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Understanding the dependencies among financial assets is critical for portfolio optimization. Traditional
approaches based on correlation networks often fail to capture the nonlinear and directional relationships
that exist in financial markets. In this study, we construct directed and weighted financial networks
using the Mixture Transition Distribution (MTD) model, offering a richer representation of asset inter-
dependencies. We apply local assortativity measures—metrics that evaluate how assets connect based on
similarities or differences—to guide portfolio selection and allocation. Using data from the Dow Jones 30,
Euro Stoxx 50, and FTSE 100 indices constituents, we show that portfolios optimized with network-based
assortativity measures consistently outperform the classical mean-variance framework. Notably, modal-
ities in which assets with differing characteristics connect enhance diversification and improve Sharpe
ratios. The directed nature of MTD-based networks effectively captures complex relationships, yield-
ing portfolios with superior risk-adjusted returns. Our findings highlight the utility of network-based
methodologies in financial decision-making, demonstrating their ability to refine portfolio optimization
strategies. This work thus underscores the potential of leveraging advanced financial networks to achieve
enhanced performance, offering valuable insights for practitioners and setting a foundation for future
research.
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allocation; Network mixing; Network assortativity.

JEL Classification: C45; C58; C61; G11; G17.

1. Introduction

Understanding the intricate interconnections among financial assets and their dynamic behaviors
is critical for optimizing portfolio management in financial markets. Network theory has recently
emerged as a powerful tool for analyzing such relationships, using correlation matrices as the foun-
dation for constructing financial networks with nodes and links represented by securities and their
interconnections, respectively. These networks often undergo filtering processes, such as the mini-
mum spanning tree (e.g., Mantegna [1999), the planar maximally filtered graph (e.g., [Tumminello
et al|2005), the triangulated maximally filtered graph (e.g., Massara et al.|[2017), or correlation
threshold (e.g., Ricca and Scozzari|2024), to manage their density. However, these methods have
limitations in fully capturing the nonlinear dependencies among financial assets. Recent advance-
ments, such as the Mixture Transition Distribution (MTD) model proposed by D’Amico et al.
(2023), address these shortcomings by modeling nonlinear relationships and producing directed
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and weighted networks. Building on these developments, this paper introduces a novel approach
to portfolio optimization by adopting an MTD-based financial network to represent the complex
dependencies among financial assets.

One of the earliest applications of network theory to financial markets was introduced by Man-
tegnal (1999), who analyzed the returns of the Dow Jones Industrial Average (DJIA) and Standard
& Poor’s 500 (S&P 500) indices. By deriving a measure of distance from return correlations,
Mantegnal (1999) constructed networks using the minimum spanning tree (MST) approach, which
reduces the number of links to n — 1, where n represents the number of assets. This method re-
vealed that interconnected stocks are often clustered by industry. Building on this, |(Onnela et al.
(2003) proposed dynamic asset graphs by creating networks of 477 stocks traded on the New York
Stock Exchange (NYSE). While still relying on return correlations, they retained only the closest
n — 1 nodes, resulting in a graph structure rather than a tree. Extending this line of research,
Tse et al.| (2010). developed a comprehensive network of U.S. stocks with 19,807 nodes, connecting
stocks if their correlation exceeded a specified threshold. More recently, Lydcsa et al.|(2012)) applied
dynamic conditional correlation (DCC) methods to build networks for the S&P 500 constituents
and (Guo et al| (2022) introduced a maximum likelihood estimation approach to determine stock-
specific thresholds, finding that traditional moving window approaches offered greater robustness
in capturing industry clusters.

Tumminello et al.| (2005]), instead, introduced a heuristic algorithm to construct the Planar
Maximally Filtered Graph (PMFG) as an alternative method for filtering correlation matrices. This
approach was applied to analyze the topological characteristics of PMFG networks constructed from
the returns of the 300 largest stocks listed on the New York Stock Exchange (NYSE) during the
period 2001-2003, examining different time horizons. More recently, Massara et al.| (2017)) proposed
the Triangulated Maximally Filtered Graph (TMFG), an efficient triangulation-based algorithm
for filtering correlation matrices. This method has demonstrated versatility in various financial
contexts. For instance, De Blasis et al. (2024) examined the issue in |Galati et al.| (2024) using the
TMFG approach to study the cryptocurrency network of the FTX exchange during the collapse of
its native token, FTT. Their analysis leveraged vertex centrality measures to explore how network
structures respond to significant financial shocks, providing insights into the adaptive dynamics of
financial networks in periods of crisis.

Moving beyond correlation-based methods, alternative frameworks have emerged to capture more
nuanced relationships. [Billio et al.| (2012]) used principal component analysis and pairwise Granger-
causality to construct networks among hedge funds, mutual funds, and financial institutions, of-
fering insights into interdependencies within the financial sector. Yang et al. (2014)) analyzed coin-
tegration relationships among global stock indices, enabling the construction of directed networks
to represent causal links. However, these methods often lack the ability to assign weights to edges.
Addressing this limitation, |Su et al.| (2022)) combined Granger-causality and cointegration tests
to create directed and weighted networks using a sliding window methodology. Similarly, [Diebold
and Yilmaz (2014) constructed weighted and directed networks of U.S. financial institutions us-
ing vector autoregression (VAR) variance decomposition, while [Yang et al.| (2023) built sovereign
default networks, leveraging centrality measures to explore their role in driving currency risk pre-
mia. A further innovation by |Chen et al.| (2021]) involved constructing multi-layered networks that
integrated correlation, grey relational analysis, and maximum information coefficients.

However, very recently ID’Amico et al.|(2023) introduced a novel methodology for constructing
stock networks by modeling stock returns as a multivariate Markov chain using the Mixture Transi-
tion Distribution (MTD) model. Initially proposed by Raftery| (1985) to handle high-order Markov
chains and later extended by (Ching et al| (2002) to a multivariate context, the MTD framework
has seen various financial applications, including stock valuation, price discovery, and credit risk
(D’Amico et al.[[2023). In their study, |D’Amico et al.| (2023) employed the multivariate MTD to
derive a connectedness matrix, which serves as the adjacency matrix for network construction and
captures dependencies that extend beyond simple linear correlations. They thus demonstrated the
potential of this approach by applying it to the Dow Jones 30 constituents, highlighting its abil-
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ity to model asymmetric dependencies among stocks. Their findings showcased how MTD-based
networks allow for the calculation of both in-degree and out-degree centrality, underscoring the
practical applicability of the methodology in real-world financial scenarios. Building on this foun-
dation, we expand the use of MTD networks to portfolio optimization. We do this by incorporating
local assortativity measures, providing a new lens through which to evaluate asset relationships
and enhance portfolio optimization.

Newman (2003) is among the first to study assortative mixing in networks, namely the propen-
sity of nodes in networks to connect with other vertices that are like (or unlike) them in some way.
In their study, the authors proposed several models and measures to probe that assortative mix-
ing gives important insights about the networks’ design and functionality, and indeed documented
that it is a pervasive phenomenon in many real-world networks. This was taken as inspiration by
Piraveenan et al.| (2008, [2010), who introduced a measure of local assertiveness that quantifies the
level of assortative mixing for individual nodes. Further recent studies introduced different local as-
sortativity measures, such as the ones by Peel et al.| (2018), Pigorsch and Sabek! (2022]), and Sabek
and Pigorsch| (2023, and provided disparate real-world applications. In financial market networks,
where securities are represented as vertices, having nodes less assortative (or nodes more disas-
sortative) indicates that the financial assets within the market exhibit diverse characteristics—a
favorable scenario for portfolio optimization. The usefulness of these measures in a portfolio man-
agement context was indeed understood by a very recent study by Ricca and Scozzari (2024)), who
extended the local assortativity measure of |Piraveenan et al. (2008) to weighted networks and
applied it to portfolio selection in three large financial markets.

In a similar vein, we take advantage of these measures to demonstrate their effectiveness in guid-
ing the selection and weighting of assets within portfolios. In this study, we extend the |Piraveenan
et al.| (2010)) measure, weighted as proposed by [Ricca and Scozzari| (2024), to directed networks con-
structed using the MTD model mentioned above. We then compare it against two other widely used
local assortativity measures (i.e., [Peel et al|2018, Sabek and Pigorsch! [2023)), framing the analysis
as a comparative “horse race” to highlight their relative strengths and applicability. We employ the
Max Quadratic Utility and Sharpe Ratio optimization methods—established standards in modern
portfolio theory (Markowitz 1952)—to apply the model of D’Amico et al. (2023)) to real-world
financial data from major equity indices constituents, including the Dow Jones 30, Euro Stoxx
50, and FTSE 100. Through an out-of-sample empirical analysis, we compare the effectiveness of
our network-based assortativity measures against both the classical mean-variance framework and
other correlation-based network approaches. Our findings demonstrate the superiority of MTD-
network-based metrics in capturing the complex dependencies among assets, leading to portfolios
with improved risk-adjusted returns.

This study contributes to the literature on network-based portfolio optimization by introducing
a novel approach and several extensions. First, we move beyond the traditional use of correlation-
based networks and employ the mixture transition distribution model, which captures nonlinear
relationships and generates directed networks, allowing for a richer representation of dependencies
among financial assets. This application of the MTD model to portfolio optimization marks an
advancement in the field. Second, we extend the framework proposed by Piraveenan et al.| (2010))
by incorporating directed networks, thereby enriching the local assortativity analysis and offering
new insights into the directional influence among assets. Third, while taking inspiration from Ricca
and Scozzari| (2024), we distinguish our approach by adopting different modern portfolio theory
optimization standards—specifically, the Max Quadratic Utility and Sharpe Ratio methodologies
proposed by Markowitz| (1952)). Unlike |[Ricca and Scozzari (2024), who focus on return maximiza-
tion subject to a pre-defined Value at Risk (VaR), our approach prioritizes the dual objectives
of maximizing returns and minimizing risk within a robust theoretical framework. Finally, we
provide empirical evidence demonstrating the practical utility of MTD-network-based assortativ-
ity measures in portfolio management. By consistently outperforming the gold-standard methods
of modern portfolio theory, our results offer valuable insights for practitioners seeking novel and
more efficient models for portfolio optimization, underscoring the potential of network theory as a
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powerful tool for achieving superior risk-adjusted returns.

The paper is organized as follows. Section 2Modelsection.2| outlines the methodology, including
the MTD model, directed networks, and assortativity measures. Section [3Financial applicationsec-|
describes the data and sample selection of the financial application and presents the empirical
findings, comparing network-based measures to the Markowitz benchmark. Section
concludes with key insights and implications for portfolio management.

2. Model

2.1. Construction of the financial network

As shown in [D’Amico et al.| (2023), it is possible to build a weighted and directed financial network
based on the MTD model from , extended to a multivariate setting by |Ching et al.
. To this extent, let us consider a multivariate sequence of random variables S = (S," 2 ,Vi e
N = {1,2,...,n}), defined on a probability space (2, F,P) and taking values on the same ﬁnlte
state space Z. In addition, let us assume that the sequence respects the following multivariate
Markov property:

P, = k| = mY s = D s = p)y,
(S = k™ s = " S = p{My) (1)
= P(S9) = K|S = piY, 8 = p(M).

Property ((1Construction of the financial networkequation.2.1)) states that the probability of being in
state k at time t+1 for the j-th series depends only on the state hgl), - hg") occupied by all series at
time ¢t. Modeling property (1Construction of the financial networkequation.2.1|) becomes infeasible
when the number of series increases because we would need to take into account all transitions from
starting states to ending states combinations. In order to reduce the number of parameters, we can
employ the MTD model which applies a convex linear combination to the transition probability
matrices from one series to another. Specifically, we can compute the probability distribution of

series j at time £ + 1 as:

J(t+1) ZD’) - Aij - PEI) (2)

where DI(t) := [DY) ... DY), DY (1) := P(SY) = h), and P@) = (p"7)), .z is the transition
probability matrix containing the probabilities of moving from state h in series i to state k in series
j-

The scalar parameters of the linear combination, )A;;, are subject to the following constraints:

ZA@jZl,VjEN, /\ij > 0. (3)
=1

They measure the degree of dependence among the different series of the systems. Specifically, when
considering financial returns series, equation (2Construction of the financial networkequation.2.2))
states that the probability for a price change in series j of being in a specific state (e.g., negative,
positive, or null) is a linear combination of all the transition probabilities from each series initial
states to the arrival state in series j. In other words, large values of \;; weights indicate a strong
influence from returns of series i to returns of series j. For the estimation procedure to compute
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the transition probabilities P%® and the parameters Ag,a we refer the reader to D’Amico et al.
(2023).

Now, considering that j € N, we obtain n different equations (2Construction of the financiall
metworkequation.2.2)) for each arrival return series. Therefore, we can build a matrix of A;; weights,

A1 A2 Al
A21 A22 0 Ao

= e (4)
)\n,l )\n,2 e )\nn

)

Then, from the matrix A we build a directed and weighted financial network described by a graph
G = (N, E) with n = |N| nodes and e = |E| edges. Therefore, the graph G has adjacency matrix,
A, with elements

(5)

1 1f)\w>0and27éj
;i =
" 0 otherwise

and weighted adjacency matrix, W, with elements

wU:{MjiH#j | ©)

0 otherwise

Both conditions in (5Construction of the financial networkequation.2.5)) and (6Construction of thel
[financial networkequation.2.6|) eliminate the self-loops in the graph. A
For each node i = 1,...,n, we compute some node’s characteristics. We denote by d!" = > ; Qi

and d9"' = Zj a;; the in- and out-degrees of node i, respectively. We identify N (i) as the set
of neighbors of node . In particular, we consider only the direct successors of node %; thus, the
neighbors’ cardinality is equal to d?“*. Additionally, we indicate by si* = 3" jwji and s = 37wy
the in- and out-strength of node ¢, respectively.

2.2. Network assortativity

The network assortativity measures the correlation between the distribution of some characteristics
of the graph on pairs of adjacent nodes (Newman 2003)). A common approach in the literature is
to employ the excess degree or excess strength as node characteristics and compute a simple or
weighted correlation between them. For our purpose, we consider the excess in- and out-strength as
esﬁ” = sﬁ — wji and esy" = s?“ — w;j, respectively. Further, we employ the weighted correlation
approach. Thus, followmg Plgorsch and Sabek (2022), the general formula of the global assortativity
for directed and weighted graphs is:

mz _ )—1 oo a2
> i wijes; " es] Q (Zz‘jwljes‘ )(Zi,jwljesj )

\/Z”ww A e (Z”wwes \/Z jwijes)?)? — Q1 <Z”fw”es] >2
(7)

where the couple (m1,ma), with my, mg € {in, out}, defines the mode of the assortativity, es;"" is
the excess in- or out-strength of the source node ¢ when considering edge (i,7) (similarly for the
target node j), and 2 =3, - w;;.

The global assortativity is a single coefficient describing the entire network. However, to properly
diversify a financial portfolio, we need a single coeflicient for each node. To this extent, we analyze

p mlamQ

)
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three different measures of local assortativity.

As a first measure, we propose an extension of the local assortativity introduced by |Piraveenan
et al.| (2008, |2010) to directed and weighted networks. This local assortativity measures the con-
tribution that each node makes to the global assortativity. Given a source node ¢, we compute the
assortativity as the weighted correlation between the source node i and its neighbors N(i). In our
directed network, we assume that the neighbors are all direct successors of node %, i.e., all nodes
reached with an out-edge from node 7. Therefore, the local assortativity can be computed as

oM, M2 -1 e L peM2
ZjeN(z‘)wweSz' €s; Q (ZjeN(z’) Wiz €S, )(Zi,jwljesj >

2 2
J Sig wiglesP )2 = Q71 (X, wyes™) J Sag wig(es]®)? = Q1 (5, wijes] )
(8)

where the first and second terms in the numerator measure the contribution of node i to the cross-
product of excess strengths and the average source strength, respectively. The denominator is the
scaling factor which is unchanged to ensure that the sum of the local assortativities is equal to the
global measure.

A second measure has been introduced by |Sabek and Pigorschl (2023). The authors start with
the definition of the local assortativity on the edges of the network,

pi(mi,mo) =

wij(es;™ —pi")(es]™ — pi™)
peij (ml? m2) d Qo_mlo_mQ / ’ (9)

where ;"' = 3, wjjes]" is the weighted mean excess (in- or out-) strength of the source nodes on
all edges (similarly for u7"), and 07" and o7}™
(in- or out-) strengths over the whole network.

Then, the assortativity of a node can be computed as the sum of the edge assortativity of all the

node’s neighbors,

are the weighted standard deviations of the excess

pi(my,ma) = Y pe,j(ma,my) (10)
JEN(7)

Finally, a third measure has been proposed by Peel et al.| (2018). The authors argue that con-
sidering only the neighbors of a node to compute the local assortativity encounters problems. In
particular, for nodes with low degree, we would compute the assortativity on a small sample, thus
providing a poor estimate of the node’s mixing preference. They propose a solution by reweighting
the edges in the network based on how local they are to the node of interest [. Therefore, formula
(LONetwork assortativityequation.2.10) can be rewritten as

s m m m
—es; 1)(esj 2 —es'?)

) wij(© J (11)
m17m2 ’U)a Z out 1 )

S;70; O'
J

where wq(4;1) is a distribution over the nodes. |Peel et al.| (2018) suggest to employ the person-
alized PageRank vector as a specific distribution, i.e., the stationary distribution of a random
walk with restart to node [ with probability (1 — «). The random walker can move on the net-
work G jumping from node i to node j with probability w;;/s?“*. As for the choice of a, the
authors propose to integrate wq(i;1) over all possible values, thus obtaining a multi-scale distribu-

tion Wiy (1;1) = fol wq (15 1)da to substitute for wey,(4;1) in (]1 1Network assortativityequation.2.11[).
Using this distribution, we compute a multiscale local measure that captures the assortativity of
a node across all scales. Contrary to the previous two local measures, we observe that the sum of
these local assortativities is not equal to the global assortativity.
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2.3. Portfolio optimization

Following [Ricca and Scozzari (2024), we extend two classical portfolio problems, i.e., the max
quadratic utility and max Sharpe ratio problems, with the addition of the information derived
from the excess strength assortativity.

Let p and 3 be the assets’ returns vector and covariance matrix with dimensions n and n x n,
respectively, with n equal to the number of assets. Let & be the vector of portfolio weights. The
extended max quadratic utility optimization can be written

0
max pT — §ac’2w — R, (12)

while the extended max Sharpe optimization takes the following form

n

max —— —
'Y ’

(13)

where R is the total portfolio assortativity and it is subtracted from the objective function because
we aim at selecting stocks that are disassortative to help diversify the asset allocation.

The portfolio assortativity can be computed as a simple or weighted sum of the selected stocks’
assortativities:

R = px (14)
R = py, (15)

where p is the vector of assortativities, y; = 1 if ; > 0 and y; = 0 if x; = 0.
The constraints of the optimization are:

i=1,...n

z; >0, i=1,...,n (17)

Vi <z <y, 1=1,.,n, (18)

v € {0,1) (19)
(20)

where equation ({17Portfolio optimizationequation.2.17)) represents the budget constraints, equation
18Portfolio optimizationequation.2.18)) only allows for long positions in the portfolio, and equation
19Portfolio optimizationequation.2.19)) establishes a logical dependency between variables x and
y with lower bound .

3. Financial application

3.1. Data and sample

This study uses daily closing price data sourced from Datastream, a product of Refinitiv, an LSEG
business. The dataset encompasses stocks included in three major indices: the Dow Jones 30 (DJ30),
Euro Stoxx 50 (STOXX50), and FTSE 100 (FTSE100), providing a cross-country comparison across
the United States, Europe, and the United Kingdom, respectivelyﬂ For all indices, weekends and

LConsistent with [Ricca and Scozzaril (2024)), the choice of these indices allows for a broad representation of market dynamics
across different regions, providing a robust foundation for the portfolio optimization framework explored in this research.
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public holidays have been excluded from the analysis to ensure consistency in trading days.

Consistent with Ricca and Scozzari (2024]), we assess the performance of our portfolios using
a widely recognized rolling time window method, which permits portfolio re-balancing at regular
intervals throughout the holding period. Specifically, we use a 90-day in-sample window and a 30-
day out-of-sample period, with re-balancing occurring every 30 trading days. The 20-year sample
spans from December 2004 to December 2024, comprising more than 5,000 (160) observations
(rolling windows) for the constituents of each equity index and including 28 stocks for the DJ30,
46 stocks for the STOXX50, and 78 stocks for the FTSE100.

We compute the logarithmic returns for each stock in the dataset to capture relative price changes,

as follows:
Py >
T =In ’ 5 21
=i (s (21)

where P;; represents the closing price of stock ¢ on day ¢, and P; ;1 denotes the closing price of the
same stock on the previous trading day. We then apply the MTD model to portfolio optimization
and compute the average expected returns for each portfolio over the rolling windows, as well as
the portfolio returns’ standard deviation and Sharpe Ratio using a constant risk-free rate of return
equal to zero for convenience, consistent with Ricca and Scozzari (2024)).

Table [I1Local assortativity analysis of the three markets for different assortativity modes. The

averages of the rolling networks are reported. p, is the average global assortativity. P(p; > 0)

is the proportion of assortative nodes. (p;)+ and (p;)_ are the local assortativity averages of the

assortative and disassortative nodes, respectively.table.caption.l| summarizes the network assorta-

tivity of our sample, broken down into three financial markets—Dow Jones 30, Euro Stoxx 50, and
FTSE100—and three different assortativity measures (Extended Piraveenan et al., 2010; Sabek
and Pigorsch, 2023; Peel et al., 2018). We consider four assortativity modalities: in-in, in-out, out-
in, and out-out. Each modality provides insights into the connectivity preferences of nodes within
the network. The measures include global assortativity (pg), the proportion of assortative nodes

(P(p; > 0)), the average assortativity of assortative nodes ((p;)+), and the average assortativity
of disassortative nodes ((p;)—).

Global assortativity (pg) determines whether the network exhibits assortativity or disassortativity
overall. For the in-in modality, p, is consistently positive across all markets and measures, with
values ranging between 0.015 and 0.022. This indicates a weak assortative tendency, where nodes
that are highly influenced by others show a slight preference for connecting with similarly influenced
nodes. In contrast, the in-out, out-in, and out-out modalities consistently exhibit negative p,,
indicating disassortative tendencies. For instance, py in the in-out modality ranges from -0.059 to
-0.093, reflecting that nodes influenced by others tend not to connect with nodes that strongly
influence others. Similarly, the out-in modality has p, values ranging from -0.086 to -0.127, while
the out-out modality shows values from -0.045 to -0.069, highlighting that highly influential nodes
tend to avoid connecting with similarly influential nodes.

The proportion of assortative nodes (P(p; > 0)), the probability of having a p, greater than
zero, captures the percentage of assortative nodes that are in the network analyzed. This varies
across modalities and measures. In the in-in modality, this proportion is highest, ranging from 0.552
(Sabek and Pigorsch, 2023, Dow Jones 30) to 0.644 (Extended Piraveenan et al., 2010, FTSE100),
suggesting that a significant number of nodes individually exhibit assortative behavior, even when
the global assortativity is weak. Conversely, in the in-out modality, the proportion of assortative
nodes is moderate, with values between 0.342 and 0.427, reflecting a lower tendency for individual
nodes to exhibit assortative connections. The out-in modality displays even lower proportions, with
values ranging from 0.143 (Peel et al., 2018, Eurostoxx 50) to 0.654 (Extended Piraveenan et al.,
2010, FTSE100), underscoring the variability introduced by the different measurement approaches.
Finally, in the out-out modality, the proportion of assortative nodes is relatively balanced, with
values between 0.363 and 0.526, indicating that assortative connections are neither dominant nor
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negligible.

The average assortativity of assortative nodes ((p;)+) further reveals the magnitude of assorta-
tivity for positively assortative nodes. In the in-in modality, Peel et al. (2018) assortativity measure
consistently reports high values, ranging from 0.172 to 0.239, while the Sabek and Pigorsch (2023)
measure shows nearly negligible values, with averages between 0.003 and 0.012E| Similar patterns
are observed in the in-out modality, where the Peel et al. (2018) metric exhibits values from 0.146
to 0.196, again demonstrating stronger assortative tendencies compared to the near-zero averages
reported by Sabek and Pigorsch. For the out-in modality, the Peel et al. (2018) measure reports
averages ranging from 0.217 to 0.253, which are markedly higher than those observed in the other
measures. Lastly, in the out-out modality, Peel et al. (2018) assortativity measure again reports the
highest averages, ranging from 0.202 to 0.244, highlighting the tendency of this metric to capture
stronger assortative nodes across modalities. -

In contrast, the average assortativity of disassortative nodes ((p;)—) quantifies the magnitude of
disassortativity among negatively assortative nodes. The Peel et al. (2018) measure consistently
reports the strongest disassortativity across all modalities. For instance, in the in-in modality, its
values range from -0.174 to -0.208, compared to the Extended Piraveenan et al. (2010) measure,
which values range from -0.078 to -0.143, and Sabek and Pigorsch (2023), with averages close to zero
(-0.004 to -0.013). Similar trends are observed in the in-out modality, where Peel et al.’s (2018)
assortativity reports values between -0.162 and -0.233, and in the out-in modality, where their
values are significantly more disassortative, ranging from -0.391 to -0.459. The out-out modality
follows the same pattern, with the Peel et al. (2018) reporting values between -0.244 and -0.293,
indicating that disassortative nodes in this modality exhibit the strongest tendency to connect with
dissimilar nodes.

Comparisons across markets reveal distinct patterns as well. The FTSE100 consistently exhibits
higher proportions of assortative nodes across all modalities, suggesting a more cohesive network
structure. The Dow Jones 30 shows moderate assortativity, generally weaker than the FTSE100 but
stronger than the Eurostoxx 50. The Eurostoxx 50, on the other hand, consistently demonstrates
the weakest assortativity and the strongest disassortativity, reflecting a more fragmented or het-
erogeneous market structure. These results illustrate significant variations in network connectivity
dynamics across financial markets, as well as the impact of different assortativity measures on the
interpretation of node behavior.

Figure [1Relationship between vertex assortativity and excess out-strenght. The profiles are gen-|
lerated by applying loess regression to smooth the data, with the shaded area representing thel
[95 per cent confidence intervals.figure.caption.2|illustrates the relationship between average vertex
assortativity and the average excess out-strength of nodes for the three financial markets ana-
lyzed, using the three local assortativity measures. The results are stratified by four assortativity
modalities: in-in, in-out, out-in, and out-out. Each plot provides a dynamic perspective on how
assortative behavior evolves as the average excess out-strength of the nodes increases, with the
x-axis measured in units corresponding to node weight.

The Extended Piraveenan et al. (2010) measure reveals distinct patterns across all three markets.
For the in-in modality, average vertex assortativity starts positive, indicating a preference for nodes
with high average excess out-strength to connect with other nodes similarly influenced. However,
as the excess out-strength of the nodes increases, this positive tendency diminishes significantly,
reflecting a reduction in assortative clustering among nodes with higher weights. For the in-out and
out-in modalities, assortativity remains consistently negative across all levels of excess out-strength,
indicating persistent disassortativity, where nodes with higher excess out-strength (e.g., influential
nodes) avoid connecting with nodes of opposing roles, such as highly influenced nodes. The out-out
modality exhibits near-zero assortativity across all markets, suggesting weak or negligible clustering
tendencies between nodes of similar high excess out-strength.

T Albeit a comparison between local assortativity measures is by definition not viable.
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Table 1.: Local assortativity analysis of the three markets for different assortativity modes. The
averages of the rolling networks are reported. p, is the average global assortativity. P(p; > 0)

is the proportion of assortative nodes. (p;)+ and (p;)— are the local assortativity averages of the
assortative and disassortative nodes, respectively.

Extended Piraveenan et al. (2010) Sabek and Pigorsch (2023) Peel et al. (2018)
DJ30 STOXX50 FTSE100 DJ30 STOXX50 FTSE100 DJ30 STOXX50 FTSE100

Panel A: (in, in)

Pg 0.021 0.022 0.015 0.021 0.022 0.015 0.021 0.022 0.015
P(p; >0) 0.628 0.642 0.644 0.552 0.563 0.575 0.578 0.599 0.608
(pi)+ 0.083 0.060 0.043 0.012 0.006 0.003 0.239 0.221 0.172
(pi)— -0.143 -0.108 -0.078 -0.013 -0.007 -0.004 -0.208 -0.194 -0.174
Panel B: (in, out)

Pg -0.088 -0.093 20.059  -0.088 -0.093 20.059  -0.088 20.093  -0.059
P(p; >0) 0.427 0.401 0.416 0.409 0.379 0.406 0.379 0.342 0.382
(pi)+ 0.104 0.080 0.057 0.011 0.006 0.003 0.196 0.175 0.146
(pi)— -0.083 -0.057 -0.042 -0.013 -0.007 -0.003 -0.233 -0.201 -0.162
Panel C: (out, in)

Pg -0.086 -0.127 0.093  -0.086 0127 -0.093  -0.086 0127 -0.093
P(p;>0) 0.616 0.616 0.654 0.390 0.353 0.387 0.198 0.143 0.170
(pi)+ 0.014 0.006 0.004 0.014 0.008 0.004 0.244 0.253 0.217
W -0.031 -0.018 -0.011 -0.014 -0.009 -0.005 -0.459 -0.446 -0.391
Panel D: (out, out)

Pg -0.069 -0.051 0.045  -0.069 0.051 0045  -0.069 20051 -0.045
P(p; >0) 0.395 0.363 0.390 0.490 0.524 0.526 0.415 0.446 0.468
(pi)+ 0.018 0.010 0.006 0.010 0.005 0.003 0.244 0.213 0.202
(pi)— -0.016 -0.008 -0.005 -0.014 -0.008 -0.005 -0.293 -0.271 -0.244

The Sabek and Pigorsch (2023) measure exhibits subtler trends. For the in-in modality, assor-
tativity remains weakly positive across all markets, with a slight increase observed as the average
excess out-strength of the nodes rises. This suggests a mild preference for connections among highly
influenced nodes. For the in-out and out-in modalities, average assortativity remains slightly neg-
ative throughout, with disassortative tendencies becoming marginally stronger as the excess out-
strength increases. The out-out modality transitions from near-zero to slightly positive assortativity
at higher levels of excess out-strength, reflecting a weak preference for connections between influen-
tial nodes. Among the markets, the FTSE100 consistently exhibits stronger in-in assortativity than
the Dow Jones 30 and Eurostoxx 50, while the trends for the other modalities remain relatively
similar across the three markets.

The Peel et al. (2018) measure shows flat dynamic patterns across all modalities and markets,
signaling a more stable type of assortativity measure. For the in-in modality, assortativity starts
strongly positive and increases significantly as the average excess out-strength rises, indicating a
clear clustering tendency among highly influenced nodes. The in-out and out-in modalities show
pronounced negative trends, with disassortativity intensifying as the excess out-strength increases,
highlighting a strong separation tendency where highly influential nodes avoid connecting with
highly influenced nodes. In contrast, the out-out modality exhibits a sharp increase in positive
assortativity as the excess out-strength of nodes rises, suggesting a strong clustering tendency
among highly influential nodes connecting with others of similar influence.

The patterns across markets consistently reveal meaningful trends in node connectivity under
each local assortativity measure. For the Extended Piraveenan et al. (2010) measure, the orange
(in-out) and red (out-out) lines rise consistently with increasing node weights, indicating that nodes
that are both highly influenced (in) by and highly influence (out) other nodes tend to tie up with
nodes that in turn highly influence others (out). Meanwhile, the blue (in-in) and green (out-in)
lines consistently decrease, highlighting that nodes that are highly influenced (in) by and highly
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Figure 1.: Relationship between vertex assortativity and excess out-strenght. The profiles are gen-
erated by applying loess regression to smooth the data, with the shaded area representing the 95
per cent confidence intervals.

influence (out) other nodes tend not to tie up with nodes that in turn are highly influenced by
others (in).

For the Sabek and Pigorsch (2023) measure, the blue (in-in) and red (out-out) lines consistently
rise across markets as node weights increase, meaning that nodes that are highly influenced (in)
by others or that highly influence (out) other nodes increasingly tie up with nodes that exhibit
the same characteristics. In contrast, the orange (in-out) and green (out-in) lines decrease steadily,
reflecting that nodes highly influenced (in) by others or nodes that highly influence (out) others
tend not to tie up with nodes that exhibit opposite characteristics (e.g., highly influencing versus
highly influenced).

The Peel et al. (2018) measure shows the strongest dynamics, with the red (out-out) line sharply
rising across all markets as node weights increase, signifying a strong clustering tendency for nodes
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that highly influence others to tie up with nodes that in turn highly influence others. Similarly,
the blue (in-in) line rises significantly, indicating that nodes highly influenced (in) by others in-
creasingly tie up with similarly influenced nodes. However, the orange (in-out) and green (out-in)
lines consistently decrease, reflecting a strong disassortative tendency where nodes that are highly
influenced (in) by or highly influence (out) others avoid connecting with nodes that exhibit oppos-
ing roles. These consistent patterns across markets highlight the role of increasing node weights
in shaping assortative and disassortative behaviors, with clear implications for diversification in
portfolio optimization.

These observations provide nuanced insights into the connectivity dynamics within financial
networks. As the average excess out-strength of nodes increases, significant variations in assorta-
tivity emerge, underscoring the role of influential and highly influenced nodes in shaping network
structures and market behaviors. The interplay between node weight, assortativity measures, and
modalities emphasizes the importance of understanding local assortativity in financial networks.

3.2. Empirical findings

Here we present the results of the empirical analysis, applying local assortativity measures (i.e.,
Extended Piraveenan et al., 2010; Sabek and Pigorsh, 2023; and Peel et al., 2018) to the Dow Jones
30, Euro Stoxx 50, and FTSE 100 indices to assess their impact on portfolio optimization under
the Max Quadratic Utility and Max Sharpe methods. The analysis compares Sharpe ratios across
different modalities (i.e., in-in, in-out, out-in, and out-out), emphasizing the diversification benefits
of network-based metrics relative to the Markowitz benchmark and to the correlation-based local
assortativity measures themselves, secondary benchmarks within each measure. The results are
broken down into two ways of constructing a portfolio: a weighted and a simple portfolio, equations
(14Portfolio optimizationequation.2.14]) and (15Portfolio optimizationequation.2.15)), respectively.

The out-of-sample analysis for the Dow Jones 30 in Table 20ut-of-sample results for Dow Joneg]
[30table.caption.d| demonstrates how integrating local assortativity measures into portfolio opti-
mization can enhance returns relative to the benchmark Markowitz approach. The Sharpe ratios
across the assortativity modalities and optimization methods provide insights into how network-
based metrics are useful for assessing portfolio performance, emphasizing diversification benefits.

Focusing first on the Weighted Portfolio Assortativity results of Panel A (Table 20ut-of-sample
fresults for Dow Jones 30table.caption.3)), the Markowitz benchmark Sharpe ratio under the Max
Quadratic Utility method is 0.805, while the Max Sharpe optimization achieves a higher ratio of
0.945. For the Extended Piraveenan et al. (2010) measure, the in-out modality stands out, achieving
a Sharpe ratio of 0.872 under Max Quadratic Utility and matching the benchmark’s Max Sharpe
ratio of 0.945. This suggests that when nodes highly influenced by others tie up with nodes that in
turn highly influence others, it contributes to superior portfolio diversification. Similarly, the out-
out modality achieves a Sharpe ratio of 0.955 under Max Sharpe optimization, outperforming both
the Markowitz benchmark and the same network-based measure computed through the standard
correlation matrices. Here, the tendency of highly influential nodes to tie with similarly influential
nodes appears to enhance returns while maintaining acceptable risk levels.

Under the Sabek and Pigorsch (2023) measure, the correlation modality (a secondary bench-
mark within each measure) slightly improves upon the Markowitz benchmark with a Sharpe ratio
of 0.806 under Max Quadratic Utility and matches 0.955 under Max Sharpe optimization. The
in-out modality produces a Sharpe ratio of 0.825 under Max Quadratic Utility and 0.974 under
Max Sharpe optimization, highlighting the diversification benefits when nodes influenced by others
connect to influential ones. These results reinforce that disassortativity, where nodes link to those
with different characteristics, supports higher risk-adjusted returns, which is a core goal in portfolio
optimization. The Peel et al. (2018) measure, instead, shows exceptional performance under Max
Sharpe optimization. The correlation modality reaches a Sharpe ratio of 1.260, significantly out-
performing the Markowitz benchmark, indicating that this measure captures critical diversification
patterns. The out-in modality also achieves strong results, with Sharpe ratios of 0.902 and 0.907
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Table 2.: Out-of-sample results for Dow Jones 30
Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe Expected Annual Sharpe
Return Volatility =~ Ratio Return Volatility —Ratio

Panel A: Weighted Portfolio Assortativity

Markowitz Benchmark 0.103 0.214 0.805 0.102 0.180 0.945
Correlation  0.102 0.212 0.820 0.097 0.178 0.919
in, in 0.064 0.213 0.591 0.089 0.177 0.886

Extended Piraveenan et al. (2010) in, out 0.121 0.215 0.872 0.109 0.178 0.945
out, in 0.096 0.216 0.749 0.052 0.192 0.680
out, out 0.103 0.215 0.774 0.110 0.188 0.955
Correlation 0.104 0.214 0.806 0.105 0.182 0.955
in, in 0.105 0.214 0.815 0.087 0.179 0.877

Sabek and Pigorsch (2023) in, out 0.102 0.214 0.825 0.095 0.177 0.974
out, in 0.105 0.215 0.790 0.087 0.186 0.887
out, out 0.095 0.214 0.762 0.087 0.178 0.867
Correlation  0.192 0.215 1.144 0.155 0.178 1.260
in, in 0.035 0.212 0.540 0.077 0.183 0.829

Peel et al. (2018) in, out 0.079 0.216 0.786 0.080 0.174 1.052
out, in 0.113 0.208 0.902 0.067 0.157 0.907
out, out 0.025 0.213 0.510 0.087 0.172 0.940

Panel B: Simple Portfolio Assortativity

Markowitz Benchmark 0.103 0.214 0.805 0.102 0.180 0.945
Correlation 0.109 0.199 0.962 0.102 0.174 1.039
in, in 0.109 0.194 0.966 0.082 0.184 0.819

Extended Piraveenan et al. (2010) in, out 0.121 0.181 1.187 0.118 0.174 1.098
out, in 0.098 0.208 0.824 0.101 0.185 0.968
out, out 0.110 0.204 0.911 0.119 0.176 1.117
Correlation 0.117 0.208 0.920 0.109 0.175 1.048
in, in 0.112 0.207 0.925 0.104 0.178 0.978

Sabek and Pigorsch (2023) in, out 0.101 0.204 0.868 0.110 0.173 1.057
out, in 0.102 0.205 0.870 0.115 0.173 1.105
out, out 0.104 0.206 0.883 0.104 0.176 1.020
Correlation 0.113 0.166 1.227 0.122 0.170 1.108
in, in 0.091 0.184 1.023 0.090 0.183 0.936

Peel et al. (2018) in, out 0.099 0.168 1.151 0.116 0.170 1.165
out, in 0.092 0.160 1.164 0.117 0.165 1.222
out, out 0.085 0.171 0.978 0.097 0.174 0.992

under the two optimization methods, respectively. These results suggest that nodes highly influ-
encing others, yet connecting to highly influenced nodes, play a crucial role in balancing risk and
return, further supporting diversification. The in-out modality similarly achieves a higher Sharpe
ratio under the Max Sharpe approach (1.052), highlighting the outperformance of network-based
assortativity measures against standard portfolio optimization metrics.

Examining the Simple Portfolio Assortativity results of Panel B (Table[20ut-of-sample results forf
[Dow Jones 30table.caption.3|) reveals further improvements over the Markowitz benchmark. While
there are a couple of exceptions, such as the in-in modalities for both the Extended Piraveenan
et al. (2010) and the Peel et al. (2018) measures under the Max Sharpe method, all the results
demonstrate that the assortativity measures of our models perform better than the benchmark.
The Extended Piraveenan et al. (2010) measure achieves the highest Sharpe ratio of 1.187 under
the in-out modality with Max Quadratic Utility, exceeding the benchmark by a significant margin.
This reflects the value of incorporating connections where highly influenced nodes interact with
highly influential ones. Similarly, the out-out modality under Max Sharpe optimization delivers a
Sharpe ratio of 1.117, indicating that highly influential nodes connecting with similarly influential
nodes enhance portfolio returns. Under the Sabek and Pigorsch (2023) measure, the out-in modality
achieves a Sharpe ratio of 1.105 under Max Sharpe optimization, exceeding the benchmark and
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highlighting the benefits of disassortative connections for portfolio diversification. The Peel et al.
(2018) measure continues to deliver strong performance, with the out-in modality reaching a Sharpe
ratio of 1.164 under Max Quadratic Utility and an impressive 1.222 under Max Sharpe optimization,
underscoring the role of diverse network connections in optimizing risk-adjusted returns.

The expected returns and annual volatility results in Table [20ut-of-sample results for Dow Joneg]
[30table.caption.d| align closely with the Sharpe ratio findings, providing a consistent narrative for
the benefits of network-based portfolio optimization. In Panel A, the Extended Piraveenan et al.
(2010) measure under the in-out modality achieves the highest expected return of 0.121 under
Max Quadratic Utility, slightly exceeding the Markowitz benchmark of 0.103, while maintaining
a comparable annual volatility of 0.215. Similarly, the out-out modality demonstrates competitive
expected returns (0.110 under Max Sharpe), with its slightly higher volatility (0.188) offset by
superior Sharpe ratio performance. The Sabek and Pigorsch (2023) measure also delivers strong
expected returns, particularly under the correlation modality, where it reaches 0.105 under Max
Sharpe, marginally outperforming the Markowitz benchmark. The Peel et al. (2018) measure stands
out for its exceptional risk-return profile, with the correlation modality achieving a high expected
return of 0.192 under Max Quadratic Utility and maintaining a reasonable volatility of 0.215,
reinforcing its top-tier Sharpe ratio.

In Panel B, the Simple Portfolio Assortativity results follow similar patterns, with expected re-
turns and volatilities complementing the Sharpe ratio outperformance. For instance, the Extended
Piraveenan et al. (2010) measure achieves a notable expected return of 0.121 under Max Sharpe
in the out-in modality, coupled with moderate volatility (0.185). Similarly, the Peel et al. (2018)
measure’s out-in modality delivers a low volatility of 0.165 under Max Sharpe, supporting its high
Sharpe ratio of 1.222. Across both panels, the interplay between expected returns and volatili-
ties substantiates the superior risk-adjusted performance of network-based assortativity measures,
emphasizing their practical utility for portfolio optimization.

The out-of-sample results for the Euro Stoxx 50 in Table [3Out-of-sample results for Euro Stoxx]
[>0table.caption.4] further demonstrate the usefulness of local assortativity measures on portfolio
optimization. Both the Weighted and Simple Portfolio Assortativity panels reveal consistent im-
provements in Sharpe ratios across various modalities and optimization methods, highlighting the
potential of network-based metrics to enhance portfolio performance compared to the Markowitz
benchmark.

Focusing on the Weighted Portfolio Assortativity results in Panel A (Table [30ut-of-sample re-|
isults for Euro Stoxx 50table.caption.4]), the Markowitz benchmark achieves Sharpe ratios of 0.670
and 0.794 under the Max Quadratic Utility and Max Sharpe optimization methods, respectively.
The Extended Piraveenan et al. (2010) measure shows notable improvements, particularly in the
out-in modality, where a Sharpe ratio of 1.019 under Max Sharpe exceeds the benchmark. This
reflects the benefits of disassortative connections, where stocks that influence others tie with those
influenced by others, fostering diversification. The in-in modality also achieves the highest Sharpe
ratio of 0.721 under Max Quadratic Utility, outperforming the benchmark and highlighting the
value of assortative connections among highly influenced stocks. Expected returns for these modal-
ities remain stable, with the out-in modality under Max Sharpe recording an expected return of
0.121, the highest in this panel. Across the Sabek and Pigorsch (2023) measure, the out-in modal-
ity achieves a Sharpe ratio of 0.702 under Max Quadratic Utility and 0.967 under Max Sharpe,
reinforcing the diversification benefits of connecting stocks with contrasting characteristics in the
financial portfolio network. Peel et al. (2018) delivers the highest Sharpe ratio in this panel, reach-
ing 0.880 under the in-out modality with Max Quadratic Utility, demonstrating the measure’s
ability to identify diversification opportunities.

In the Simple Portfolio Assortativity results of Panel B (Table [30ut-of-sample results for Eurol
[Stoxx 50table.caption.4)), the Markowitz benchmark Sharpe ratios remain at 0.670 and 0.794 under
the respective optimization methods. However, the assortativity measures consistently surpass
these benchmarks. For example, the correlation modality under the Sabek and Pigorsch (2023)
measure achieves a Sharpe ratio ranging from 0.860 to 0.895 under Max Sharpe, outperforming the
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Table 3.: Out-of-sample results for Euro Stoxx 50
Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe Expected Annual Sharpe
Return Volatility =~ Ratio Return Volatility —Ratio

Panel A: Weighted Portfolio Assortativity

Markowitz Benchmark 0.061 0.229 0.670 0.067 0.195 0.794
Correlation 0.062 0.229 0.678 0.068 0.196 0.800
in, in 0.082 0.227 0.721 0.106 0.190 0.999

Extended Piraveenan et al. (2010) in, out 0.056 0.224 0.623 0.040 0.181 0.591
out, in 0.065 0.230 0.704 0.121 0.196 1.019
out, out 0.059 0.228 0.669 0.062 0.192 0.739
Correlation  0.062 0.229 0.679 0.078 0.197 0.845
in, in 0.056 0.229 0.638 0.065 0.194 0.772

Sabek and Pigorsch (2023) in, out 0.057 0.228 0.657 0.074 0.193 0.846
out, in 0.066 0.229 0.702 0.100 0.195 0.967
out, out 0.059 0.228 0.661 0.078 0.192 0.821
Correlation  0.089 0.232 0.689 0.093 0.188 0.797
in, in 0.047 0.243 0.592 0.040 0.202 0.651

Peel et al. (2018) in, out 0.126 0.235 0.880 0.070 0.193 0.776
out, in 0.043 0.224 0.543 0.013 0.175 0.524
out, out 0.062 0.233 0.534 0.033 0.198 0.566

Panel B: Simple Portfolio Assortativity

Markowitz Benchmark 0.061 0.229 0.670 0.067 0.195 0.794
Correlation 0.072 0.222 0.780 0.072 0.186 0.882
in, in 0.071 0.198 0.844 0.073 0.192 0.825

Extended Piraveenan et al. (2010) in, out 0.053 0.185 0.720 0.047 0.182 0.737
out, in 0.063 0.220 0.699 0.078 0.191 0.859
out, out 0.066 0.220 0.722 0.066 0.187 0.825
Correlation 0.059 0.227 0.679 0.084 0.190 0.943
in, in 0.061 0.224 0.688 0.075 0.188 0.886

Sabek and Pigorsch (2023) in, out 0.066 0.223 0.718 0.073 0.187 0.860
out, in 0.063 0.221 0.710 0.067 0.184 0.869
out, out 0.055 0.222 0.654 0.081 0.188 0.895
Correlation  0.060 0.190 0.789 0.055 0.188 0.837
in, in 0.067 0.196 0.778 0.048 0.192 0.706

Peel et al. (2018) in, out 0.055 0.181 0.773 0.048 0.179 0.736
out, in 0.040 0.191 0.689 0.050 0.177 0.802
out, out 0.079 0.185 0.899 0.069 0.182 0.872

benchmark and underscoring also the value of leveraging standard correlation-based assortativity
(with a Sharpe ratio of 0.943). The Peel et al. (2018) measure delivers impressive results, with the
out-out modality achieving the highest Sharpe ratio of 0.899 under Max Quadratic Utility, reflecting
the benefits of nodes highly influencing others connecting with similarly influential nodes. The
Extended Piraveenan et al. (2010) measure also shows strong performance, with the in-in modality
achieving a Sharpe ratio of 0.844 under Max Quadratic Utility, highlighting the effectiveness of
assortative connections among highly influenced stocks.

The expected returns and annual volatility reported in Table [3Out-of-sample results for FEuro]
[Stoxx b0table.caption.4] closely align with the trends observed in the Sharpe ratios, providing
further evidence of the utility of local assortativity measures in portfolio optimization. In Panel A,
the Extended Piraveenan et al. (2010) measure demonstrates notable expected returns, with the
out-in modality achieving the highest value of 0.121 under Max Sharpe. This result is paired with
a stable annual volatility of 0.196, which supports the elevated Sharpe ratio of 1.019. Similarly, the
in-in modality under Max Quadratic Utility records an expected return of 0.082 and a slightly lower
volatility of 0.227, emphasizing its ability to balance risk and return. For the Sabek and Pigorsch
(2023) measure, the out-in modality achieves an expected return of 0.100 under Max Sharpe, while
maintaining a volatility of 0.195, reinforcing its role in enhancing risk-adjusted performance. The




January 15, 2025

main
Table 4.: Out-of-sample results for FTSE 100
Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe Expected Annual Sharpe
Return Volatility =~ Ratio Return Volatility —Ratio

Panel A: Weighted Portfolio Assortativity

Markowitz Benchmark 0.185 0.220 1.116 0.130 0.168 1.048
Correlation 0.185 0.220 1.116 0.138 0.163 1.144
in, in 0.175 0.217 1.068 0.108 0.166 0.896

Extended Piraveenan et al. (2010) in, out 0.174 0.222 0.956 0.099 0.164 0.789
out, in 0.195 0.221 1.156 0.134 0.175 0.961
out, out 0.185 0.220 1.095 0.123 0.169 0.918
Correlation 0.186 0.220 1.123 0.142 0.170 1.134
in, in 0.183 0.220 1.107 0.118 0.165 0.978

Sabek and Pigorsch (2023) in, out 0.185 0.220 1.123 0.121 0.166 1.002
out, in 0.191 0.221 1.135 0.126 0.174 0.907
out, out 0.186 0.220 1.120 0.142 0.166 1.107
Correlation 0.143 0.231 0.934 0.098 0.186 0.855
in, in 0.147 0.227 0.786 0.098 0.180 0.692

Peel et al. (2018) in, out 0.188 0.237 1.053 0.118 0.184 0.975
out, in 0.074 0.219 0.711 0.055 0.153 0.790
out, out 0.105 0.224 0.790 0.112 0.168 1.021

Panel B: Simple Portfolio Assortativity

Markowitz Benchmark 0.185 0.220 1.116 0.130 0.168 1.048
Correlation 0.182 0.217 1.128 0.120 0.156 1.123
in, in 0.110 0.164 1.153 0.102 0.160 0.959

Extended Piraveenan et al. (2010) in, out 0.106 0.161 1.125 0.094 0.154 0.961
out, in 0.182 0.210 1.137 0.121 0.165 1.051
out, out 0.178 0.213 1.111 0.112 0.159 1.041
Correlation 0.186 0.219 1.134 0.140 0.166 1.181
in, in 0.180 0.217 1.111 0.110 0.160 0.988

Sabek and Pigorsch (2023) in, out 0.183 0.215 1.123 0.118 0.160 1.070
out, in 0.179 0.214 1.113 0.112 0.156 1.053
out, out 0.186 0.216 1.138 0.123 0.158 1.129
Correlation  0.099 0.172 1.077 0.111 0.173 0.974
in, in 0.062 0.162 0.810 0.086 0.162 0.837

Peel et al. (2018) in, out 0.062 0.160 0.890 0.093 0.155 0.990
out, in 0.057 0.171 0.863 0.090 0.152 1.062
out, out 0.073 0.164 0.946 0.102 0.155 1.046

Peel et al. (2018) measure shows the highest expected return in this panel with the in-out modality
under Max Quadratic Utility, reaching 0.126, though this is accompanied by a marginally higher
volatility of 0.235.

In Panel B, the Simple Portfolio Assortativity results echo similar patterns. The correlation
modality under the Sabek and Pigorsch (2023) measure achieves an expected return of 0.084 with
a volatility of 0.190 under Max Sharpe, complementing its strong Sharpe ratio of 0.943. The out-
out modality under the Peel et al. (2018) measure delivers the highest expected return of 0.079
under Max Quadratic Utility, coupled with the lowest volatility of 0.185, underscoring its superior
risk-return profile. The Extended Piraveenan et al. (2010) measure achieves a balanced outcome,
with the in-in modality recording an expected return of 0.071 and a reduced volatility of 0.198
under Max Quadratic Utility, aligning well with its elevated Sharpe ratio of 0.844. Overall, the
expected returns and volatility results consistently reinforce the performance of the local assor-
tativity measures, aligning with the Sharpe ratio improvements and demonstrating their robust
contribution to portfolio optimization.

The out-of-sample results for the FTSE 100, displayed in Table [4Out-of-sample results for F'TSE]
[L0Otable.caption.b| provide further evidence of the utility of local assortativity measures in port-
folio optimization. The results highlight consistent improvements in Sharpe ratios across different
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modalities and optimization methods, showcasing the diversification benefits these measures offer
compared to the Markowitz benchmark.

Focusing on the Weighted Portfolio Assortativity results of Panel A (Table4Out-of-sample results|
{for FTSE 100table.caption.5|), the Markowitz benchmark achieves Sharpe ratios of 1.116 under Max
Quadratic Utility and 1.048 under Max Sharpe optimization. The Extended Piraveenan et al. (2010)
measure outperforms these benchmarks in key modalities, with the out-in modality delivering the
highest Sharpe ratio of 1.156 under Max Quadratic Utility. This indicates that stocks influencing
others while being influenced themselves significantly contribute to risk-adjusted returns, enhancing
portfolio diversification. The correlation modality under Max Sharpe optimization also performs
well, achieving a Sharpe ratio of 1.144, the highest for this optimization method within the measure.
Similarly, the Sabek and Pigorsch (2023) measure demonstrates strong performance, with the
out-in modality achieving a Sharpe ratio of 1.135 under Max Quadratic Utility, exceeding the
benchmark. The correlation and out-out modalities under Max Sharpe optimization achieve the
same Sharpe ratio of 1.134, emphasizing the measure’s ability to balance risk and returns through
both assortative and disassortative connections. In contrast, the Peel et al. (2018) measure performs
more modestly, with the in-out modality delivering its highest Sharpe ratio of 1.053 under Max
Quadratic Utility, indicating potential benefits from stocks highly influenced by others connecting
with influential stocks.

In the Simple Portfolio Assortativity results of Panel B (Table 4Out-of-sample results for FTSE]|
[L0Otable.caption.b|), the Markowitz benchmark Sharpe ratios remain at 1.116 and 1.048 under Max
Quadratic Utility and Max Sharpe, respectively. The Extended Piraveenan et al. (2010) measure
shows competitive performance, with the in-in modality achieving the highest Sharpe ratio of 1.153
under Max Quadratic Utility, suggesting that assortative connections among highly influenced
stocks are effective in optimizing returns relative to risk. Similarly, the Sabek and Pigorsch (2023)
measure demonstrates strong results, with the out-out modality reaching a Sharpe ratio of 1.138
under Max Quadratic Utility and 1.129 under Max Sharpe optimization, reflecting the benefits of
influential stocks connecting with similarly influential ones. Furthermore, the correlation modality
under the same measure achieves the highest Sharpe ratio in this panel, reaching 1.181 under
Max Sharpe, underscoring the utility of correlation-based assortativity for portfolio performance.
The Peel et al. (2018) measure delivers its best result in the out-in modality, achieving a Sharpe
ratio of 1.062 under Max Sharpe optimization, demonstrating its ability to leverage disassortative
connections for diversification.

The expected returns and annual volatility results in Table [4Out-of-sample results for FTSE]
[100table.caption.5| align closely with the Sharpe ratio trends, reinforcing the effectiveness of lo-
cal assortativity measures in portfolio optimization. In Panel A, the Extended Piraveenan et al.
(2010) measure achieves the highest expected return of 0.195 under the out-in modality with Max
Quadratic Utility, paired with a moderate volatility of 0.221, supporting its elevated Sharpe ratio
of 1.156. Similarly, the correlation modality under Max Sharpe records an expected return of 0.138
and the lowest volatility in this panel at 0.163, contributing to its strong Sharpe ratio of 1.144. The
Sabek and Pigorsch (2023) measure delivers robust expected returns, particularly under the out-
in modality, which achieves 0.191 with a slightly higher volatility of 0.221 under Max Quadratic
Utility. This measure’s correlation and out-out modalities under Max Sharpe demonstrate bal-
anced performance, with expected returns of 0.142 and volatilities of 0.170 and 0.166, respectively,
highlighting their ability to maintain risk-adjusted returns.

In Panel B, the Simple Portfolio Assortativity results exhibit consistent patterns. The Extended
Piraveenan et al. (2010) measure’s in-in modality delivers an expected return of 0.110 with a sig-
nificantly reduced volatility of 0.164 under Max Quadratic Utility, aligning with its highest Sharpe
ratio of 1.153. The Sabek and Pigorsch (2023) measure also performs well, with the correlation
modality achieving the highest expected return in this panel at 0.186 under Max Quadratic Util-
ity, coupled with a volatility of 0.219, supporting its exceptional Sharpe ratio of 1.181 under Max
Sharpe. The Peel et al. (2018) measure’s out-in modality under Max Sharpe optimization delivers a
strong performance, with an expected return of 0.090 and the lowest volatility at 0.152, contribut-
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ing to its Sharpe ratio of 1.062. Overall, these results confirm that the interplay between expected
returns and volatilities complements the Sharpe ratio improvements, showcasing the value of local
assortativity measures in enhancing portfolio diversification and performance.

A final closer examination reveals that Panel B generally delivers better results than Panel A
across all three indices, indicating that summing the individual assortativity of the nodes selected
for the portfolio can lead to improved performance. This outcome suggests that constructing port-
folios based on the total assortativity of selected nodes, rather than using a weighted average of
node assortativities influenced by stock quantities, may be more effective in leveraging the diver-
sification benefits of local assortativity measures. Furthermore, the modalities of in-out and out-in
consistently outperform other modalities within each measure across all indices. This consistent
pattern underscores the significant role of modalities with contrasting influence factors of nodes,
where stocks that are highly influenced connect with highly influential stocks, and vice versa. Such
configurations enhance diversification by incorporating assets with complementary characteristics,
ultimately resulting in superior risk-adjusted performance.

Overall, the results consistently demonstrate that incorporating local assortativity measures en-
hances portfolio performance compared to the Markowitz benchmark. This improvement is par-
ticularly evident in modalities in which nodes connect to those with differing characteristics (i.e.,
in-out and out-in), supporting greater diversification. Across all measures, both the Max Quadratic
Utility and Max Sharpe optimization methods yield higher Sharpe ratios than the Markowitz ap-
proach, emphasizing the value of network-based methodologies in portfolio optimization. These
findings align with the economic goal of maximizing returns while minimizing volatility, offering a
compelling case for integrating local assortativity metrics into financial decision-making.

4. Conclusion

This study highlights the potential of network-based measures, specifically local assortativity met-
rics derived from the Mixture Transition Distribution (MTD) model, to enhance portfolio optimiza-
tion in financial markets. By shifting away from traditional correlation-based networks, which often
overlook nonlinear dependencies, our approach leverages directed and weighted financial networks
to better represent the intricate interdependencies among financial assets. Through rigorous em-
pirical analysis applied to the constituents of three major indices—the Dow Jones 30, Euro Stoxx
50, and FTSE 100—we demonstrate that portfolios constructed using local assortativity measures
consistently outperform those optimized through the classical mean-variance framework of modern
portfolio theory. This superior performance, observed across multiple modalities and optimization
criteria, underscores the ability of network-based measures to achieve greater risk-adjusted returns
while promoting portfolio diversification.

A closer examination of the results reveals that summing the individual assortativity of the nodes
selected for the portfolio, as presented in Panel B, generally delivers better performance than the
weighted average approach used in Panel A. This finding suggests that constructing portfolios
based on the total assortativity of selected nodes, without weighting by stock quantities, more
effectively leverages the diversification benefits of local assortativity measures. Additionally, the
consistent outperformance of the in-out and out-in modalities within each measure across all indices
highlights the significant role of modalities that connect assets with contrasting influence factors.
By integrating nodes where highly influenced stocks link to highly influential ones (and vice versa),
these configurations foster greater diversification and, in turn, superior risk-adjusted performance.

The study contributes to the literature also by extending the local assortativity framework to
directed networks, offering novel insights into the directional influences among assets. Furthermore,
our methodology distinguishes itself by adopting optimization standards rooted in modern portfolio
theory, such as the Max Quadratic Utility and Max Sharpe ratio methods, rather than value-at-risk
constraints. By consistently outperforming these benchmarks, the findings offer actionable insights
for practitioners seeking innovative tools for portfolio management, emphasizing the practical utility
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of network theory in achieving superior financial outcomes.

Despite its contributions, this research is not without limitations. First, while the MTD model
effectively captures nonlinear dependencies, its computational complexity may pose challenges for
scalability in larger financial networks or datasets at high-frequency levels. Second, the focus on
local assortativity metrics may limit the exploration of other network properties that could further
enhance portfolio optimization. Future research could address these limitations by developing com-
putationally efficient algorithms for larger networks and incorporating additional network features,
such as community structures or centrality measures, into the optimization process. Additionally,
extending the analysis to include alternative asset classes or multi-layered financial networks could
provide a more comprehensive understanding of network-based portfolio optimization strategies.

Ultimately, this study provides a foundation for integrating advanced network methodologies
into financial decision-making, offering a compelling case for their role in optimizing portfolio
performance. By bridging theoretical innovation with practical application, the findings pave the
way for future exploration into the intersection of network science and finance.
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Table Al.: In-sample results for Dow Jones 30

Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe  Assortativity = Expected Annual Sharpe  Assortativity
Return Volatility ~Ratio Return Volatility Ratio
Panel A: Weighted Portfolio Assortativity
Markowitz Benchmark 0.689 0.204 3.541 0.567 0.168 4.029
Correlation 0.683 0.202 3.544 -0.001 0.438 0.172 2.737 0.003
in, in 0.560 0.204 2.854 -0.248 0.189 0.170 1.052 -0.010
Extended Piraveenan et al. (2010) in, out 0.631 0.204 3.254 -0.123 0.246 0.169 1.425 -0.033
out, in 0.681 0.205 3.481 -0.027 0.379 0.181 2.191 -0.010
out, out 0.684 0.205 3.512 -0.013 0.428 0.174 2.668 -0.013
Correlation  0.689 0.204 3.541 -0.003 0.535 0.170 3.559 -0.002
in, in 0.686 0.204 3.538 -0.000 0.492 0.167 3.344 0.002
Sabek and Pigorsch (2023) in, out 0.684 0.203 3.537 -0.008 0.460 0.168 3.055 -0.002
out, in 0.689 0.205 3.518 -0.011 0.475 0.173 3.085 -0.007
out, out 0.686 0.203 3.543 -0.005 0.473 0.167 3.192 -0.005
Correlation  0.489 0.218 2.303 -0.636 0.179 0.178 0.875 0.022
in, in 0.384 0.205 2.025 -0.715 0.168 0.181 0.862 0.071
Peel et al. (2018) in, out 0.400 0.216 2.001 -1.026 0.116 0.175 0.655 -0.045
out, in 0.339 0.206 1.694 -1.319 0.058 0.156 0.333 -0.338
out, out 0.331 0.210 1.733 -1.093 0.095 0.174 0.513 -0.071
Panel B: Simple Portfolio Assortativity
Markowitz Benchmark 0.689 0.204 3.541 0.567 0.168 4.029
Correlation 0.571 0.194 3.150 -0.241 0.475 0.166 3.393 -0.287
in, in 0.473 0.187 2.747 -1.381 0.474 0.176 3.110 -1.390
Extended Piraveenan et al. (2010) in, out 0.413 0.178 2.555 -1.236 0.440 0.167 3.105 -1.262
out, in 0.618 0.199 3.293 -0.276 0.517 0.171 3.510 -0.299
out, out 0.613 0.196 3.313 -0.211 0.494 0.167 3.477 -0.249
Correlation  0.658 0.200 3.473 -0.050 0.489 0.167 3.403 -0.113
in, in 0.634 0.197 3.389 -0.088 0.495 0.167 3.467 -0.140
Sabek and Pigorsch (2023) in, out 0.621 0.197 3.361 -0.146 0.480 0.165 3.443 -0.191
out, in 0.626 0.196 3.388 -0.135 0.465 0.165 3.299 -0.213
out, out 0.627 0.196 3.373 -0.126 0.486 0.167 3.424 -0.182
Correlation 0.231 0.171 1.597 -3.628 0.395 0.168 2.815 -3.851
in, in 0.373 0.178 2.345 -2.725 0.446 0.175 2.955 -2.675
Peel et al. (2018) in, out 0.283 0.173 1.934 -4.249 0.413 0.165 2.961 -4.221
out, in 0.159 0.165 1.320 -10.186 0.388 0.161 2.924 -10.369
out, out 0.297 0.171 2.024 -4.953 0.425 0.168 3.009 -4.891

Appendix A: In-sample results

See Tables [AlIn-sample results for Dow Jones 30table.caption.11] [A2In-sample results for Eurd|
[Stoxx b0table.caption.12] and [A3In-sample results for F'T'SE 100table.caption.13|
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Table A2.: In-sample results for Euro Stoxx 50

Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe  Assortativity = Expected Annual Sharpe  Assortativity
Return Volatility ~Ratio Return Volatility Ratio
Panel A: Weighted Portfolio Assortativity
Markowitz Benchmark 0.734 0.213 3.538 0.609 0.177 3.989
Correlation 0.733 0.213 3.537 0.002 0.564 0.179 3.503 0.003
in, in 0.623 0.216 2.994 -0.232 0.229 0.192 1.174 -0.013
Extended Piraveenan et al. (2010) in, out 0.699 0.213 3.379 -0.072 0.291 0.176 1.663 -0.018
out, in 0.727 0.214 3.495 -0.020 0.434 0.190 2.446 -0.007
out, out 0.732 0.213 3.534 -0.007 0.508 0.179 3.126 -0.007
Correlation 0.734 0.214 3.534 -0.002 0.609 0.179 3.889 -0.002
in, in 0.733 0.213 3.534 -0.001 0.570 0.178 3.637 -0.000
Sabek and Pigorsch (2023) in, out 0.732 0.213 3.531 -0.004 0.533 0.181 3.255 -0.002
out, in 0.731 0.213 3.526 -0.009 0.523 0.182 3.201 -0.005
out, out 0.732 0.213 3.539 -0.003 0.562 0.177 3.581 -0.004
Correlation  0.590 0.222 2.678 -0.452 0.211 0.184 1.056 -0.009
in, in 0.415 0.228 1.934 -0.995 0.165 0.197 0.811 0.038
Peel et al. (2018) in, out 0.383 0.234 1.730 -1.465 0.121 0.197 0.579 -0.072
out, in 0.403 0.219 1.918 -1.246 0.067 0.172 0.351 -0.330
out, out 0.365 0.233 1.722 -1.236 0.109 0.196 0.532 -0.069
Panel B: Simple Portfolio Assortativity
Markowitz Benchmark 0.734 0.213 3.538 0.609 0.177 3.989
Correlation 0.670 0.210 3.276 -0.086 0.469 0.178 3.014 -0.190
in, in 0.433 0.195 2.313 -1.656 0.462 0.185 2.842 -1.678
Extended Piraveenan et al. (2010) in, out 0.338 0.183 1.955 -1.366 0.400 0.177 2.590 -1.467
out, in 0.664 0.208 3.289 -0.247 0.539 0.179 3.447 -0.274
out, out 0.671 0.208 3.328 -0.141 0.508 0.175 3.314 -0.188
Correlation  0.727 0.212 3.524 -0.012 0.532 0.178 3.343 -0.054
in, in 0.703 0.210 3.442 -0.052 0.510 0.177 3.280 -0.112
Sabek and Pigorsch (2023) in, out 0.686 0.210 3.368 -0.106 0.502 0.177 3.229 -0.159
out, in 0.688 0.208 3.408 -0.120 0.465 0.175 3.001 -0.203
out, out 0.688 0.209 3.398 -0.081 0.505 0.177 3.250 -0.143
Correlation  0.258 0.187 1.420 -3.089 0.359 0.187 2.184 -3.901
in, in 0.321 0.195 1.759 -3.823 0.440 0.188 2.670 -3.839
Peel et al. (2018) in, out 0.149 0.187 1.011 -5.781 0.364 0.178 2.386 -6.153
out, in 0.075 0.195 0.723 -14.625 0.312 0.175 2.131 -17.378

out, out 0.198 0.189 1.298 -6.763 0.393 0.178 2.565 -6.833
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Table A3.: In-sample results for FTSE 100

Max Quadratic Utility Max Sharpe
Local Assortativity Measures Expected Annual Sharpe  Assortativity = Expected Annual Sharpe  Assortativity
Return Volatility ~Ratio Return Volatility Ratio
Panel A: Weighted Portfolio Assortativity
Markowitz Benchmark 0.883 0.211 4.221 0.650 0.149 5.043
Correlation 0.883 0.211 4.222 0.001 0.579 0.148 4.381 0.001
in, in 0.826 0.210 3.962 -0.105 0.212 0.158 1.293 -0.001
Extended Piraveenan et al. (2010) in, out 0.865 0.210 4.131 -0.032 0.280 0.149 1.876 -0.002
out, in 0.881 0.211 4.211 -0.007 0.469 0.161 3.088 -0.003
out, out 0.883 0.211 4.214 -0.001 0.538 0.151 3.922 -0.001
Correlation 0.884 0.211 4.219 0.000 0.653 0.153 4.809 0.000
in, in 0.884 0.211 4.217 -0.001 0.617 0.149 4.716 -0.000
Sabek and Pigorsch (2023) in, out 0.883 0.211 4.221 -0.001 0.591 0.151 4.374 -0.000
out, in 0.883 0.211 4.216 -0.004 0.561 0.156 4.014 -0.003
out, out 0.883 0.211 4.220 -0.001 0.589 0.149 4.479 -0.001
Correlation  0.720 0.227 3.183 -0.388 0.185 0.176 0.952 0.238
in, in 0.413 0.229 1.875 -1.232 0.100 0.177 0.535 0.018
Peel et al. (2018) in, out 0.407 0.239 1.842 -1.709 0.088 0.179 0.488 -0.032
out, in 0.515 0.208 2.460 -1.178 0.045 0.142 0.281 -0.292
out, out 0.400 0.228 1.802 -1.380 0.072 0.167 0.383 -0.034
Panel B: Simple Portfolio Assortativity
Markowitz Benchmark 0.883 0.211 4.221 0.650 0.149 5.043
Correlation  0.859 0.208 4.149 -0.026 0.465 0.147 3.599 -0.143
in, in 0.341 0.167 2.071 -1.922 0.407 0.154 2.987 -2.073
Extended Piraveenan et al. (2010) in, out 0.344 0.162 2.153 -1.370 0.342 0.150 2.568 -1.783
out, in 0.802 0.203 3.987 -0.181 0.526 0.151 3.910 -0.262
out, out 0.823 0.204 4.060 -0.093 0.490 0.147 3.726 -0.194
Correlation  0.881 0.211 4.208 -0.003 0.562 0.153 4.038 -0.041
in, in 0.869 0.209 4.186 -0.021 0.506 0.148 3.827 -0.095
Sabek and Pigorsch (2023) in, out 0.853 0.208 4.141 -0.052 0.503 0.146 3.843 -0.119
out, in 0.850 0.207 4.131 -0.076 0.460 0.146 3.462 -0.173
out, out 0.857 0.208 4.149 -0.040 0.486 0.147 3.674 -0.136
Correlation  0.299 0.174 1.753 -3.391 0.385 0.176 2.418 -4.432
in, in 0.222 0.165 1.460 -5.101 0.377 0.156 2.761 -5.551
Peel et al. (2018) in, out 0.171 0.165 1.261 -6.542 0.301 0.153 2.302 -8.084
out, in 0.069 0.175 0.746 -16.436 0.230 0.151 1.811 -25.292

out, out 0.109 0.167 0.935 -8.900 0.321 0.151 2.455 -10.295
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Appendix B: Additional figure
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