algorithms can be
categorized into two types: those with fine-tuning [105] and
those without fine-tuning [106]. Our research specifically
concentrates on the design of pruning algorithms without
fine-tuning. This choice is motivated by the fact that fine-
tuning alters the original parameters, even if it improves
performance. Our objective in pruning is to selectively re-
move certain parameters from DLS while preserving others
entirely.

In earlier studies, Hu et al. [107] proposed a pruning
algorithm to eliminate neurons with zero activation. Sub-
sequently, similar pruning algorithms have placed greater
emphasis on the dynamic performance of DLS, such as
OBD [108]. OBD employs second-order performance estima-
tion to assess the importance of each neuron. Additionally,
Taylor [109] utilizes Taylor expansion to estimate the con-
tribution of individual neurons in decision-making. Greg-
2 [110] applies regularization techniques to constrain the
estimation of neuron importance, utilizing a clever method
to obtain relative importance differences instead of directly
calculating the Hessian matrix. OBD, Taylor, Greg-2, and
ASL [111] are capable of being executed without the need for
fine-tuning, and our work will integrate these approaches.

4 AI-COMPASS STRUCTURE OVERVIEW

In this section, we provide a general overview of our work,
an all-in-one comprehensive and effective multi-modal test-
ing tool for DLS. The main components of our framework
are shown in Figure 1. We aim to develop a framework that
exhibits excellent testing performance in both image and
text input data, catering to the needs of testing across differ-
ent modalities. Specifically, we have designed five modules,
namely Basic Metrics, Basic Mutants, Robustness Analysis,
Interpretability, and Neuron Analysis, to comprehensively
test DLS. Within each module, we employ appropriate
evaluation metrics to obtain the most reasonable assessment
results for the corresponding module. Moreover, we intro-
duce pruning techniques to analyze the redundancy levels
of model neurons and investigate the potential alterations
in individual modules. This serves as a crucial foundation
for optimizing model structure.

It is noteworthy that our framework is an all-in-one
solution, serving as a comprehensive, multifunctional, and
customizable DLS testing tool. During the preparation stage,
diverse DLS undergo two initial collection layers to collect
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Data Collection Layer

Model Definition

Structure

Parameters

Dataset

Whole Testing 

Dataset

Single Testing 

Dataset

Custom Definition

Loss Function

Evaluation 

Metrics

Module 1: Basic Metrics

Classification

Accuracy

Precision

Recall

F1-score

Loss Value

TPR

AUC

Object Detection

AP

AR

Customized 

evaluation 

metrics

Module 2: Basic Mutants

Data Repetition Label Error

Data Missing Data Shuffle

Noise Perturb. Contrast Ratio

Brightness random cropping

Module 3: Robustness Analysis

Method

PGD

C&W

Adv-GAN

NAA

SSA

SINI-FGSM

FGSM

I-FGSM

DI-FGSM

TI-FGSM

MI-FGSM

Module 4: Interpretability

Method

SM

Deeplift

FIG

GIG

IG

BIG

AGI

SG

Reture

ASR (Attack Success Rate)

Reture

Insert Score Deletion Score

Module 5:Pruning

Method

OBD

GReg-2

Taylor

ASL

Reture

Pruning rate - basic metric

Pruning rate - basic metric

Reture

Basic Metrics

Fig. 1. An overview of AI-COMPASS.

model and dataset information for customizable testing, fol-
lowed by comprehensive assessment in multiple modules.
The visualization of results and the generation of testing
reports are provided for researchers or software develop-
ers to evaluate the quality of the systems. Users can also
customize the testing methods, evaluation techniques, and
corresponding metrics based on their specific systems and
testing requirements. This ensures the adaptability and flex-
ibility of the testing tool. Table 2 illustrates an overview of
the data requirements and supported tasks for each module.
Module 1 Basic Metrics. We employ various fundamental
DL evaluation metrics to conduct preliminary testing of

DLS. Specifically, for classification tasks, we evaluate the
performance using metrics such as accuracy, precision, re-
call, and loss value. For object detection tasks, we utilize
metrics such as average precision (AP) and average recall
(AR) to assess the performance.
Module 2 Basic Mutants. We apply various mutant meth-
ods such as label error, data repetition, data missing, and
noise perturbation to test the specific performance of DLS.
The evaluation metrics used in this module are the same as
those in Module 1.
Module 3 Robustness Analysis. We employ white-
box attack methods such as FGSM [51], PGD [74], and
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TABLE 2
Data requirements and supported tasks for each module in the assessment layer of ML-Compass.

Module Submodule Single
Test Dataset

Whole
Test Dataset

Train
Dataset

Image
Classification

Text
Classification

Object
Detection

Basic Metrics

Accuracy
Loss Value
Precision

TPR
Recall
AUC

F1-score
AP
AR

Basic Mutants

Label Error
Data Missing
Data Shuffle

Noise Perturb
Contrast Ratio

Brightness
Random Cropping

Robustness Analysis

FGSM
I-FGSM

DI-FGSM
TI-FGSM
MI-FGSM

SINI-FGSM
PGD
C&W

Adv-GAN
NAA
SAA

Interpretability

IG
BIG
AGI
SG
SM

Deeplift
FIG
GIG

Neuron analysis

Taylor
ASL
OBD

Greg-2

: the dataset is required (either dataset will fulfill the requirement) or the task is supported; : the dataset is not required or the
task is not supported.

C&W [53], as well as black-box attack methods including
MI-FGSM [75], NAA [83] and SSA [84] to test the robustness
of the model against adversarial attacks in both the strongest
attack setting and the simulated real-world environment.
This enables us to identify and rectify vulnerabilities or
loopholes hidden within the system. To effectively evalu-
ate the model’s robustness against adversarial attacks, we
utilize the attack success rate (ASR) as a benchmark metric
in Module 3.

Module 4 Interpretability. In order to understand the
intrinsic connection between model outputs and inputs and

provide better insights into the decision process at the
decision boundary, we employ algorithms such as IG [99],
BIG [101], GIG [112], and AGI [102] to obtain model inter-
pretation results. It is worth noting that in Module 4, we
employ insertion score and deletion score [113] to evaluate
the effectiveness of the model’s interpretability.

Module 5 Neuron Analysis. Previous works have demon-
strated the remarkable effectiveness of Neuron Analysis
in fault detection and localization, optimized test sample
generation, and understanding model complexity in DLS
testing. Specifically, Neuron Analysis reveals the proportion
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of effectively utilized neurons, aiding in the discovery of
potentially overlooked hidden behaviors or boundary cases,
and guiding decisions on model optimization, compres-
sion, or pruning. Inspired by this, we integrate state-of-the-
art pruning algorithms (e.g., OBD [108], Greg-2 [110], and
ASL [111]) into Neuron Analysis Module. These algorithms
help analyze the redundancy of model neurons to explore
the deep performance of the model and the potential rela-
tionships between modules in combination with robustness
and interpretability analysis. The Pruning rate serves as the
fundamental metric in this module.

5 METHODOLOGY

In this section, we provide a comprehensive technical de-
scription of our AI-COMPASS. In the first step, we define
and explain the concepts of adversarial attacks and the two
attribution axioms. In the second step, we describe the rep-
resentative methods or algorithms employed in each mod-
ule. Specifically, in addition to conducting basic metric tests
and mutation tests, we comprehensively evaluate model’s
adversarial robustness by integrating various white-box and
black-box adversarial attack algorithms. This approach ad-
dresses the limitations of existing testing tools, which are
typically confined to either white-box or black-box envi-
ronments. To provide the most effective explanations for
the model’s behavior, we incorporate several state-of-the-
art attribution algorithms to generate explainable reports
for the model. It is worth noting that, for the first time,
we have selected several pruning algorithms without fine-
tuning as a means of neuron analysis. By testing the pruned
model in conjunction with other modules, we analyze the
redundancy of the model’s neurons and assess its deep per-
formance based on changes in adversarial robustness and
model interpretability. For example, if there is no significant
change in adversarial robustness or model interpretability
after pruning, it can be inferred that the original model
contains redundant parameters and has room for further
optimization.

5.1 Problem Definition and Invariance Theory

5.1.1 Problem Definition of Adversarial Attack

Formally, suppose we have a deep neural network N :
Rn → Rc and original sample x ∈ Rn. Adversarial at-
tack methods, in this context, are designed to uncover a
perturbation denoted as ∆x. This perturbation is intended
to be added to the original sample x, thereby generating a
manipulated input sample denoted as x′ = x + ∆x. The
overarching objective of the optimization process, in this
scenario, is to satisfy the following conditions

min
x′

D(x, x′) subject to N(x) ̸= N(x′) (1)

We note that for the classification task, N(x) and N(x′)
should satisfy the constraint as in Equation 1, i.e., N(x) ̸=
N(x′). And for the regression task, the constraint can be
defined as N(x)−N(x′) ≥ ϵ, depending on the application.

5.1.2 Sensitivity and Implementation Invariance
In the context of Integrated Gradients [99] (IG), two crucial
concepts are introduced to address the requirements for
explaining DNNs: sensitivity and implementation invari-
ance. We believe that these two axioms are of paramount
importance in the process of model interpretation.
Sensitivity. Sensitivity pertains to the degree of responsive-
ness exhibited by an attribution method towards slight per-
turbations in the input data. In particular, when comparing
inputs and baselines that only vary in a single feature but
yield different predictions, the attribution method should
assign non-zero attributions to the differing features.
Implementation Invariance. Implementation Invariance
refers to the attribute of an attribution method that remains
unaffected by variations in the implementation of a deep
neural network. In formal terms, two networks are con-
sidered functionally equivalent if their outputs are equal
for all inputs, irrespective of having significantly differ-
ent implementations. To satisfy Implementation Invariance,
attribution methods should consistently produce identical
attributions for two functionally equivalent networks.

5.2 Assessment algorithms
5.2.1 Basic & mutant testing
Typically, as a basic module, the fundamental metrics testing
exhibits simplicity and provides rapid feedback on test
results. We utilize evaluation metrics, as demonstrated in
Module 1 of Section 4, to obtain a basic quality estimation
of the system. However, recognizing that baseline testing
fails to reflect the system’s performance under unexpected
circumstances, we employ mutation methods in Module 2
to simulate more diverse data distributions and noise sce-
narios. We consider this as one of the criteria for measuring
system stability.

Specifically, in Module 1 and Module 2, it is mandated
that the user provides the requisite dataloader for testing
purposes. However, a distinction arises between the two
modules in terms of the model provision. Module 1 ne-
cessitates the user to supply the pre-trained model of their
choice, whereas Module 2 does not impose this requirement.
Moreover, Module 1 yields the performance metrics values
alongside a classification report that is saved as a CSV file.
Conversely, Module 2 delivers the dataset after mutant.

5.2.2 Adversarial robustness
As an extension of traditional deep learning system testing,
we acknowledge the significance of the system’s robustness
against adversarial attacks as an indispensable aspect of
quality assessment, particularly in the context of privacy
and security concerns. In this section, we provide a detailed
description of the principles behind the adversarial attack
algorithms in Module 3. We present a series of representa-
tive algorithms in both white-box and black-box environ-
ments. Notably, as shown in Table 1, we innovatively adopt
transfer-based attack approaches in the black-box setting
to evaluate the model’s performance under simulated real-
world conditions, which has yet to be proposed in current
relevant testing frameworks.

The use of white-box attacks allows for the exploration
of a model’s robustness when its structure or parameters
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are potentially exposed, representing a consideration of the
worst-case scenario in real-world applications. However,
the probability of model parameters or structure leakage
in real-life situations is relatively low. Therefore, black-box
attacks are more in line with real-world scenarios, where
attackers utilize surrogate models to launch attacks on the
target model. As a result, we have incorporated a black-box
attack testing module, which provides a better evaluation of
the model’s robustness when its information is not leaked.
In general, users have the flexibility to choose whether to
provide white-box information, including the model, test
sample data, and corresponding labels, or to use black-box
models to assess transferability. This choice depends on the
specific testing requirements.
FGSM. The Fast Gradient Sign Method (FGSM) is a com-
monly used white-box adversarial attack algorithm used to
generate adversarial samples to deceive DNN models. The
formula for FGSM is as follows:

x′ = x+ ϵ · sign(∇xJ(θ, x, y)) (2)

where x′ is the generated adversarial sample, ϵ is the
hyperparameter that controls the size of the perturbation,
∇xJ(θ, x, y) is the gradient of the loss function J with
respect to the input x, and sign denotes the sign that takes
the gradient.
PGD. Projected Gradient Descent (PGD) is an iterative ad-
versarial attack algorithm which aims to gradually approach
an adversarial example by applying small perturbations to
the input sample based on gradient information in each it-
eration. The formulation of the PGD algorithm is as follows:

x′ = Πx+S(x
′ + α · sign(∇xJ(θ, x

′, y))) (3)

Whereas, α represents the learning rate that controls the
step size for each iteration. The Πx+S denotes the projection
operation that restricts the perturbed input x′ to the valid
range defined by x + S. ∇xJ(θ, x

′, y) corresponds to the
gradient of the loss function J with respect to the input x′;
sign signifies taking the sign of the gradient.
MI-FGSM. The Momentum Iterative Fast Gradient Sign
Method (MI-FGSM) builds upon the FGSM algorithm by
introducing the concept of momentum, which enhances
the effectiveness and stability of attacks, particularly in the
context of black-box transfer-based attacks.

g ← µ · g + ∇xJ(θ, x
′, y)

|∇xJ(θ, x′, y)|
(4)

x′ ← x′ + α · sign(g) (5)

In each iteration, the momentum term g accumulates gradi-
ent information and decays based on the momentum factor
µ. The introduction of momentum helps maintain a certain
level of consistency in the gradient direction during the
attack, thereby improving the success rate and stability of
transfer-based attacks.

5.2.3 Model interpretability

Currently, the majority of testing tools utilize interpretability
methods that focus on specific target class feature maps,
such as Grad-CAM [95], lacking a unified and systematic

axiomatic discussion. Attribution algorithms based on Inte-
grated Gradients (IG) introduced for the first time two ax-
ioms, Sensitivity and Implementation Invariance, which sys-
tematically establish a one-to-one correspondence between
model outputs and inputs and provide explanations for
features that are overlooked by traditional interpretability
algorithms. A series of algorithms, including BIG and AGI,
are dedicated to optimizing the potential drawbacks of IG
to further enhance the accuracy of attributions.

By comparing various interpretability methods, users
can assess the model’s interpretability capability. Specifi-
cally, by evaluating multiple instances of the same inter-
pretability method, a model demonstrating superior evalu-
ation metrics indicates better interpretability. This signifies a
higher level of trustworthiness in the model. In this section,
we primarily introduce attribution algorithms represented
by IG and its variants to conduct a generic assessment of
model interpretability.
IG. As mentioned in 5.1.2, IG proposed two axiomatic
criteria: Sensitivity and Implementation Invariance. By care-
fully selecting reference points as anchors along a linear
integration path, IG effectively integrates the continuous
gradients to determine the attribution of individual input
features. The formula of IG is expressed in Equation 6.

IGj(x) = (xj − x′
j)×

∫ 1

α=0

∂F (x′ + α× (x− x′))

∂xj
dα (6)

where j denotes the j-th input feature, ∂F (x′+α×(x−x′))
∂xj

is
the gradient of model F w.r.t input feature xj . x′

j represents
the reference input feature.
BIG. Through investigating improved baseline selection
techniques in comparison to IG, the Boundary-based Inte-
grated Gradient (BIG) method introduces boundary search
to achieve more precise attribution outcomes. Considering a
deep learning network F , the Integrated Gradient gIG, and
an input feature x, the formula is expressed as Equation 7.

BIG(x) := gIG (x;x′) (7)

where x′ is the nearest adversarial example to x, i.e., c =
F (x) ̸= F (x′) and ∀xm · ∥xm − x∥ < ∥x′ − x∥ → F (x) =
F (xm).
AGI. The Adversarial Gradient Integration (AGI) method
aims to identify the steepest non-linear ascending path from
the adversarial example x′

i to x, eliminating the requirement
for reference points along the path, unlike IG. The formula
is defined as Equation 8 in the following:

AGIj(x) = AGIj−1(x)−∇xj
f t(x)·ϵ·sign(

∇xj
f i(x)∣∣∇xj
f i(x)

∣∣ ) (8)

∇xjf
t(x) represents the gradient of the output value f t(x)

w.r.t the j-th input feature x, where t denotes the true
class label. Similarly, ∇xjf

i(x) represents the gradient cor-
responding to the false class label i. The step size is denoted
by ϵ. The integration process continues along the path until
argmaxlf

l(x) = i, indicating that the attribution integra-
tion stops when the predicted class label becomes i.

To conduct interpretability analysis, the user is required
to provide the model, the test data along with its cor-
responding labels. By utilizing the aforementioned inter-
pretability algorithms, the user can obtain the interpretabil-
ity heat map or attribution map for a single image, as well
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as the average insertion and deletion scores for multiple test
samples.

5.2.4 Neuron analysis

In this section, we introduce for the first time the integra-
tion of pruning methods into our testing tool. By pruning
model parameters at a certain proportion, we observe the
performance changes. If the performance changes are small
or within an acceptable range, it indicates that the pruned
parameters are redundant. Hence, pruning algorithms can
be used to evaluate model redundancy.

Furthermore, models with excessive redundancy are sus-
ceptible to the risk of overfitting. By employing different
pruning rates and methods, we investigate the robustness
and interpretability of the model under various conditions.
This assists users in selecting models that better meet their
requirements without the need for retraining, while mini-
mizing significant performance changes.

We compare the changes in ASR and Insertion & Dele-
tion Score [102] before and after employing pruning algo-
rithms, examining the impact of pruning on the modules
of adversarial robustness and model interpretability. Fur-
thermore, we proceed to introduce several representative
pruning algorithms.
OBD. The Optimal Brain Damage (OBD) algorithm em-
ploys a second-order expansion technique to estimate the
performance of DLS by considering the impact of removing
specific neurons.

δE =
1

2

∑
i

hiiδu
2
i (9)

where hii represents the Hessian matrix and δu2
i denotes

the value associated with the i-th neuron, OBD allows for
the pruning of neurons with minimal perturbation to the
overall error (δE). In OBD, the calculation of the Hessian
matrix is approximated to streamline the process. Typically,
neurons exhibiting lower δE are considered non-essential
for the proper functioning of DLS.
Taylor. The Taylor algorithm leverages a combination of
regularization techniques and Taylor expansion to estimate
the significance of neurons within a neural network.

δE(u) = (gmδui)
2 (10)

where δui is the value of i-th neuron, gm is the gradient
value under the regularization. δE is simplified to use the
first-order expansion for computational optimization.
Greg-2. Greg-2 algorithm takes into account the importance
of neurons in a dynamic and relative context. It eliminates
the need to compute the Hessian matrix during the pruning
process by considering the relative relationships between
neurons. For a more comprehensive understanding of Greg-
2 and another algorithm called ASL, please refer to the
references [110] and [111].

In summary, the Pruning module requires the provision
of the test model, train dataset, test dataset, and the desired
pruning scale by the user. Upon completion, the pruned
model is returned, along with performance metrics such as
accuracy before and after the pruning process.

6 EXPERIMENT SETUP

6.1 Experimental Environment

The present tool is developed on PyTorch 1.11. All exper-
iments conducted in this study are performed on a server
running Ubuntu 20.04.4, equipped with AMD EPYC 7642
48-Core Processor, NVIDIA RTX3090 GPU, and 80GB RAM.

6.2 Datasets

In this study, we employed several well-known datasets
from the domains of image classification, object detection,
and text classification. Specifically, for the image classifi-
cation task, the CIFAR-100 dataset [114] was utilized. The
COCO dataset [115] was employed for the object detection
domain. As for the text classification task, we utilized the
STT-2 dataset [116].

6.3 Models

In this experiment, in order to demonstrate the compre-
hensiveness and effectiveness of our testing framework, we
conducted three different categories of tasks: image classifi-
cation, object detection, and text classification, within each
module. Additionally, for each task, we tested two different
models to examine the performance differences between
them. We use ResNet-50 [1] and VGG-16 [2] for image clas-
sification tasks, TextCNN [117] and AB-LSTM [118] for text
classification tasks, Faster R-CNN [119] and RetinaNet [120]
for object detection tasks.

6.4 Metrics

In our evaluation part, in addition to the basic and com-
monly used metrics mentioned in Module 1, such as accu-
racy, recall, precision, etc., we have also included additional
metrics in the extended modules to provide a more compre-
hensive assessment of DLS performance.

Regarding the evaluation of model robustness, we uti-
lized the Attack Success Rate (ASR), which represents the
proportion of successful adversarial samples in the total
number of attack samples. Thus, it can be used to evaluate
the performance of an attack method on a specific model.

In terms of evaluating model interpretability, we intro-
duced the concept of interpretability analysis for individual
data samples and multiple data samples. For the former,
analysis is conducted by examining the heatmaps returned
by the evaluation framework, which utilize different colors
to assess the accuracy of the DLS system in capturing salient
features. In the case of multiple samples, we employed
the Insertion score and Deletion score [113] for evaluation.
The Insertion score involves starting with an empty image
and progressively adding pixels based on their attribution
scores, beginning with the highest score and moving to-
wards the lowest. Similarly, the Deletion score is obtained
by iteratively removing pixels from the original image in
descending order of their attribution scores.

In the neural analysis of DLS, we employed the pruning
rate as our evaluation metric, which represents the propor-
tion of parameters pruned from the model out of the total
model parameters.
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TABLE 3
The results of basic metrics and mutant testing.

Model Method Accuracy Loss Value TPR TNR PPV NPV FPR FNR FDR ROC AUC Precision Recall F1-Score

ResNet-50

Origin Image 0.7929 3.8597 0.7929 0.9979 0.7936 0.9979 0.0021 0.2071 0.2064 0.9902 0.7936 0.7929 0.7922
Label Error 0.7128 3.9354 0.7133 0.9971 0.7137 0.9971 0.0029 0.2867 0.2863 0.9402 0.7137 0.7133 0.7121

Data Missing 0.5893 4.0795 0.5893 0.9959 0.6854 0.9959 0.0041 0.4107 0.3146 0.9608 0.6854 0.5893 0.6013
Data Shuffle 0.7929 3.8597 0.7929 0.9979 0.7936 0.9979 0.0021 0.2071 0.2064 0.9902 0.7936 0.7929 0.7922

Noise Perturb 0.3796 4.2737 0.3796 0.9937 0.6011 0.9937 0.0063 0.6204 0.3989 0.8871 0.6011 0.3796 0.4047
Contrast Ratio 0.7884 3.8649 0.7884 0.9979 0.7888 0.9979 0.0021 0.2116 0.2112 0.9898 0.7888 0.7884 0.7876

Brightness 0.7883 3.8646 0.7883 0.9979 0.789 0.9979 0.0021 0.2117 0.211 0.9897 0.789 0.7883 0.7875
Random Cropping 0.7391 3.9369 0.7391 0.9974 0.7441 0.9974 0.0026 0.2609 0.2559 0.9863 0.7441 0.7391 0.7388

VGG-16

Origin Image 0.7259 3.91 0.7259 0.9972 0.7275 0.9972 0.0028 0.2741 0.2725 0.9855 0.7275 0.7259 0.7254
Label Error 0.6525 3.9821 0.653 0.9965 0.6543 0.9965 0.0035 0.347 0.3457 0.9363 0.6543 0.653 0.652

Data Missing 0.5163 4.1185 0.5163 0.9951 0.5698 0.9951 0.0049 0.4837 0.4302 0.9486 0.5698 0.5163 0.5135
Data Shuffle 0.7259 3.91 0.7259 0.9972 0.7275 0.9972 0.0028 0.2741 0.2725 0.9855 0.7275 0.7259 0.7254

Noise Perturb 0.3966 4.237 0.3966 0.9939 0.5388 0.9939 0.0061 0.6034 0.4612 0.9024 0.5388 0.3966 0.4138
Contrast Ratio 0.7182 3.9164 0.7182 0.9972 0.7198 0.9972 0.0028 0.2818 0.2802 0.985 0.7198 0.7182 0.7175

Brightness 0.7223 3.9152 0.7223 0.9972 0.7236 0.9972 0.0028 0.2777 0.2764 0.9849 0.7236 0.7223 0.7217
Random Cropping 0.648 3.9879 0.648 0.9964 0.6614 0.9964 0.0036 0.352 0.3386 0.9768 0.6614 0.648 0.6494

6.5 Parameter Setting
In this experiment, apart from the pruning rate, all other
parameter settings followed the default parameters spec-
ified in the original method. Users have the flexibility to
customize these parameters for their subsequent usage. As
for the pruning rate parameter, we set it to 0.35, 0.4, 0.45,
and 0.5, respectively.

6.6 Research questions
In our experimental study, we aim to investigate and ad-
dress the following research questions:

• RQ1: Does AI-COMPASS effectively integrate each
module so as to provide a comprehensive assessment
of the model’s performance?

• RQ2: In addition to image classification tasks, does
AI-COMPASS meet the test requirements under other
modal tasks such as text classification and object
detection? Does it overcome the shortcoming of ad-
hoc in existing testing tools?

• RQ3: Combining the Adversarial Robustness and
Model Interpretability modules, can AI-COMPASS
use the pruning method to evaluate model depth
performance and give optimization recommenda-
tions?

7 EXPERIMENTAL RESULTS

7.1 Answer to RQ1
In this section, we performed basic utility evaluation, ro-
bustness evaluation, interpretability analysis and neuron
analysis with pruning to verify which model in each module
shows superior performance.

7.1.1 Basic utility evaluation
As shown in Table 3, considering all the metrics collectively,
it can be observed that under various data processing meth-
ods such as the original dataset, label errors, missing data,
and shuffled data, ResNet-50 slightly outperforms VGG-16
with higher accuracy and lower loss values in these scenar-
ios, indicating its superior performance and generalization
capability in handling such data.

However, under the data processing method involving
noise perturbation, VGG-16 exhibits a slight advantage over

ResNet-50. Although VGG-16 achieves a slightly higher
accuracy compared to ResNet-50, the difference between the
two models is not statistically significant.

Therefore, taking into account the performance across
different data processing methods, it can be concluded
that ResNet-50 and VGG-16 perform comparably overall,
but in most cases, ResNet-50 demonstrates slightly better
performance than VGG-16.

7.1.2 Robustness evaluation
In the experiment of this module, we employed two differ-
ent types of attack methods: white-box attacks and black-
box attacks. As shown in Table 4, for white-box attacks,
VGG-16 demonstrates a lower ASR compared to ResNet-
50. Therefore, on the dataset used in this experiment, VGG-
16 exhibits better robustness than ResNet-50. Considering
the practical application scenarios of DLS, we incorporated
transfer-based black-box attacks to simulate real-world test-
ing conditions. In the black-box attacks, VGG-16 consis-
tently achieves a lower ASR than ResNet-50, indicating it
has better robustness than ResNet-50 in this particular task.

7.1.3 Interpretability analysis
In the experiments conducted in this module, we initially
performed a global assessment of model interpretability
using the Insertion Score and Deletion Score. As shown
in Table 5, we observed that ResNet-50 exhibits relatively
higher Insertion Score and lower Deletion Score compared
to VGG-16, indicating that ResNet-50 possesses better inter-
pretability. Furthermore, based on Table 5, we found that
the AGI, BIG, and Saliency Map methods demonstrate rela-
tively good attribution performance on both ResNet-50 and
VGG-16. Therefore, we analyzed the heatmaps generated
by these three methods for further analysis. As shown in
Figure 2, the white regions in the heatmaps represent the
features that the model focuses on. From the top-left corner,
which displays the original image, it can be observed that
ResNet-50 exhibits a more concentrated focus on specific
features compared to VGG-16, thus demonstrating better
interpretability.

7.1.4 Neuron analysis with pruning
The purpose of this experiment is to evaluate the impact
of different pruning rates on the performance of ResNet-50
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TABLE 4
Table of model robustness evaluation results, the data in the table are ASR, the bolded data are the results of white box attack, the unbolded data

are the results of black box attack.

Test Model Attack Method ResNet-50 VGG-16 Inception-v3 DenseNet-121 GoogLeNet MobileNet-v2

ResNet-50

FGSM 79.11% 58.34% 69.14% 68.74% 66.59% 57.54%
I-FGSM 99.97% 53.25% 75.42% 75.20% 66.01% 44.57%

DI-FGSM 99.72% 67.30% 84.06% 83.93% 79.46% 63.88%
TI-FGSM 86.49% 22.66% 36.56% 30.84% 30.48% 22.30%
MI-FGSM 99.87% 64.47% 80.98% 81.33% 75.23% 56.99%

SINI-FGSM 98.37% 60.63% 76.23% 74.98% 69.82% 57.78%
PGD 99.99% 53.31% 74.21% 74.37% 64.93% 44.08%
C&W 80.50% 6.57% 13.42% 14.49% 9.27% 4.12%

Adv-GAN 87.83% 86.18% 83.86% 79.93% 81.83% 52.05%
NAA 91.65% 70.61% 84.06% 64.99% 75.53% 65.04%
SSA 97.00% 60.27% 93.38% 91.88% 80.19% 57.67%

Average 92.77% 54.87% 70.12% 67.33% 63.58% 47.82%

VGG-16

FGSM 57.99% 75.81% 63.35% 62.25% 62.49% 54.52%
I-FGSM 44.04% 99.17% 59.93% 56.05% 55.45% 40.21%

DI-FGSM 69.64% 97.49% 76.09% 73.65% 75.17% 63.54%
TI-FGSM 41.76% 91.96% 43.40% 37.59% 39.79% 31.36%
MI-FGSM 60.87% 98.51% 71.18% 68.33% 67.85% 53.33%

SINI-FGSM 59.41% 94.88% 66.42% 62.93% 62.53% 54.60%
PGD 41.24% 99.16% 57.84% 52.51% 52.56% 35.77%
C&W 6.71% 68.20% 7.38% 7.56% 7.56% 3.69%

Adv-GAN 40.26% 91.03% 71.01% 55.58% 79.19% 36.10%
NAA 62.27% 98.68% 74.33% 53.03% 67.52% 61.39%
SSA 57.37% 90.40% 84.63% 79.85% 69.88% 50.62%

Average 49.23% 91.39% 61.41% 55.39% 58.18% 44.10%
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(a) ResNet-50 Interpretability Result
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(b) VGG-16 Interpretability Result

Fig. 2. Attribution Results of the Models

and VGG-16 models. We employed four different pruning
methods, including Taylor, ASL, OBD, and Greg-2, and
observed the performance variations at different pruning
rates. Firstly, we recorded the baseline performance of both
models without pruning: ResNet-50 achieved an accuracy
of 0.7929 and a loss value of 3.8597, while VGG-16 achieved
an accuracy of 0.7259 and a loss value of 3.91.

Next, we conducted pruning experiments with different
pruning rates and recorded the changes in performance
metrics. In the ResNet-50 model, using the Taylor pruning
method, when the pruning rate was set to 0.35, the accuracy
dropped to 0.7301, and the loss value increased to 3.9557. As
the pruning rate increased, the accuracy further declined,
and the loss value continued to increase. When the pruning
rate reached 0.5, the accuracy sharply dropped to 0.0554,
and the loss value increased to 4.5603. In the VGG-16 model,

using the Taylor pruning method, the accuracy gradually
decreased and the loss value increased as the pruning rate
increased. At a pruning rate of 0.5, the accuracy was 0.7175,
and the loss value was 3.9317.

In addition to the Taylor pruning method, we also in-
vestigated the impact of ASL, OBD, and Greg-2 pruning
methods on performance. For the ResNet-50 model, with
ASL and OBD pruning methods, the accuracy gradually
decreased as the pruning rate increased, while with the
Greg-2 pruning method, the accuracy remained relatively
stable, indicating a minor impact of pruning rate on perfor-
mance. For the VGG-16 model, with ASL and OBD pruning
methods, the accuracy gradually decreased as the pruning
rate increased. While with the Greg-2 pruning method,
similar to the ResNet-50 model, the accuracy remained
relatively stable, indicating a minor impact of pruning rate



13

TABLE 5
Insertion and Deletion Score of ResNet-50 and VGG-16

Model Method Insertion Score Deletion Score

ResNet-50

IG 0.1136 0.0246
BIG 0.2272 0.042
AGI 0.3881 0.0463
SG 0.2352 0.0197
SM 0.1242 0.0332

DeepLIFT 0.1246 0.0256
FIG 0.0889 0.0314
GIG 0.1267 0.0186

SaliencyMap 0.2559 0.0479
Average 0.1872 0.0321

VGG-16

IG 0.0804 0.02
BIG 0.1828 0.0316
AGI 0.3428 0.0393
SG 0.1343 0.0162
SM 0.0834 0.0242

DeepLIFT 0.0956 0.0182
FIG 0.0682 0.0244
GIG 0.0906 0.0165

SaliencyMap 0.2279 0.0336
Average 0.1451 0.0249

Basic Metrics

Basic Mutants

Robustness Analysis

Interpretability

Neuron Analysis
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ResNet-50
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Fig. 3. Comprehensive Evaluation Result

on performance.
In summary, compared to VGG-16, ResNet-50 exhibits

more pronounced performance fluctuations under the same
pruning rate, indicating a larger proportion of critical pa-
rameters within the ResNet-50 model. This observation sug-
gests that the neurons in ResNet-50 possess a lower degree
of redundancy. As a deep residual network, ResNet-50 pre-
serves more essential and refined data through skip connec-
tions and residual blocks, rendering it more susceptible to
the effects of pruning methods. In contrast, VGG-16 adheres
to a more traditional convolutional neural network architec-
ture, potentially incorporating more redundant structures,
which imparts greater tolerance to neuron pruning.

7.1.5 Comprehensive Evaluation

Our approach allows for a comprehensive evaluation of
models, enabling users to intuitively assess the performance
of different competing models across five distinct modules.
As depicted in Figure 3, users can customize their selection

Fig. 4. Interpretability of the text classification model.

of evaluation metrics for scoring sub-modules based on the
emphasis of different tasks. In this particular example, we
chose Precision as the evaluation metric in the Basic Metrics
module, Precision under Label Error conditions in the Basic
Mutants module, Average ASR of all attack methods in
the Robustness Analysis module, Average Insertion Score
in the Interpretability module, and in the Neural Analysis
module, we select the maximum pruning rate that maintains
model performance as our evaluation metric. We define
the best model performance in the test set as a full score
of 5 points, while other models are scored proportionally.
Through this comprehensive assessment, it becomes evident
that the ResNet-50 model outperforms the VGG-16 model
across all aspects, except for Robustness.

7.2 Answer to RQ2

In this section, we demonstrate that the aforementioned
modules support multimodal data, offering support for
both text classification tasks and object detection tasks. We
present the experimental results of AI-COMPASS for these
two tasks, showcasing its superior performance.

7.2.1 Performance in text classification tasks
As depicted in Table 7, we present the evaluation of text clas-
sification models. The evaluation is conducted on TextCNN
and AB-LSTM models using the SST-2 dataset. It can be
observed that both models exhibit remarkably similar per-
formance across most metrics. However, AB-LSTM outper-
forms TextCNN marginally in certain metrics such as Loss
Value, Positive Predictive Value (PPV), Negative Predictive
Value (NPV), False Positive Rate (FPR), False Negative Rate
(FNR), and False Discovery Rate (FDR). Therefore, it can
be inferred that the AB-LSTM model demonstrates slightly
superior performance compared to the TextCNN model in
this task.

As presented in Table 8, the data generated by the Ro-
bustness module for testing text classification models is dis-
played. Based on the data in the table, we can observe that
the AB-LSTM model demonstrates higher Attack Success
Rates (ASR) under FGSM, SINI-FGSM, and PGD attacks.
Conversely, the TextCNN model exhibits higher ASR under
I-FGSM and MI-FGSM attacks. In general, the TextCNN
model demonstrates a stable robustness, with a comparable
defense performance across each attack method. On the
other hand, the AB-LSTM model exhibits strong defense
capabilities against certain attack methods while displaying
weaker defense against others.

Figure 4 showcases the output results of the inter-
pretability module for text classification tasks, wherein
darker colors indicate a higher degree of model attention
towards the corresponding regions of interest.



14

TABLE 6
Results of Utility evaluation of pruning models.

Model Method Pruning Rate Accuracy Loss Value TPR TNR PPV NPV FPR FNR FDR ROC AUC Precision Recall F1-Score

ResNet-50

No pruning 0 0.7929 3.8597 0.7929 0.9979 0.7936 0.9979 0.0021 0.2071 0.2064 0.9902 0.7936 0.7929 0.7922

Taylor

0.35 0.7301 3.9557 0.7301 0.9973 0.7721 0.9973 0.0027 0.2699 0.2279 0.9877 0.7721 0.7301 0.7367
0.4 0.6112 4.0869 0.6112 0.9961 0.817 0.9961 0.0039 0.3888 0.183 0.9798 0.817 0.6112 0.6602

0.45 0.3058 4.3593 0.3058 0.993 N/A 0.993 0.007 0.6942 N/A 0.9313 0.8389 0.3058 0.3847
0.5 0.0554 4.5603 0.0554 0.9905 N/A 0.9906 0.0095 0.9446 N/A 0.8338 0.3402 0.0554 0.0614

ASL

0.35 0.6257 4.0277 0.6257 0.9962 0.7221 0.9962 0.0038 0.3743 0.2779 0.9717 0.7221 0.6257 0.6017
0.4 0.5566 4.0994 0.5566 0.9955 0.7046 0.9955 0.0045 0.4434 0.2954 0.9608 0.7046 0.5566 0.5148

0.45 0.5412 4.1178 0.5412 0.9954 N/A 0.9954 0.0046 0.4588 N/A 0.959 0.6716 0.5412 0.4821
0.5 0.4944 4.1717 0.4944 0.9949 N/A 0.9949 0.0051 0.5056 N/A 0.953 0.5922 0.4944 0.4344

OBD

0.35 0.7393 4.0965 0.7393 0.9974 0.7865 0.9974 0.0026 0.2607 0.2135 0.9898 0.7865 0.7393 0.7434
0.4 0.6293 4.2932 0.6293 0.9963 0.8092 0.9963 0.0037 0.3707 0.1908 0.9886 0.8092 0.6293 0.6514

0.45 0.4372 4.4456 0.4372 0.9943 N/A 0.9944 0.0057 0.5628 N/A 0.9873 0.8244 0.4372 0.4691
0.5 0.2719 4.5201 0.2719 0.9926 N/A 0.9927 0.0074 0.7281 N/A 0.9851 0.6469 0.2719 0.281

Greg-2

0.35 0.7879 3.866 0.7879 0.9979 0.7894 0.9979 0.0021 0.2121 0.2106 0.9903 0.7894 0.7879 0.7871
0.4 0.7873 3.8704 0.7873 0.9979 0.7892 0.9979 0.0021 0.2127 0.2108 0.9903 0.7892 0.7873 0.7865

0.45 0.7852 3.8768 0.7852 0.9978 0.7879 0.9978 0.0022 0.2148 0.2121 0.9902 0.7879 0.7852 0.7844
0.5 0.7785 3.8882 0.7785 0.9978 0.7823 0.9978 0.0022 0.2215 0.2177 0.9901 0.7823 0.7785 0.7776

VGG-16

No pruning 0 0.7259 3.91 0.7259 0.9972 0.7275 0.9972 0.0028 0.2741 0.2725 0.9855 0.7275 0.7259 0.7254

Taylor

0.35 0.725 3.9109 0.725 0.9972 0.7266 0.9972 0.0028 0.275 0.2734 0.9852 0.7266 0.725 0.7247
0.4 0.7243 3.9132 0.7243 0.9972 0.7259 0.9972 0.0028 0.2757 0.2741 0.9849 0.7259 0.7243 0.724

0.45 0.7218 3.9187 0.7218 0.9972 0.7254 0.9972 0.0028 0.2782 0.2746 0.9843 0.7254 0.7218 0.7221
0.5 0.7175 3.9317 0.7175 0.9971 0.726 0.9971 0.0029 0.2825 0.274 0.9829 0.726 0.7175 0.7186

ASL

0.35 0.6585 3.9793 0.6585 0.9966 0.6773 0.9966 0.0034 0.3415 0.3227 0.9738 0.6773 0.6585 0.6562
0.4 0.6255 4.0125 0.6255 0.9962 0.6555 0.9962 0.0038 0.3745 0.3445 0.9682 0.6555 0.6255 0.6225

0.45 0.5786 4.0637 0.5786 0.9957 0.6319 0.9957 0.0043 0.4214 0.3681 0.9594 0.6319 0.5786 0.5766
0.5 0.5435 4.1002 0.5435 0.9954 0.6168 0.9954 0.0046 0.4565 0.3832 0.9529 0.6168 0.5435 0.5413

OBD

0.35 0.7262 3.9106 0.7262 0.9972 0.7277 0.9972 0.0028 0.2738 0.2723 0.9855 0.7277 0.7262 0.7256
0.4 0.7259 3.9116 0.7259 0.9972 0.7275 0.9972 0.0028 0.2741 0.2725 0.9854 0.7275 0.7259 0.7253

0.45 0.7264 3.9135 0.7264 0.9972 0.7281 0.9972 0.0028 0.2736 0.2719 0.9853 0.7281 0.7264 0.7259
0.5 0.7261 3.917 0.7261 0.9972 0.7282 0.9972 0.0028 0.2739 0.2718 0.9852 0.7282 0.7261 0.7257

Greg-2

0.35 0.723 3.912 0.723 0.9972 0.7248 0.9972 0.0028 0.277 0.2752 0.9859 0.7248 0.723 0.722
0.4 0.721 3.9159 0.721 0.9972 0.7241 0.9972 0.0028 0.279 0.2759 0.9855 0.7241 0.721 0.7201

0.45 0.7148 3.9204 0.7148 0.9971 0.7175 0.9971 0.0029 0.2852 0.2825 0.9851 0.7175 0.7148 0.7133
0.5 0.7091 3.9281 0.7091 0.9971 0.7133 0.9971 0.0029 0.2909 0.2867 0.9844 0.7133 0.7091 0.7068

TABLE 7
The results of basic metrics and mutant testing of the text classification

Task Dataset Model Method Accuracy Loss Value TPR TNR PPV NPV FPR FNR FDR ROC AUC Precision Recall F1-Score

Text Classification SST-2

TextCNN

Origin Image 0.84 0.4674 0.84 0.84 0.8401 0.8401 0.16 0.16 0.1599 0.9235 0.8401 0.84 0.84
Label Error 0.7727 0.5299 0.7727 0.7727 0.7727 0.7727 0.2273 0.2273 0.2273 0.8383 0.7727 0.7727 0.7727

Data Missing 0.8222 0.4828 0.8222 0.8222 0.8223 0.8223 0.1778 0.1778 0.1777 0.9092 0.8223 0.8222 0.8222
Data Shuffle 0.84 0.4674 0.84 0.84 0.8401 0.8401 0.16 0.16 0.1599 0.9235 0.8401 0.84 0.84

AB-LSTM

Origin Image 0.8406 0.4645 0.8406 0.8406 0.8407 0.8407 0.1594 0.1594 0.1593 0.9212 0.8407 0.8406 0.8406
Label Error 0.7664 0.5322 0.7666 0.7666 0.7665 0.7665 0.2334 0.2334 0.2335 0.8355 0.7665 0.7666 0.7664

Data Missing 0.8228 0.4798 0.8228 0.8228 0.8228 0.8228 0.1772 0.1772 0.1772 0.9053 0.8228 0.8228 0.8228
Data Shuffle 0.8406 0.4645 0.8406 0.8406 0.8407 0.8407 0.1594 0.1594 0.1593 0.9212 0.8407 0.8406 0.8406

TABLE 8
Table of model robustness evaluation results, the data in the table are

ASR

Task Dataset Model Method ASR

Text Classification SST-2

TextCNN

FGSM 86.60%
I-FGSM 85.80%
MI-FGSM 86.50%
SINI-FGSM 79.10%
PGD 86.40%

AB-LSTM

FGSM 97.70%
I-FGSM 75.60%
MI-FGSM 48.90%
SINI-FGSM 94.80%
PGD 99.80%

7.2.2 Performance in object detection tasks
Table 9 presents the evaluation of object detection tasks.
In this section, the performance of Faster R-CNN and
RetinaNet models was assessed using the COCO dataset.
Both models exhibited relatively similar performance across
different metrics. However, Faster R-CNN demonstrated a

slight advantage in terms of overall average precision, while
RetinaNet showcased a slight advantage in terms of overall
average recall.

Table 10 presents the robustness evaluation of the ob-
ject detection task. From the data, it can be observed that
RetinaNet exhibits better robustness than Faster R-CNN,
as it maintains higher average precision and average recall
even after undergoing the same attacks. This indicates that
RetinaNet demonstrates stronger resilience against attacks
compared to Faster R-CNN.

7.3 Answer of RQ3

By combining the Adversarial Robustness and Model In-
terpretability modules in AI-COMPASS, we utilize pruning
techniques to evaluate the performance of the model and
provide optimization advice. Thus, the model complexity is
reduced whilst the generalization ability is enhanced [121].
We have further investigated the impact of the pruning
algorithm on model performance by combining the pruning
results with the robustness and interpretability analysis.
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TABLE 9
The results of basic metrics and mutant testing of the object detection

Task Dataset Model Method AP AR

Object detection COCO

Faster R-CNN

Origin Image 0.585 0.508
Data Missing 0.08 0.106
Data Shuffle 0.585 0.508

Noise Perturb 0.422 0.391
Contrast Ratio 0.581 0.506

Brightness 0.579 0.506
Random Cropping 0.548 0.433

RetinaNet

Origin image 0.557 0.537
Data Missing 0.081 0.157
Data Shuffle 0.557 0.537

Noise Perturb 0.394 0.424
Contrast Ratio 0.554 0.535

Brightness 0.553 0.535
Random Cropping 0.523 0.461
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Fig. 5. Average Attack Success Rate with different Pruning Rate

7.3.1 The impact of pruning on adversarial robustness

As depicted in Figure 5, we applied four different pruning
algorithms to perform parameter pruning on ResNet-50
and VGG-16, achieving pruning ratios of 35% and 40%
respectively. Observations indicate that, on the whole, VGG-
16 exhibits superior robustness compared to ResNet-50.
Following the pruning process, the robustness of VGG-16
remained almost unchanged, while ResNet-50 experienced
a relatively substantial performance decline. Additionally,
we noted that pruning the model using the Greg-2 method
had minimal impact on the model’s robustness.

7.3.2 The impact of pruning on model Interpretability

As shown in Figure 6, we applied four different pruning
algorithms to prune ResNet-50 and VGG-16 models by 35%
and 40% respectively. It can be observed that compared to
ResNet-50, VGG-16 exhibits a higher Insertion Score. How-
ever, the increase in Deletion Score for VGG-16 compared
to ResNet-50 is only marginal. This suggests that in this ex-
periment, VGG-16 demonstrates better interpretability than
ResNet-50. It is worth noting that when using the Taylor
method for pruning, ResNet-50 shows a sharp increase
in Deletion Score, which could indicate that ResNet-50 is
approaching its pruning limit. Additionally, when using
the ASL pruning method, VGG-16 outperforms ResNet-50
in both Insertion Score and Deletion Score, indicating that
VGG-16 exhibits superior interpretability across all aspects
compared to ResNet-50 at this particular pruning stage.
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Fig. 6. Average Insertion Score and Deletion Score with Different Prun-
ing Rate. A higher Insertion Score indicates better model interpretability,
while a lower Deletion Score indicates better interpretability. The com-
parison between Insertion Score and Deletion Score reflects the model’s
overall interpretability strength.

8 CONCLUSION

In this paper, we proposed AI-COMPASS, a comprehensive
and effective multi-module testing tool for automated test-
ing of DLS under the vast majority of testing requirements.
In addition to the essential utility evaluation (including
metric evaluation and mutation operations), AI-COMPASS
provides the measurements towards the adversarial robust-
ness, model interpretability, and model’s neuron analysis
to make an extensive report on the performance of DLS.
Furthermore, the feasibility of AI-COMPASS is tested in
multi-modal scenarios. For tasks including image classi-
fication, text classification and object detection tasks, AI-
COMPASS shows superior performance and solves the ad-
hoc problems of existing testing tools, indicating a high
degree of scalability. Extensive experiments demonstrate
that AI-COMPASS is so far the state-of-the-art testing tool
to build robust and trustworthy DLS.
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TABLE 10
The object detection model robustness evaluation results on COCO dataset.

Source Model Attack Method Faster R-CNN RetinaNet Mask R-CNN SSD

AP AR AP AR AP AR AP AR

Faster R-CNN

Original 0.585 0.508 0.557 0.537 0.591 0.519 0.415 0.365
FGSM 0.181 0.179 0.272 0.308 0.258 0.249 0.389 0.345

I-FGSM 0.051 0.075 0.164 0.239 0.134 0.164 0.394 0.351
DI-FGSM 0.109 0.146 0.211 0.276 0.189 0.218 0.38 0.34
TI-FGSM 0.161 0.187 0.321 0.381 0.296 0.31 0.376 0.336
MI-FGSM 0.041 0.066 0.119 0.178 0.098 0.12 0.375 0.335

SINI-FGSM 0.038 0.078 0.11 0.196 0.091 0.143 0.35 0.321
PGD 0.033 0.054 0.114 0.177 0.09 0.114 0.388 0.345
SAA 0.178 0.197 0.276 0.337 0.263 0.277 0.393 0.351

Average 0.153 0.166 0.238 0.292 0.223 0.235 0.384 0.343

RetinaNet

Original 0.585 0.508 0.557 0.537 0.591 0.519 0.415 0.365
FGSM 0.296 0.292 0.169 0.206 0.306 0.305 0.393 0.347

I-FGSM 0.221 0.264 0.054 0.105 0.233 0.278 0.4 0.355
DI-FGSM 0.252 0.277 0.111 0.176 0.262 0.289 0.388 0.345
TI-FGSM 0.372 0.376 0.132 0.212 0.384 0.388 0.386 0.345
MI-FGSM 0.155 0.198 0.046 0.09 0.166 0.208 0.383 0.34

SINI-FGSM 0.145 0.2 0.047 0.098 0.157 0.211 0.359 0.326
PGD 0.166 0.212 0.04 0.08 0.176 0.22 0.395 0.35
SAA 0.305 0.319 0.162 0.233 0.322 0.335 0.396 0.353

Average 0.277 0.294 0.146 0.193 0.289 0.306 0.391 0.347
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