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Abstract

Portfolio optimization involves selecting asset weights to minimize a risk-reward
objective, such as the portfolio variance in the classical minimum-variance
framework. Sparse portfolio selection extends this by imposing a cardinality
constraint: only k assets from a universe of p may be included. The standard
approach models this problem as a mixed-integer quadratic program and relies on
commercial solvers to find the optimal solution. However, the computational costs
of such methods increase exponentially with k and p, making them too slow for
problems of even moderate size. We propose a fast and scalable gradient-based
approach that transforms the combinatorial sparse selection problem into a
constrained continuous optimization task via Boolean relaxation, while preserving
equivalence with the original problem on the set of binary points. Our algorithm
employs a tunable parameter that transmutes the auxiliary objective from a convex
to a concave function. This allows a stable convex starting point, followed by a
controlled path toward a sparse binary solution as the tuning parameter increases
and the objective moves toward concavity. In practice, our method matches
commercial solvers in asset selection for most instances and, in rare instances,
the solution differs by a few assets whilst showing a negligible error in portfolio
variance.

1 Introduction

We propose a sparse portfolio selection framework that is computationally fast. To ground our
ideas, we consider a specific instantiation of this framework—one designed for tractability and
rigorous theoretical analysis. In particular, we consider the problem of minimizing portfolio variance
across a universe of p assets under a sparsity constraint that restricts investments to at most k assets.
Minimum-variance portfolio is a cornerstone of portfolio theory, providing a principled risk-reduction
strategy by focusing solely on return volatility. Originating in the seminal mean-variance framework
of Markowitz (1952), the minimum-variance portfolio remains widely adopted in practice (Clarke
et al., 2011), especially when return forecasts are unreliable or difficult to estimate. Recent advances
in portfolio selection—as discussed in Section 2.3—prioritize simplicity by enforcing sparsity (i.e.,
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limiting non-zero asset weights). Sparsity enhances interpretability, mitigates estimation error, and
improves practical feasibility (Hastie et al., 2015; Brodie et al., 2009; Fan et al., 2012; DeMiguel et al.,
2009). In contrast, conventional portfolio optimization often yields dense allocations, where investing
in assets with negligible weights inflates transaction costs and amplify sensitivity to covariance matrix
estimation errors (Gao and Li, 2013).

The sparse minimum-variance problem (see Section 2.2) is naturally framed as a mixed-integer
quadratic program. Specialized commercial solvers—including branch-and-bound algorithms (Land
and Doig, 1960) which guarantee globally optimal solutions given adequate computational time—
exist for such problems. However, their runtimes scale exponentially with problem size and become
infeasible in practical applications for moderately large p and k.

We recast the sparse minimum-variance portfolio problem as a binary-constrained optimization over
the binary k-cube {s ∈ {0, 1}p :

∑p
j=1 sj = k}. Drawing on the Boolean relaxation approach

for best subset selection in regression by Moka et al. (2024), we introduce a continuous auxiliary
objective function defined on the simplex {t ∈ [0, 1]p :

∑p
j=1 tj = k}, which coincides with the

reformulated function’s values on the binary k-cube. Moreover, the auxiliary objective function has a
positive tuning parameter that gradually transitions this auxiliary function from convex to concave
as it increases. The convex phase facilitates stable initialization, while the concave phase ensures
equivalence between the auxiliary function’s minima and those of the original problem. Building
on these properties, we develop a variant of the Frank-Wolfe (conditional gradient) method that
iteratively increases the parameter during optimization, thereby guiding the objective from convexity
to concavity to reach the optimal solution of the binary constrained problem.

From a theoretical standpoint, as the tuning parameter increases continuously, our method is guaran-
teed to converge to an optimal solution of the original problem with binary constraints. In practical
implementations, where the parameter is discretized, solutions may marginally deviate from optimal-
ity. Nonetheless, extensive numerical experiments on synthetic and real-world datasets demonstrate
that such deviations are limited to a small number of assets, with minimal error in the objective value.
Importantly, our algorithm eliminates combinatorial complexity entirely, enabling a computationally
efficient and scalable solution.

The remainder of the paper is organized as follows. Section 2 formulates the sparse portfolio
optimization problem and reviews existing approaches. Section 3 introduces our Boolean relaxation
framework, establishes its theoretical guarantees, and presents our algorithm. Section 4 demonstrates
the performance of our method on synthetic and real-world financial datasets. Finally, Section 5
concludes the paper and outlines future research. All the theoretical results are proved in Appendix B.

2 Sparse portfolio optimization

In this section, we first introduce the notation employed in this paper and then present the formulation
of the sparse portfolio selection problem. We use boldface notation for column vectors, for example,
u ∈ Rp denotes a p-dimensional real vector. We use u⊤ to denote the transpose of a vector u. The
all-zeros vector, the all-ones vector, and the identity matrix are denoted by 0, 1, and I , respectively,
and their dimensions are clear from the context. Capital letters denote matrices, unless otherwise
mentioned. For a binary vector s ∈ {0, 1}p that denotes which assets are selected or not, |s| =

∑p
j sj

denotes the number of selected assets. Moreover, for a p× p-dimensional matrix A, A[s] ∈ R|s|×|s|

is the square sub-matrix of A obtained by removing all columns and rows of A for which sj = 0,
j = 1, . . . , p. Similarly, the |s|-dimensional vector u[s] keeps the elements of the p-dimensional
vector u ∈ Rp corresponding to sj = 1. Throughout, two optimization problems are said to be
equivalent if the solutions of one problem provides the solutions to the other, and vice versa.

2.1 Minimum-variance portfolio optimization

Let xτ = (xτ,1, . . . , xτ,p)
⊤ ∈ Rp denote the vector of returns for p assets at time τ . Consider

a portfolio with weights β = (β1, . . . , βp)
⊤ such that the sum of the weights equals one, i.e.,

β⊤1 =
∑p

j=1 βj = 1. The portfolio return at time τ is β⊤xτ . The mean return of the portfolio is
given by β⊤µ, and its risk (volatility) is characterized by the variance β⊤Σβ, where µ represents
the mean vector of asset returns and Σ is the covariance matrix of xτ .
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The minimum-variance portfolio is an asset allocation strategy that constructs a portfolio with the
lowest possible risk, measured as the variance of portfolio returns, regardless of expected returns.
This strategy is ideal for risk-averse investors who prioritize minimizing risk over maximizing returns
and is particularly useful when asset returns are difficult to forecast. The asset allocation for such an
investor is given by the optimal weights obtained by solving

min
β∈Rp

β⊤Σβ, subject to β⊤1 = 1. (1)

We make the following key assumption throughout the paper.
Assumption 1. The covariance matrix Σ is positive definite.

This assumption is not restrictive in practice because we can obtain Σ using a positive definite
covariance matrix estimator. Moreover, in practice, problem (1) is often augmented with a ridge
regularization term by replacing the covariance matrix Σ with Σ+ λI for some λ > 0; see Fastrich
et al. (2015); Roncalli (2013). In this case, Assumption 1 holds trivially. The following lemma gives
the optimal weights (i.e., the unique solution to (1)) under this assumption.
Lemma 1. The solution to the minimum-variance problem (1) is

β̂ =
Σ−11

1⊤Σ−11
.

2.2 Sparse portfolio selection

The minimum-variance optimization (1) yields dense portfolios, assigning nonzero weights to all
assets. In many applications, some of the weights may be very small and, ideally, such assets should
not be invested in to avoid transaction costs. Moreover, including only the relevant assets may reduce
estimation errors. To mitigate these issues, sparse portfolio selection enforces an additional constraint
on the number of assets selected, resulting in the optimization problem: For an integer k ≥ 1,

min
β∈Rp

β⊤Σβ, subject to 1⊤β = 1, ∥β∥0 ≤ k, (2)

where ∥β∥0 denotes the number of non-zero elements in β. This NP-hard combinatorial problem
makes naive exhaustive searches—evaluating all possible subsets of k assets from p—computationally
intractable even for moderately large k and p (Natarajan, 1995; Bertsimas et al., 2016).

A more efficient way to tackle problem (2) is via mixed-integer quadratic programming; for a
comprehensive survey of its use in portfolio selection, refer to Mencarelli and d’Ambrosio (2019). A
widely adopted technique in mixed-integer optimization is the Big-M formulation, which enforces
logical conditions—such as whether asset j is included (sj = 1) or excluded (sj = 0)—by embedding
them directly into linear constraints. In particular, the Big-M formulation of problem (2) is

min
β∈Rp, s∈{0,1}p

β⊤Σβ,

subject to 1⊤β = 1, 1⊤s ≤ k, and
−Msj ≤ βj ≤Msj , ∀j = 1, . . . , p,

(3)

where M > 0 is such that at every optimal solution β∗ of (2), maxj |β∗
j | ≤ M . This formulation

ensures that βj = 0 if and only if sj = 0.

Commercial solvers such as CPLEX (IBM Corporation, 2024) and Gurobi (Gurobi Optimization,
LLC, 2024) employ branch-and-bound algorithms (Land and Doig, 1960) to tackle formulation (3).
Although they are guaranteed to converge to the global optimum given sufficient time, their computa-
tional cost grows exponentially, rendering them impractical for even moderately large k and p.

2.3 Limitations and related work

As a first instantiation of our framework, we focus on a tractable setting that excludes additional weight
constraints (e.g., short selling or minimum investments), as well as mean-variance objectives and risk-
free assets. We leave these extensions for future work. Although we prove that our method recovers
the exact sparse k optimal solution as the tuning parameter increases continuously, this guarantee
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breaks down in practical implementations, where the tuning parameter is discretized and each step is
only solved approximately using a gradient-based procedure. In contrast, certifiable optimization
methods (e.g., the Big-M formulation) can guarantee optimality given enough computational budget.
However, our method is computationally feasible for large-scale problems and achieves better
solutions than the Big-M formulation under a fixed computational budget.

Bertsimas and coauthors (Bertsimas and Cory-Wright, 2022; Bertsimas et al., 2021) present a major
advance in scalable, certifiably optimal sparse portfolio selection under a mean-variance objective
with weight constraints (e.g., minimum investments, no short selling). They incorporate a ridge
penalty to improve tractability, and their cutting-plane algorithm outperforms the Big-M formulation
for the ridge-regularized problem while converging faster with stronger regularization. However, this
reliance on a regularization term makes their approach less applicable to our penalty-free setting.
Other important works in cardinality-constrained minimization is surveyed in Tillmann et al. (2024).

3 Methodology

To overcome the combinatorial bottleneck inherent in problem (2), we introduce a Boolean relaxation
that replaces the binary constraints with continuous ones, yielding an auxiliary objective function
whose gradient and Hessian can be computed in closed form. This enables scalable continuous
optimization.

3.1 Boolean relaxation

The first step in our Boolean relaxation of the sparse portfolio selection problem (2) is to rewrite it as
a binary constrained problem. It follows from Assumption 1 that each principal submatrix Σ[s] is
invertible for every s ̸= 0 (Bhatia, 2009). Consequently, (2) is equivalent to the binary constrained
problem

min
s∈{0,1}p

min
β[s]∈R|s|

β⊤
[s]Σ[s]β[s], subject to 1⊤β = 1, 1⊤s ≤ k, (4)

where in β (without subscript), βj = 0 for sj = 0. Using the notation Σ−1
[s] = (Σ[s])

−1, from

Lemma 1, β̂[s] = Σ−1
[s] 1/(1

⊤Σ−1
[s] 1) is the solution of the inner minimization in (4). Thus, the

problem can be rewritten as

min
s∈{0,1}p

1

1⊤Σ−1
[s] 1

, subject to 1⊤s ≤ k, (5)

or, equivalently,

min
s∈{0,1}p

−1⊤Σ−1
[s] 1, subject to 1⊤s ≤ k, (6)

where we take 1⊤Σ−1
[s] 1 to be zero when s = 0. Note that solving (6), which we refer to as the target

problem, is equivalent to solving the original problem (2). Theorem 1 establishes the monotonicity of
the optimal value of (6) as a function of k. In particular, it implies that the inequalities in (4), (5) and
(6) can be replaced with equalities. In other words, inclusion of additional assets (increasing k) can
only improve (lower) or retain the same variance of (2).
Theorem 1. The optimal value of the target problem (6) is non-increasing in k ∈ {0, 1, . . . , p}.

We now provide a Boolean relaxation of (6) as an auxiliary continuous function on [0, 1]p, controlled
by a tuning parameter δ > 0. To simplify the notation, define

Tt = Diag(t) and Σ̃t = TtΣTt + δ(I − T 2
t ). (7)

Then, our proposed Boolean relaxation of (6) is given by

min
t∈Ck

fδ(t), where fδ(t) = −t⊤Σ̃−1
t t, (8)

and for each k the constraint set Ck is a polytope defined as

Ck = {t ∈ [0, 1]p : t⊤1 ≤ k}. (9)
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3.2 Theoretical properties

The following result, Theorem 2, shows why (8) is a relaxation of the target problem (6). It shows
that fδ(t) is continuous on the hypercube [0, 1]p and its shape can be controlled by the auxiliary
parameter δ while keeping the values of fδ(t) fixed—independent of δ—at all the (binary) corners
s ∈ {0, 1}p. In addition, (iii) shows that fδ(t) increases with δ for any fixed interior point t—see
Figure 1(a) for an illustration—while (iv) shows that the optimum of (8) is on a simplex.
Theorem 2. The following hold:

(i) The objective function fδ(t) in (8) is continuous on [0, 1]p.

(ii) For every binary vector s ∈ {0, 1}p (i.e., a corner point on the hypercube [0, 1]p),

fδ(s) = −1⊤Σ−1
[s] 1, for all δ > 0.

(iii) For every fixed t ∈ (0, 1)p, fδ(t) is monotonically increasing in δ > 0.

(iv) For any k = 1, . . . , p and δ > 0,

min
t∈Ck

fδ(t) = min
t∈Sk

fδ(t),

here, the simplex Sk = {t ∈ [0, 1]p : t⊤1 = k} corresponds to the polytope Ck given in (9).

(a) (b)

Figure 1: Panel (a): Surface plots of the auxiliary objective function fδ(t) for a 2× 2-dimensional covariance
matrix Σ for different values of δ, displaying convexity for δ = 0.005 and concavity for δ = 5. The values of
the function at the corners s ∈ {0, 1}2 correspond to those of the discrete function −1⊤Σ−1

[s] 1 in (6). Panel (b):
Iterative convergence of tj’s toward 0 or 1 for a dataset of p = 31 assets when k = 4 during the execution of
Algorithm 1. The paths of the four tj that converge to 1 are shown in black, while other paths are shown in grey.

Our next result, Theorem 3, shows that fδ(t) exhibits convexity for sufficiently small values of δ and
concavity for large ones. Using a 2× 2 covariance matrix, Figure 1(a) illustrates the convexity of
fδ(t) for small values of δ and concavity for large values of δ, and non-convexity and non-concavity
in-between. The proof of this result is based on Lemma 3 in Appendix B, which derives the Hessian
of fδ(t).
Theorem 3. Let η1 and ηp be the largest and smallest eigenvalues of Σ, respectively. Then,

(i) fδ(t) strictly concave over [0, 1]p for δ ≥ η1, and

(ii) for any ε ∈ (0, 1), fδ(t) is strictly convex over [ε, 1]p for δ ≤ 3ηpε
2/(1 + 3ε2).

Strict concavity of fδ(t) establishes the equivalence between the target problem (6) and the Boolean
relaxation (8) for all δ ≥ η1. Since (6) is equivalent to the original problem (2), the following result
immediately follows from Theorem 3(i).
Corollary 1. There exists δc ≤ η1 such that for all δ ≥ δc, the Boolean relaxation (8) problem is
equivalent to the original sparse portfolio selection problem (2).

Finally, Theorem 4 establishes the continuity of the solution to (8) as a function of the auxiliary
variable δ. This is a consequence of the well-known optimization result popularly known as Berge’s
maximum theorem; refer to, e.g., Sundaram (1996).
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Theorem 4. For each k, suppose h∗
k and D∗

k are the optimal value and optimal solution of the target
problem (6). Further, let

hk(δ) = min
t∈Ck

fδ(t) and Dk,δ = argmin
t∈Ck

fδ(t).

Then, for any ϵ ∈ (0, η1), hk(δ) is continuous andDk,δ is compact-valued and upper hemicontinuous
in δ ∈ [ϵ, η1]: for any sequence δℓ → η1 and t(ℓ) ∈ Dk,δ with t(ℓ) → t∗, we have t∗ ∈ D∗

k.

Since D∗
k constitutes an optimal solution to the original sparse portfolio problem, Theorem 4 implies

that by constructing a sequence of minimizers of fδ(t) along an increasing sequence of δ values
approaching the largest eigenvalue η1 of Σ, the limit of these minimizers will yield a solution to
the original problem. This connection establishes a pathway to recover the sparse portfolio solution
through a controlled tuning parameter δ converging to η1, inspiring our algorithm below.

3.3 Algorithm

It is well-established that minimizing a strictly convex function over a convex set—such as the
polytope Ck or the simplex Sk—is a tractable convex optimization problem, guaranteeing convergence
to a unique optimum and enabling ϵ-approximate solutions via gradient-based methods in polynomial
time (Boyd and Vandenberghe, 2004). In contrast, minimizing a strictly concave function over the
same set is computationally hard, as all optima are confined to the vertices, making gradient descent
highly sensitive to initialization and prone to suboptimal solutions. In our context, Theorem 3(i)
establishes that fδ(t) is strictly concave on Ck for any δ ≥ η1, leading to an equivalence between the
original sparse portfolio selection problem and its reformulation, but limiting the effectiveness of
gradient-based methods due to the combinatorial landscape. Conversely, Theorem 3(ii) shows that
for sufficiently small positive δ values, fδ(t) becomes strictly convex over a truncated hypercube
[ε, 1]p, for a given ε > 0, ensuring that gradient-based algorithms reliably converge to the unique
optimal solution from any initialization within this region. Building on these properties, our approach
begins with a small value of δ to obtain a stable initialization and gradually increases δ toward η1,
thereby transforming the objective from convex to concave and ultimately guiding the solution to the
optimal point of the original binary-constrained problem.

Furthermore, Theorem 2(iv) establishes that the target optimization problem can be restricted to
the simplex Sk for each k. The conditional gradient method, also known as the Frank–Wolfe
algorithm (Frank and Wolfe, 1956; Jaggi, 2013), is particularly well-suited for optimization over
simplices and enjoys strong convergence guarantees. Building on this, we introduce a modified
variant, Grid-FW, which iteratively updates the vector t while progressively increasing δ from a small
initial value up to the largest eigenvalue η1 of Σ. As mentioned earlier, this continuation strategy is
motivated by Theorem 4, which ensures that the optimal solution depends continuously on δ. The
full procedure is outlined in Algorithm 1.

Algorithm 1 Grid-FW(Σ, α, ε, n,m)

1: Compute the largest and smallest eigenvalues η1 and ηp of Σ
2: Take δ1 = 3ηpε

2/(1 + 3ε2) and r = (η1/δ1)
1/(n−1)

3: Create a geometric grid {δ1, δ2, . . . , δn} where δℓ = δ1r
ℓ−1, ℓ = 1, . . . , n

4: t← (k/p) · 1 and s∗ ← 0
5: for ℓ = 1, 2, . . . , n do
6: for i = 1, . . . ,m do
7: Compute the gradient∇fδℓ(t)
8: Let s ∈ {0, 1}p with ones at the positions of the k smallest components of∇fδℓ(t)
9: t← (1− α)t+ αs

10: if 1⊤Σ[s∗]1 < 1⊤Σ[s]1 then
11: s∗ ← s
12: end if
13: end for
14: end for
15: return s∗, s and t
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Algorithm 1, Grid-FW(Σ, α, ε, n,m), executes for n epochs and in each epoch, there are m Frank-
Wolfe steps. Using Theorem 3, we select δ1 = 3ηpε

2/(1 + 3ε2) for a small positive constant
ε ≤ 0.1(k/p), to make sure that the center (k/p)1 of the simplex Sk is within the truncated
hypercube [ε, 1]p. We create an increasing (geometric) sequence {δ1, δ2, . . . , δn} of n values for the
δ parameter with δℓ = δ1r

ℓ−1 and r = (η1/δ1)
1/n−1. Within each epoch ℓ (within the inner for-loop

of Algorithm 1), t is iteratively updated m times by solving

s← argmin
u∈Sk

u⊤∇fδℓ(t), and then, t← (1− α)t+ αs, (10)

where α ∈ (0, 1) is a fixed constant. Note that in our problem, it is easy to solve the minimization
in (10) because its solution s must be a binary vector with ones correspond to the k smallest values
of the gradient∇fδℓ(t); see line 8 of the algorithm.

At δn = η1, the function fδn(t) becomes strictly concave, so it attains its minimum at a corner of Sk,
which is the final s returned by line 15. For some datasets, we may slightly increase the performance
by considering the best model s∗ among all models visited by the algorithm (see lines 10-12). Table 1
presents the results for both the final model s and the best model s∗ for two real-world datasets. Note
that the final and the best models in each case achieve optimal or nearly optimal variance (just one
false positive2 in two cases). We obtain the optimal models using the Big-M formulation in CPLEX
(here p and k are sufficiently small for CPLEX to confirm an optimal solution within a reasonable
amount of time). Figure 1(b) shows the convergence of t(ℓ) iteratively to a binary point for the dataset
with p = 31 when k = 4. We see that t(ℓ) converges much before the final epoch n = 500 as
indicated by Corollary 1. To take advantage of this, in our implementation of the algorithm, to reduce
the running time, we also have an additional termination condition (not stated in the algorithm) that
stops the algorithm when t converges close to a corner point.

Table 1: Illustration of the accuracy of our method compared to optimal models on two datasets
containing, respectively, 31 and 85 assets from Chang et al. (2000) for k up to 10. Here, FP denotes
the number of false positives and % Err denotes the percentage of error from our model compared to
the optimal variance (i.e., 100 times the ratio of error to the optimal variance).

Dataset with p = 31 Dataset with p = 85

Final Model Best Model Final Model Best Model

k
Optimal
Variance FP % Err FP % Err Optimal

Variance FP % Err FP % Err

1 1.29×10−3 0 0.0 0 0.0 4.50×10−4 0 0.0 0 0.0
2 7.99×10−4 0 0.0 0 0.0 2.74×10−4 0 0.0 0 0.0
3 7.15×10−4 0 0.0 0 0.0 2.19×10−4 0 0.0 0 0.0
4 6.75×10−4 0 0.0 0 0.0 1.97×10−4 1 0.79 1 0.79
5 6.50×10−4 0 0.0 0 0.0 1.84×10−4 0 0.0 0 0.0
6 6.22×10−4 0 0.0 0 0.0 1.72×10−4 0 0.0 0 0.0
7 6.01×10−4 0 0.0 0 0.0 1.64×10−4 0 0.0 0 0.0
8 5.83×10−4 1 0.26 1 0.26 1.56×10−4 0 0.0 0 0.0
9 5.66×10−4 0 0.0 0 0.0 1.52×10−4 0 0.0 0 0.0

10 5.56×10−4 0 0.0 0 0.0 1.47×10−4 0 0.0 0 0.0

Remark 1. (Scaling) In real-world datasets, the eigenvalues of the covariance matrix Σ can be quite
small and span a wide range, as those for real datasets in Table 1 where, for p = 85, the largest and
smallest eigenvalues are about 0.024 and 8.18× 10−5, respectively, and for p = 31, they are 0.036
and 2.26×10−4. Such small values can cause numerical instability when choosing δ. To address this,
we modify the constraint 1⊤β = 1 and replace Σ in (2) with its correlation matrix prior to Boolean
relaxation. We incorporate this scaling in our algorithm; see Appendix A for details. Accordingly, η1
and ηp in Theorems 3 and 4, as well as in Algorithm 1, are rescaled by minj Σj,j and maxj Σj,j . For
instance, with p = 85, the variances range from 4.49× 10−4 to 4.62× 10−3, so this scaling ensures
the δ-grid is numerically stable.
Remark 2. (Running time) In Algorithm 1, we perform nm iterations; each iteration requires
computing the gradient∇fδ(t) at the current point t. From Lemma 3 in Appendix B, the main cost in

2Here, a false positive refers to our method selecting a suboptimal asset.
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each gradient computation stems from solving a linear system Π−11 for a positive definite matrix Π.
We do this via conjugate gradient, which takes O(p2) time within the required accuracy; refer to
Golub and Van Loan (1996) or Saad (2003) for details on the complexity of conjugate gradient
methods. Consequently, the total runtime of our method is O(nmp2).

4 Applications

We benchmark our method Grid-FW, Algorithm 1, against the Big-M formulation implemented using
CPLEX for three different examples involving real as well as simulated datasets. We set M = 1 for the
Big-M formulation, following Bertsimas and Cory-Wright (2022). In Algorithm 1, we set α = 0.05,
ε = min(0.1k/p, 0.001), n = 500, and m = 10. We compare the methods for fixed computational
budgets and k = ⌊z%p⌋, z = 10, 25, 50. All experiments were run on a MacBook Pro with an Apple
M4 Pro chip and 24 GB of memory, forcing single-threaded execution for numerical libraries (i.e.,
no parallel computations). Note that, because CPLEX is implemented in highly optimized low-level
languages, our Python-based implementation is inherently at a disadvantage. Datasets, Python code
for our method, and Julia code for CPLEX are provided in https://github.com/saratmoka/
grid-fw.

In Table 2, the first computational budget B (in seconds) is set equal to the time our method takes to
solve each problem. To see if CPLEX can improve the solutions with more time, we also consider 60
and 300 seconds for CPLEX, where 300 seconds is the time limit imposed on CPLEX Big-M method
by Bertsimas and Cory-Wright (2022) for solving a similar problem. In Example 3, which involves a
larger p, CPLEX is given 600 seconds. Across all examples, we compare the variance of the resulting
portfolios under each computational budget.

4.1 Example 1: Three portfolio datasets

For our first example, we use three of the five portfolio problems from Chang et al. (2000). Some
results for the remaining two smallest datasets, with p = 31, 85, are already illustrated in Table 1.
Here, we present results for the remaining three datasets with p = 89, 98, 225.

4.2 Example 2: S&P 500

Our second example involves a dataset from Asimit et al. (2025) containing 6037 daily returns of
p = 441 assets from firms that remained continuously listed in the S&P 500 during the period
January 2000 to December 2023. We split the dataset into three periods: 2000-2007, 2008-2015, and
2016-2023. Shrinkage is essential when estimating the covariance matrix for portfolio optimization
(Ledoit and Wolf, 2004), and we use the analytical non-linear shrinkage estimator in Ledoit and Wolf
(2020), which guarantees positive definiteness (recall Assumption 1).

4.3 Example 3: Assets with a low-rank plus noise structure

Our final example consists of simulated data to compare the methods for very large values of p. A
common approach (see e.g. Ross, 1976) to model the covariance matrix Σ of the asset return vector
xτ is to assume the returns are driven by a linear combination Λξτ of uncorrelated lower dimensional
factors ξτ = (ξτ,1, . . . ξτ,q)

⊤ ∈ Rq , where Λ ∈ Rp×q are the factor loadings. We assume that

xτ = Λξτ + e, ξτ ∼ N (0,diag(ν21 , . . . , ν
2
q )), e ∼ N (0, d2I), ν1, . . . , νq, d > 0.

The resulting covariance is Σ = Λdiag(ν1, . . . , νq)Λ
⊤ + d2I . We divide the assets into two equally

large groups, i.e., p/2 assets in each. For the second group, the factor loadings for half of the factors
(i.e., q/2), are set to zero. Moreover, the factors in the separate groups are normalized so that the
relative variance of the portfolio based on assets from group 1 is roughly 10 times larger than that of
group 2. We set q = 1%p and d2 = 0.05, and ν2i simulated uniformly in [0.022, 0.052].

4.4 Results

Table 2 summarizes the results. Our method finished in at most 560 seconds when p = 3000, and it
was often orders of magnitude faster across all examples. CPLEX timed out (over one day) on most
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problems, making it impossible to verify optimality. For small-scale problems, our variance reduction
over CPLEX with equal run time was modest with only a few percentage points. When CPLEX is
allowed more time for small-scales examples, it often finds a better optimum than our method. By
contrast, for large-scale problems, our method delivered significantly lower variance than CPLEX with
the same budget, and even extra time for CPLEX did not guarantee closing the gap.

Table 2: Results for the three examples in Section 4. Grid-FW denotes our method, and the
corresponding columns contain the time B to run our method with n = 500 and m = 10. For
CPLEX Big-M, RVB denotes the relative variance difference to Grid-FW obtained after B seconds.
RVτ denotes the same quantity obtained after τ seconds. RVτ is NA whenever B > τ . A positive
value indicates a larger optimal variance (worse solution) for CPLEX. The ∗ symbol denotes a
difference of exactly zero.

Grid-FW CPLEX Big-M
Example 1 p k Time B Var RVB RV60 RV300

89 8 0.5 2.11×10−4 0%∗ 0%∗ 0%∗

22 0.4 1.61×10−4 0.4% -0.1% -0.1%
44 0.4 1.39×10−4 1.34% 0%∗ 0%∗

98 9 0.7 1.30×10−4 4.6% 0%∗ 0%∗

24 0.6 9.52×10−5 2.5% 0%∗ 0%∗

49 0.6 8.18×10−5 0.6% -0.1% -0.1%
225 22 1.5 1.42×10−4 6.64% -2.7% -2.5%

56 1.6 7.81×10−5 31.3% -0.7% -1.7%
112 1.5 4.54×10−5 37.7% 3.1% 2.6%

Example 2 p k Time B Var RVB RV60 RV300

2000-2007 441 44 3.9 2.95×10−5 21.1% 2.6% 0.6%
110 3.8 2.31×10−5 19.5% 3.7% 1.8%
220 3.8 2.00×10−5 32.3% 6.9% 0.9%

2008-2015 441 44 3.7 3.52×10−5 19.5% 3.7% 1.8%
110 3.6 2.76×10−5 15.7% 4.7% 1.7%
220 3.6 2.43×10−5 39.8% 6.2% 0.7%

2016-2023 441 44 3.4 4.27×10−5 24.1% 5.5% 1.0%
110 3.4 3.42×10−5 23.8% 4.9% 2.0%
220 3.4 2.99×10−5 35.6% 4.8% 0.7%

Example 3 p k Time B Var RVB RV300 RV600

1000 100 13.6 5.01×10−4 61.3% -0.1% -0.1%
250 16.0 2.00×10−4 304.3% 0.0% -0.0%
500 20.6 1.00×10−4 708.8% 0.0% -0.0%

2000 200 155.0 2.51×10−4 47.4% 47.4% 0.9%
500 168.2 1.00×10−4 269.6% 30.4% 34.4%

1000 107.1 5.00×10−5 7.6% 7.6% 1.6%
3000 300 558.7 1.68×10−4 28.1% NA 18.2%

750 548.7 6.67×10−5 61.5% NA 61.5%
1500 376.5 3.33×10−5 6.9% NA 6.9%

5 Conclusion and future research

We proposed a novel framework for sparse portfolio selection that employs Boolean relaxation to
avoid intractable combinatorial computations. We devised an auxiliary objective function with a
tuning parameter that transmutes the function from convex to concave. We proved that this transition
helps in converging to the optimum of the original problem. Our method—suitable with or without
ridge regularization—offers a practical and scalable alternative to the Big-M formulation in CPLEX
for sparse portfolio selection.
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Future research will consider more general objectives, such as the mean-variance framework, and
additional constraints such as no short-selling or minimum and maximum investment limits. We
believe such extensions can be competitive alternatives to Bertsimas and Cory-Wright (2022).

A Scaling

To explain our scaling approach, let R be the correlation matrix obtained from the covaraince matrix
Σ, that is, Ri,j = Σi,j/

√
Σi,iΣj,j , i, j ∈ {1, . . . , p}. Let w = (1/

√
Σ1,1, . . . , 1/

√
Σp,p). Then,

the binary constrained problem (6) can be rewritten as

min
s∈{0,1}p

−w⊤
[s]R

−1
[s]w[s], subject to |s| ≤ k. (11)

With R̃t = TtRTt + δ(I − T 2
t ) and f̂δ(t) = −(w⊙ t)⊤R̃−1

t (w⊙ t), t ∈ [0, 1]p, we can consider a
Boolean relaxation of (11) as

min
t∈Ck

f̂δ(t),

where Ck is the polytope defined by (9). In particular, at the interior points t ∈ (0, 1)p, we can
simplify the objective function to be

f̂δ(t) = −1⊤Π̂−1
t 1, where Π̂t = Σ+ δDt Diag(v),

with v = 1/(w ⊙w), which is the diagonal of Σ (i.e., variances of the assets). See Lemma 3 in
Appendix B for expressions of the gradient and the Hessian of f̂δ(t) at each t ∈ (0, 1)p. Furthermore,
the proof of Theorem 3 in Appendix B establishes that

(i) f̂δ(t) strictly concave over [0, 1]p for δ ≥ η1/minj vj , and

(ii) for every ε ∈ (0, 1), it is strictly convex over [ε, 1]p for δ ≤ ηp

maxj vj

(
3ε2

1+3ε2

)
.

Here, recall that η1 and ηp are the largest and smallest eigenvalues of Σ, respectively.

B Proofs

Proof of Lemma 1. The problem is convex and has a unique minimum. Using the method of Lagrange
multipliers gives the result.

Proof of Theorem 1. It is well-known that every principal submatrix of a symmetric positive definite
matrix is also positive definite (Golub and Van Loan, 1996). Since Σ is symmetric positive definite,
this implies that Σ[s] is also positive definite for every binary vector s ̸= 0, and hence

h(k) := max
s∈{0,1}p, 1⊤s=k

1⊤Σ−1
[s] 1.

is well-defined for all k = 1, . . . , p.

Now fix k and consider s ∈ {0, 1}p such that 1⊤s = k. Consider s′ with 1⊤s′ = k+1 such that the
Hamming distance between s and s′ is 1, that is, there is a unique j ∈ {1, . . . , p} such that si = s′i
for all i ̸= j and 0 = sj < s′j = 1. Then, the proof is complete if we show that

1⊤Σ−1
[s] 1 ≤ 1⊤Σ−1

[s′]1, (12)

because, under (12), 1⊤Σ−1
[s] 1 ≤ h(k + 1) and hence h(k) ≤ h(k + 1) by maximizing the left hand

size over all s with |s| = k.

We prove (12) using the popular Banachiewicz inversion lemma (Tian and Takane, 2005). Without
loss of generality we assume that such s and s′ differ at the index p. Then, we write

Σ[s′] =

Σ[s] a

a⊤ b

 ,
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for some appropriate vector a and a scalar b. Note that both Σ[s′] and Σ[s] are invertible and b > 0.
Therefore, the Schur complement c = b− a⊤Σ⊤

[s]a must be non-zero; see Tian and Takane (2005).
Then,

Σ−1
[s′] =

 I − 1
cΣ

−1
[s] a

0⊤ 1
c


 Σ−1

[s] 0

−a⊤Σ−1
[s] 1

 =

Σ
−1
[s] +

1
cΣ

−1
[s] aa

⊤Σ−1
[s] − 1

cΣ
−1
[s] a

− 1
ca

⊤Σ−1
[s]

1
c

 .

Note that for any matrix A, 1⊤A1 is simply the sum of all the elements of A. Similarly, for any
vector u, 1⊤u is the sum of all the elements of u. Thus,

1⊤Σ−1
[s′]1 = 1⊤Σ−1

[s] 1+
1

c
(1⊤Σ−1

[s] a)
2 − 2

1

c
1⊤Σ−1

[s] a+
1

c

= 1⊤Σ−1
[s] 1+

1

c

(
1⊤Σ−1

[s] a− 1
)2

.

Therefore, to establish (12), we just need to show that c > 0. For this, using simple block-matrix
multiplication, observe that I 0

−a⊤Σ−1
[s] 1


Σ[s] a

a⊤ b


I −Σ−1

[s] a

0 1

 =

Σ[s] 0

0⊤ c

 .

Since Σ[s′] is positive definite, for any scalar v ̸= 0 with u = [0⊤, v]⊤, using the left hand side
expression of the above equality,

u⊤

 I 0

−a⊤Σ−1
[s] 1


Σ[s] a

a⊤ b


I −Σ−1

[s] a

0 1

u =
[
−va⊤Σ−1

[s] v
]
Σ[s′]

−vΣ
−1
[s] a

v

 > 0,

and hence,

u⊤

Σ[s] 0

0⊤ c

u = cv2 > 0,

which is possible only if c > 0.

We need the following lemma in proving Theorem 2(iii).
Lemma 2. For every interior point t ∈ (0, 1)p, the objective function fδ(t) can be expressed as

fδ(t) = −1⊤Π−1
t 1, with Πt = Σ+ δDt and Dt = T−2

t − I.

Proof. Note that t⊤ = 1⊤Tt. Then,

fδ(t) = −1⊤TtΣ̃
−1
t Tt1

= −1⊤
(
T−1
t Σ̃tT

−1
t

)−1

1

= −1⊤ (Σ+ δ(T−2
t − I)

)−1
1

= −1⊤Π−1
t 1,

since Tt is invertible for every interior point t.

Proof of Theorem 2. To establish the continuity in (i), let t1, t2, · · · ∈ [0, 1]p be a sequence of points
converging to t (element-wise or in the Euclidean norm). If t contains zeros, without loss of generality,
assume all these zeros appear at the front. Then, we can write

Ttℓ =

[
F ′
tℓ

0

0 F ′′
tℓ

]
,
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where F ′
tℓ

is a diagonal matrix of the front elements of tℓ (that converge to zero) and F ′′
tℓ

is a diagonal
matrix of the remaining elements. Therefore, for all sufficiently large ℓ, we can assume that F ′′

tℓ
is

invertible. Recall from (7) that Σ̃t = TtΣTt+ δ(I −T 2
t ). By dividing the Σ matrix into four suitable

sub-matrices, we can write

Σ̃tℓ =

[
F ′
tℓ

0

0 F ′′
tℓ

][
Σ′ Σ

Σ
⊤

Σ′′

] [
F ′
tℓ

0

0 F ′′
tℓ

]
+ δ

[
I − (F ′

tℓ
)2 0

0 I − (F ′′
tℓ
)2

]

=

[
F ′
tℓ
Σ′F ′

tℓ
F ′
tℓ
ΣF ′′

tℓ

F ′′
tℓ
Σ

⊤
F ′
tℓ

F ′′
tℓ
Σ′′F ′′

tℓ

]
+ δ

[
I − (F ′

tℓ
)2 0

0 I − (F ′′
tℓ
)2

]
=

[
δ
(
I − (F ′

t)
2
)

0

0 F ′′
t Σ

′′F ′′
t + δ

(
I − (F ′′

t )
2
)]︸ ︷︷ ︸

Σ̃t

+

[
F ′
tℓ
Σ′F ′

tℓ
F ′
tℓ
ΣF ′′

tℓ

F ′′
tℓ
Σ

⊤
F ′
tℓ

F ′′
tℓ
Σ′′F ′′

tℓ
− F ′′

t Σ
′′F ′′

t

]
+ δ

[
(F ′

t)
2 − (F ′

tℓ
)2 0

0 (F ′′
t )

2 − (F ′′
tℓ
)2

]
︸ ︷︷ ︸

Eℓ

= Σ̃t + Eℓ,

where Eℓ = Σ̃tℓ − Σ̃t clearly converges to an all-zero matrix. That means, the spectral radius of Eℓ

is less than 1 for all sufficiently large values of ℓ. Thus using the Neumann series (Horn and Johnson,
2012), we can show that

Σ̃−1
tℓ

= (Σ̃t + Eℓ)
−1 → Σ̃−1

t , as ℓ→∞.

As a consequence, limℓ→∞ fδ(tℓ) = fδ(t) for any δ > 0.

To establish (ii), observe that for any binary vector s ∈ {0, 1}p,(
Σ̃s

)
[s]

=
(
TsΣTs

)
[s]

= Σ[s], and
(
Σ̃s

)
[1−s]

= δI.

Thus, fδ(s) = −1⊤Σ−1
[s] 1.

To establish (iii), observe from Lemma 2 that

d

dδ
fδ(t) = −1⊤ d

dδ
Π−1

t 1⊤

= 1⊤Π−1
t

(
d

dδ
Πt

)
Π−1

t 1

= uT

(
d

dδ
Πt

)
u

= uT
(
T−2
t − I

)
u,

with u = Π−1
t 1 ̸= 0. Since t is in the unit interval, the matrix in the quadratic form is positive

definite, which concludes the claim.

Finally, (iv) is a simple consequence of Lemma 3 below which show that all the elements gradient
∇fδ(t) are non-positive. That means, in each coordinate tj , the objective function fδ(t) is non-
increasing along tj . Thus, for each k, the simplex Sk contains an optimal solution of Boolean
relaxation (8).

We now establish the gradient and the Hessian of the objective function f̂δ(t) using the scaling in
Section A. Without scaling, the gradient and the Hessian of fδ(t) are obtained by replacing v with 1
in this lemma.
Lemma 3. The gradient and the Hessian of f̂δ(t) at every t ∈ (0, 1)p are respectively given by

∇f̂δ(t) = −2δ
v ⊙ (Π̂−1

t 1)2

t3
,
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and

Ĥδ(t) = 2δDiag

(
v ⊙ (Π̂−1

t 1)

t3

)[
3Diag(t2 ⊙w2)− 4δΠ̂−1

t

]
Diag

(
v ⊙ (Π̂−1

t 1)

t3

)
,

where Π̂t = Σ+ δDt Diag(v), and the division and power operations on vectors are element-wise.

Proof. Similar to Lemma 2, we can show that for any interior point t ∈ (0, 1)p,

f̂δ(t) = −1⊤Π̂−1
t 1.

Thus, for each j = 1, . . . , p,

∂f̂δ(t)

∂tj
= −1⊤ ∂Π̂−1

t

∂tj
1 = 1⊤Π̂−1

t

∂Π̂t

∂tj
Π̂−1

t 1.

Since Σ does not depend on t, from the definition of Πt,

∂Π̂t

∂tj
= δ

∂Dt

∂tj
Diag(v) = −2δvj

t3j
eje

⊤
j , (13)

where ej is the vector with 1 at the j-th location and 0 everywhere else. Thus, we get the required
expression for the gradient∇f̂δ(t).

We now derive an expression of the Hessian of f̂(t). Toward this, to simplify the notation, let
ut = Π̂−1

t 1. Then, j-th column of the Hessian is given by

∂

∂tj
∇f̂δ(t) =

6δvj
t4j

eje
⊤
j (ut ⊙ ut)− 2δ

(
1

t3

)
⊙ ∂

∂tj
(ut ⊙ ut)

=
6δvj
t4j

eje
⊤
j (ut ⊙ ut)− 4δ

(ut

t3

)
⊙ ∂ut

∂tj

=
6δvj
t4j

eje
⊤
j (ut ⊙ ut) + 4δ

(ut

t3

)
⊙

(
Π̂−1

t

∂Π̂t

∂tj
ut

)
.

Using (13), we can write

∂

∂tj
∇f̂δ(t) =

6δvj
t4j

eje
⊤
j (ut ⊙ ut)−

8δ2vj
t3j

(ut

t3

)
⊙
(
Π̂−1

t eje
⊤
j ut

)
.

Consequently, the Hessian of fδ at t is given by

Ĥδ(t) = 6δ

[
Diag

(
v ⊙ ut

t3

)]2
T 2
t Diag(1/v)− 8δ2 Diag

(
v ⊙ ut

t3

)
Π̂−1

t Diag

(
v ⊙ ut

t3

)
= 2δDiag

(
v ⊙ ut

t3

)[
3Diag(t2 ⊙w2)− 4δΠ̂−1

t

]
Diag

(
v ⊙ ut

t3

)
,

which completes the proof by recalling that w = 1/
√
v.

Proof of Theorem 3. We establish the proof in generality under scaling, and Theorem 3 (no scaling)
immediately holds by replacing v with 1.

The Hessian Ĥδ(t) is clearly symmetric at every t ∈ (0, 1)p and δ > 0, but not necessarily positive
definite. To show (i), note from Lemma 3 that Ĥδ(t) is negative definite if 4δΠ̂−1

t − 3Diag(t2⊙w2)
is positive definite. To simplify the notation, for a symmetric matrix A, we write A ≥ 0 to denote
that A is positive semi-definite.

Suppose that Σ = U∆U⊤ is the singular value decomposition of Σ. Then, Σ ≤ η1I and thus,

Π̂t = Σ+ δDt Diag(v) ≤ η1I + δDt Diag(v) = Diag
(
η11+ δ(1/t2 − 1)⊙ v

)
.
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Hence,

Π̂−1
t ≥ Diag

(
t2

η1t
2 + δ(1− t2)⊙ v

)
,

and thus,

4δΠ̂−1
t − 3Diag(t2 ⊙w2) ≥ Diag

(
4δt2

η1t
2 + δ(1− t2)⊙ v

− 3
t2

v

)
,

here we used the fact that v = 1/w2. Now it is enough to show that

4δ

η1t2j + δ(1− t2j )vj
− 3

vj
≥ 0

for all j and tj ∈ (0, 1). Or equivalently,

4δ ≥ 3

vj

(
η1t

2
j + δ(1− t2j )vj

)
.

That is,

(1 + 3t2j ))δ ≥ 3(η1/vj)t
2
j ,

or,

δ − 3(η1/vj − δ)t2j ≥ 0.

Now, to establish the convexity property in (ii), observe that

Π̂t = Σ+ δDt Diag(v) ≥ ηpI + δDt Diag(v) = Diag
(
ηp1+ δ(1/t2 − 1)⊙ v

)
.

Hence,

Π̂−1
t ≤ Diag

(
t2

ηpt
2 + δ(1− t2)⊙ v

)
,

and thus,

4δΠ̂−1
t − 3Diag(t2 ⊙w2) ≤ Diag

(
4δt2

ηpt
2 + δ(1− t2)⊙ v

− 3
t2

v

)
,

Now it is enough to show that

4δ

ηpt2j + δ(1− t2j )vj
− 3

vj
≤ 0

for all j. Equivalently, 4δvj ≤ 3ηpt
2
j + 3δ(1− t2j )vj . That is, δvj ≤ 3ηpt

2
j − 3δvjt

2
j , or,

δ ≤ 1

vj

(
3ηpt

2
j

1 + 3vjt2j

)
,

which is true when for all t ∈ (ε, 1)p and δ > 0 such that

δ ≤ 1

maxj vj

(
3ηpε

2

1 + 3ε2

)
.

Proof of Theorem 4. Recall that for a fixed integer k,

hk(δ) = min
t∈Ck

fδ(t) and Dk,δ = argmin
t∈Ck

fδ(t).

Since ∆ := [ε, η1] is compact for any ε ∈ (0, η1), from Chapter 9 of Sundaram (1996), hk(δ) is
continuous and Dk,δ is compact-valued, upper hemicontinuous3 correspondence on ∆. This implies
that for any sequence δℓ → η1 and t(ℓ) ∈ Dk,δ with t(ℓ) → t∗, we have t∗ ∈ Dk,η1 . We known from
Theorem 3(i) that fη1(t) is strictly concave on Ck, and thus, Dk,η1 must be the solution set D∗

k of the
target optimization problem (6).

3Upper hemicontinuity is sometimes referred to as upper semicontinuity.

14



References
Asimit, V., Peng, L., Tunaru, R., and Zhou, F. (2025). Risk budgeting under general risk measures.
https://openaccess.city.ac.uk/id/eprint/33733/.

Bertsimas, D. and Cory-Wright, R. (2022). A scalable algorithm for sparse portfolio selection.
INFORMS Journal on Computing, 34(3):1489–1511.

Bertsimas, D., Cory-Wright, R., and Pauphilet, J. (2021). A unified approach to mixed-integer
optimization problems with logical constraints. SIAM Journal on Optimization, 31(3):2340–2367.

Bertsimas, D., King, A., and Mazumder, R. (2016). Best subset selection via a modern optimization
lens. The Annals of Statistics, 44(2):813 – 852.

Bhatia, R. (2009). Positive definite matrices. Princeton university press.

Boyd, S. P. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and Loris, I. (2009). Sparse and stable
Markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30):12267–12272.

Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha, Y. M. (2000). Heuristics for cardinality
constrained portfolio optimisation. Computers & Operations Research, 27(13):1271–1302.

Clarke, R., De Silva, H., and Thorley, S. (2011). Minimum-variance portfolio composition. Journal
of Portfolio Management, 37(2):31.

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009). A generalized approach to portfolio
optimization: Improving performance by constraining portfolio norms. Management Science,
55(5):798–812.

Fan, J., Zhang, J., and Yu, K. (2012). Vast portfolio selection with gross-exposure constraints. Journal
of the American Statistical Association, 107(498):592–606.

Fastrich, B., Paterlini, S., and Winker, P. (2015). Constructing optimal sparse portfolios using
regularization methods. Computational Management Science, 12(3):417–434.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110.

Gao, J. and Li, D. (2013). Optimal cardinality constrained portfolio selection. Operations Research,
61(3):745–761.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. The Johns Hopkins University Press,
third edition.

Gurobi Optimization, LLC (2024). Gurobi optimizer reference manual.

Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical learning with sparsity. Monographs
on Statistics and Applied Probability, 143(143):8.

Horn, R. A. and Johnson, C. R. (2012). Matrix Analysis. Cambridge University Press.

IBM Corporation (2024). IBM ILOG CPLEX Optimization Studio.

Jaggi, M. (2013). Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Interna-
tional Conference on Machine Learning, pages 427–435. PMLR.

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520.

Ledoit, O. and Wolf, M. (2004). Honey, I shrunk the sample covariance matrix. Journal of Portfolio
Management, 30(4):110–119.

Ledoit, O. and Wolf, M. (2020). Analytical nonlinear shrinkage of large-dimensional covariance
matrices. The Annals of Statistics, 48(5):3043–3065.

15

https://openaccess.city.ac.uk/id/eprint/33733/


Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7:77–91.

Mencarelli, L. and d’Ambrosio, C. (2019). Complex portfolio selection via convex mixed-integer
quadratic programming: A survey. International Transactions in Operational Research, 26(2):389–
414.

Moka, S., Liquet, B., Zhu, H., and Muller, S. (2024). COMBSS: best subset selection via continuous
optimization. Statistics and Computing, 34(2):75.

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing,
24(2):227–234.

Roncalli, T. (2013). Introduction to Risk Parity and Budgeting. CRC Press.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory,
13(3):341–360.

Saad, Y. (2003). Iterative methods for sparse linear systems. SIAM.

Sundaram, R. K. (1996). A First Course in Optimization Theory. Cambridge University Press.

Tian, Y. and Takane, Y. (2005). Schur complements and Banachiewicz-Schur forms. Electronic
Journal of Linear Algebra, 13:405–418.

Tillmann, A. M., Bienstock, D., Lodi, A., and Schwartz, A. (2024). Cardinality minimization,
constraints, and regularization: a survey. SIAM Review, 66(3):403–477.

16


	Introduction
	Sparse portfolio optimization
	Minimum-variance portfolio optimization
	Sparse portfolio selection
	Limitations and related work

	Methodology
	Boolean relaxation
	Theoretical properties
	Algorithm

	Applications
	Example 1: Three portfolio datasets
	Example 2: S&P 500
	Example 3: Assets with a low-rank plus noise structure
	Results

	Conclusion and future research
	Scaling
	Proofs

