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A Modular Energy Aware Framework for
Multicopter Modeling in Control and Planning

Applications
Sebastian Gasche, Christian Kallies, Andreas Himmel, and Rolf Findeisen

Abstract—Unmanned aerial vehicles (UAVs), especially multi-
copters, have recently gained popularity for use in surveillance,
monitoring, inspection, and search and rescue missions. Their
maneuverability and ability to operate in confined spaces make
them particularly useful in cluttered environments. For advanced
control and mission planning applications, accurate and resource-
efficient modeling of UAVs and their capabilities is essential.
This study presents a modular approach to multicopter modeling
that considers vehicle dynamics, energy consumption, and sensor
integration. The power train model includes detailed descriptions
of key components such as the lithium-ion battery, electronic
speed controllers, and brushless DC motors. Their models are
validated with real test flight data. In addition, sensor models,
including LiDAR and cameras, are integrated to describe the
equipment often used in surveillance and monitoring missions.
The individual models are combined into an energy-aware
multicopter model, which provide the basis for a companion
study on path planning for unmanned aircaft system (UAS)
swarms performing search and rescue missions in cluttered and
dynamic environments. The flexible modeling approach enables
easy description of different UAVs in a heterogeneous UAS
swarm, allowing for energy-efficient operations and autonomous
decision making for a reliable mission performance.

Index Terms—unmanned aerial vehicle, unmanned aircraft
system, multicopter, energy consumption, modular modeling

I. INTRODUCTION

Today, unmanned aerial vehicles (UAVs) are used in vari-
ous industrial and civilian applications, including search and
rescue, surveillance, and inspection missions, due to their
flexibility, ease of deployment, and ability to access hard-to-
reach areas. They are available in a wide range of designs,
such as fixed-wing, rotary-wing, and hybrid configurations,
each suited to specific mission profiles [36]. Among them,
multicopters are notable for their high maneuverability, stabil-
ity, and ability to hover, making them particularly effective in
cluttered environments such as urban, forested, or disaster-
affected areas. Motivated by their suitability for tasks in
confined and complex environments where other types of
UAVs may struggle, this study focuses on multicopters [26].

Many tasks such as mission planning, path planning, con-
trol, and state estimation require accurate models of the UAV’s
dynamics to ensure that the UAV performs as expected. This
includes the UAV’s vehicle dynamics, such as forces and mo-
ments acting on the body, as well as rotational and translational
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motions. In addition, its interaction with the environment,
including disturbances such as wind or turbulence, must also
be taken into account. Besides the vehicle dynamics, the
dynamics of its energy consumption is often important to
model. As the energy consumption has a direct influence on
the flight time, an accurate modeling enables to realistically
estimate the flight endurance and the mission feasibility.

These models are central to several control and optimization
methods, such as model predictive control (MPC), which re-
quire accurate models of the system to predict future states and
adjust controls accordingly [24, 35, 43]. For instance, in our
companion study [14] on path planning for a heterogeneous
unmanned aircraft system (UAS) swarm with the goal of
planning flight paths for search and rescue missions, models
of the UAVs’ vehicle dynamics and energy consumption are
used. The path planning algorithm is based on MPC and
mixed integer linear programming (MILP), which means that
a mathematical model of the vehicle, the environment, and the
mission goal is needed for path planning and decision making.
Based on these models, the future behavior of the UASs is
predicted and optimized in terms of mission success, energy
efficiency, and safety, enabling cooperative and sustainable
swarm guidance. Furthermore, the estimation of the remaining
energy capacity of the UAVs, which is integrated into the
decision making, enables the autonomous return of discharged
UAVs to their landing sites for recharging. Other path planning
algorithms, such as rapidly-exploring random trees [19, 20]
and genetic algorithms [23, 33], also benefit from such models
to incorporate motion constraints during sampling.

Sensors, such as cameras and LIDARs, which are common
payloads for UAS missions, also impose constraints on UAS
operations to ensure valid data collection. Therefore, the
effects of the sensors on the dynamics and energy consumption
of the UAV should be considered for accurate planning tasks.

In modeling, there are three primary types of models that
differ in required knowledge of the inner dynamics of the
system, required data on the system response, and descriptive-
ness. White-box models, also known as physics-based or first-
principles models, analytically model system behavior based
on physical equations where all parameters must be known.
While highly interpretable and providing detailed insight into
underlying physics, they require precise knowledge of all
system components, challenging for complex systems. They
offer high accuracy when the system is well understood but can
be computationally expensive, limiting their use in real-time
applications. Black-box models rely purely on input-output
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data without requiring detailed understanding of inner system
dynamics. These models use machine learning or system
identification methods to model system behavior as a relation
between input and output. They can capture complex nonlinear
system dynamics and are easy to implement with large datasets
but lack physical interpretability. Additionally, their limited
extrapolation capabilities result in inaccuracies when encoun-
tering unlearned situations, as accuracy depends on training
data quantity and quality. Grey-box models combine elements
of white-box and black-box models, using partial knowledge
of inner dynamics while estimating unknown parameters or
component dynamics from data. This offers a balance between
accuracy and computational efficiency, particularly useful in
practical applications, where some system knowledge is avail-
able but precise modeling of every component or process is
impractical. However, determining the optimal model structure
can be challenging, requiring both physical knowledge and
data [2, 41].

In this study, a grey-box modeling approach is used for its
balance of accuracy, flexibility, and computational efficiency.
It allows the incorporation of known UAV dynamics [7, 13,
31, 40], the approximation of difficult-to-model dynamics,
and the consideration of uncertain or unknown parameters. In
addition, we are aiming at a modular model for multicopters,
which offers significant advantages in terms of flexibility and
configurability. Multicopters can vary widely in the number
of rotors, payloads, sensors, and battery capacities. A modular
approach allows components such as motors, propellers, bat-
teries and sensors to be easily reconfigured or replaced without
overhauling the entire model. This is particularly useful when
planning missions where the UAV may need to be configured
to perform different tasks or operate in different environments.
For example, by swapping out modules such as batteries or
motors, the model can be adapted for missions that require
heavier payloads or those that prioritize longer endurance.

UAVs are typically driven by electric motors and pro-
pelled by electrical energy stored in a battery. As their size
increases, there are also UAVs that are propelled by fossil
fuels in combination with combustion engines or jet engines.
However, only electric-propelled UAVs are considered in this
study. Numerous modeling approaches have been proposed to
describe the energy consumption of electric-propelled UAVs,
ranging from high-level empirical models to detailed physics-
based models.Zhang et al. [45] and Muli et al. [28] re-
view energy consumption models (ECMs) of electric-propelled
UAVs and classify them into integrated models, regression
models, and component models. Integrated models combine
various aerodynamic and design aspects into a single critical
parameter, the lift-to-drag ratio, to represent energy efficiency.
For instance, D’Andrea [8] integrated model introduces this
approach by considering the mass, the velocity, the lift-drag-
ratio, the power train efficiency, and the power consumption
of the avionics, providing a broad yet cohesive estimation of
energy usage for UAVs across different flight phases. This
method is efficient for high-level planning, though it highly
depend on the choice of the lift-to-drag ratio and neglects
detailed forces, which limits the model to a specific operation
case. Component models decompose energy consumption into

separate segments, such as hovering, takeoff, landing, and
cruising, to estimate energy more granularly. This approach
allows detailed representations of energy requirements by
considering individual forces, such as the aircraft’s weight
force and various drag forces. Stolaroff et al. [37] apply a
two-component model that includes the thrust required to
compensate for weight and to counteract parasite drag. While
this model can reflect variations in power demands across
different phases of a flight, it may be complex to parameterize
accurately and often require substantial empirical data for
calibration. Regression models rely on empirical data from
field tests, such as the work of Alyassi et al. [3], who utilize
nonlinear regression with multiple variables, including payload
mass, velocity, acceleration and wind conditions, to predict
energy consumption. These models are useful in capturing
energy requirements in real-world settings, especially where
environmental factors significantly impact performance. By
fitting data to real-world conditions, regression models can
produce realistic estimations for specific UAVs and operational
parameters. However, they are limited by the data available and
may not generalize well to different UAV designs or operation
scenarios [28, 45].

Asti et al. [4] propose a different approach to develop an
energy-efficient obstacle avoidance. Here the change of kinetic
and potential energy is used to evaluate the efficiency of a
maneuver. This approach is simple and does not need further
insight into the UAV design besides the total mass of the UAV.
While it can evaluate the efficiency of a maneuver, it is not
suitable for accurately estimating energy consumption.

In contrast to the mentioned models, we adopt a modular
component-based approach, where the energy consumption
is modeled by considering key components of the power
train such as the lithium-ion battery (LIB), electric speed
controllers (ESCs), brushless direct current (BLDC) motors
and rotors. This level of abstraction allows for greater accuracy
and flexibility, allowing the model to be adapted for different
UAV configurations and use cases. Combined with an accurate
model of the UAV dynamics, this model can be adapted to
meet our requirements for accuracy, generalizability, and com-
putational efficiency. By modeling the individual components,
not only specific maneuvers are considered, but rather a variety
of maneuvers. This allows for dynamic operations without
having to discretize into different flight phases. Meanwhile, we
aim to use common data sheet information, while only relying
on few test flights to identify or calibrate model parameters.

This study is structured as follows: Section II details the
modeling of multicopter UAVs, covering the vehicle’s dynam-
ics and physical properties. Section III presents the modeling
of the energy consumption of electric-propelled UAVs. Section
IV introduces the sensor models, specifically the camera
and LiDAR, and their impact on the UAV’s performance.
In Section V, these models are combined to be used in
advanced mission planning and control applications. Section
VI discusses the validation of the energy consumption model
and examines the uncertainties introduced by environmental
factors. Finally, Section VII provides conclusions and suggests
future work based on the outcomes of this study.



S. GASCHE et al.: A MODULAR ENERGY AWARE FRAMEWORK FOR MULTICOPTER MODELING IN CONTROL AND PLANNING APPLICATIONS 3

II. UNMANNED AERIAL VEHICLE MODELING

In the following, we look at rotary-wing UAVs (multi-
copters), which use motors with attached rotors to generate a
downward thrust to take off or remain in flight. Their high ma-
neuverability (capable to hover and fly at high or low speeds)
makes them ideal for surveillance or monitoring missions.
Multicopters have a multiplicity of arms, each equipped with a
motor driving a fixed rotor. The rotors rotate either clockwise
or counterclockwise in an alternating pattern to balance the
system with regard to the drag moment generated by the rotors
in stationary flight. The following mathematical formulations
of the multicopter’s kinematics and dynamics are based on
[10, 22, 29, 32, 42]. To derive the multicopter model we
assume:

Assumption 1. The multicopter is axis-symmetric with respect
to the body-fixed frame and it’s body is nearly spherical.

Assumption 2. The multicopter’s actuators, like the BLDC
motors, ESCs and rotors are identical.

xI

yI

zI

OI

OB

xB

yB

zB

ψ, τ z

θ, τ y

ϕ, τ x
T

Fig. 1. Frames of reference (black: inertial frame, red: body-fixed frame);
Forces and torques acting on the body’s center of mass (blue)

A. Multicopter Kinematics

We define two frames of reference, shown in Fig. 1. The
inertial frame of reference is an earth-fixed north-east-down
frame and its origin OI is attached to the earth’s surface. The
body-fixed frame is a forward-right-down frame and its origin
OB is attached to the multicopter’s center of mass. Both frames
of reference are right-handed coordinate systems.

The multicopter is a six-degree-of-freedom (6 DOF) under-
actuated system, meaning that the rotational system is fully
actuated, meanwhile, the translational system is underactuated.
The position PI = (x, y, z)

⊤ of the multicopter represents the
distance between the origins of the reference frames and is
defined in the inertial frame. The orientation Ψ = (ϕ, θ, ψ)⊤

of the multicopter is represented by Euler angles, also known
as yaw angle ψ (rotation around the z-axis), pitch angle θ
(rotation around the y-axis), and roll angle ϕ (rotation around
the x-axis). It is defined as the rotation between the inertial
and body-fixed frame. Since some values are measured in the
inertial frame and others in the body-fixed frame, we define
two transformation matrices to convert values from the body-
fixed frame to the inertial frame. A vector, defined in the
inertial frame, is obtained by the product of the corresponding
vector in the body-fixed frame and the rotation matrix

R
I
B =

c(ψ)c(θ) c(ψ)s(θ)s(ϕ) − s(ψ)c(ϕ) c(ψ)s(θ)c(ϕ) + s(ψ)s(ϕ)
s(ψ)c(θ) s(ψ)s(θ)s(ϕ) + c(ψ)c(ϕ) s(ψ)s(θ)c(ϕ) − c(ψ)s(ϕ)
−s(θ) c(θ)s(ϕ) c(θ)c(ϕ)

 ,
where s, c, t are abbreviations for sin, cos, tan. Accordingly,
the translational velocity ṖI = (vx, vy, vz)

⊤ is obtained by

ṖI = RI
BṖ

B,

where ṖB is the velocity vector in the body-fixed frame.
Likewise, the euler rates Ψ̇ = (ϕ̇, θ̇, ψ̇)⊤ are obtained by

Ψ̇ = RΨ ωB. (1)

Here, the angular velocity ωB = (ωx, ωy, ωz)
⊤ in the body-

fixed frame is transformed by the angular transformation
matrix

RΨ =

1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)/c(θ) c(ϕ)/c(θ)

 .
Remark 1. We constrain the Euler angles ϕ, θ ∈

(
−π

2 ,
π
2

)
to

avoid singularities in RΨ. This assumption is feasible if the
multicopter does not perform aggressive maneuvers [12, 32].

B. Multicopter Dynamics

The motion of the multicopter is divided into a rotational
and a translational motion component. To control the rotational
motion, we apply torque to the multicopter’s center of mass.
Fig. 1 shows the controllable torques τB = (τx, τy, τz)

⊤, as
well as the combined thrust T of all rotors, which is used to
control the translational motion.

The rotational equations of motion in the body-fixed frame
derive from the Newton-Euler formalism

τB = Jω̇B + ωB × JωB + τB
G + τB

D, (2)

where ω̇B = (ω̇x, ω̇y, ω̇z)
⊤ is the angular acceleration. Due

to Assumption 1, the inertia tensor J = diag{Jxx, Jyy, Jzz}
has only entries on the diagonal representing the moments of
inertia around the body axes. The gyroscopic effect of the
angular motion of the rotors is considered by

τB
G = ωB ×

 0
0

Jr Ωr

 ,

where Jr and Ωr are the inertia moment of a rotor and the
difference in rotor speeds, respectively. The drag torque

τB
D = Dτω

B

accounts for the air drag, which is approximately proportional
to the angular velocity ωB and depends on the angular air
resistance coefficients within matrix Dτ = diag{cτx, cτy, cτz}.

The translational equations of motion in the inertial frame
derive from Newton’s second law

m P̈I = FI
G +RI

B FB − FI
D, (3)

where P̈I = (ẍ, ÿ, z̈)
⊤ is the translational acceleration. The

gravitational force

FI
G = (0, 0,m g)⊤ ,

depends on the total mass of the body m as well as the
acceleration of free fall g, while the non-gravitational force

FB = (0, 0,−T )⊤ ,

results from the thrust T of all rotors. Lastly, the drag force

FI
D = DFv

I
a
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accounts for the air drag, which is approximately proportional
to the air velocity vI

a and further depends on the resistance
coefficients within the matrix DF = diag{cFx, cFy, cFz} [15].
Here, the air velocity vI

a = ṖI −vI
w relates the UAV’s transla-

tional velocity ṖI to the wind velocity vI
w = (vw,x, vw,y, vw,z)

⊤.

C. Multicopter Models

We rearrange and combine (1), (2) and (3) to obtain the
general nonlinear state space multicopter model

ẋu = fu(xu,uu,du) + Γu,x, (4)

with the state xu = (x, y, z, vx, vy, vz, ϕ, θ, ψ, ωx, ωy, ωz)
⊤, the

input uu = (T, τx, τy, τz,Ωr)
⊤ and the external disturbance

du = (vw,x, vw,y, vw,z)
⊤. Here, the right-hand side reads

fu(xu,uu,du) =


ṖI

1
m

(
FI

G +RI
B FB − FI

D

)
RΨ ωB

J−1
(
τB − ωB × JωB − τB

G − τB
D

)
 .

Additionally, Γu,x represents unknown uncertainties, resulting
from modeling inaccuracies and turbulences.

As the path planner in [14], many real-time applications
require discrete-time linear models. Therefore, we derive in
Appendix A, the corresponding multicopter model

xu(k + 1) = Ad,u xu(k) +Bd,u ũu(k) +Hd,u du(k) + Γu,x(k),
(5)

where Ad,u, Bd,u and Hd,u are the discrete-time system, input
and disturbance matrices. For the chosen set point, the hover-
ing state xu,SP = (0, . . . , 0)⊤ without any external disturbance
du,SP = (0, . . . , 0)⊤, the multicopter maintains its position
and the thrust TSP = m g compensates for the weight force.
Meanwhile, the input is reduced to

ũu = (L, τx, τy, τz)
⊤,

where the lift L is the thrust component acting in negative
zI-direction, which is added to the hovering thrust TSP.

D. Adapting For Specific Multicopter Configurations

The various multicopter configurations differ in their posi-
tioning and number of rotors. Each rotor is fixed to a motor,
rotating with the motor speed Ωi, i ∈ {1, . . . , NM}, where NM
is the number of motors. To adapt the generalized multicopter
model for a specific multicopter configuration, the input has to
be defined depending on these motor speeds. In the following,
we define clockwise rotations as positive and counterclockwise
rotations as negative. Accordingly, the difference in rotor
speeds is given by

Ωr =

NM∑
i=1

sign(Ωi) Ωi. (6)

Each rotor generates an upwards-pointing aerodynamic force

Fi = kF Ω
2
i , ∀ i ∈ {1, . . . , NM}, (7)

and a rotation-counteracting aerodynamic drag torque

Mi = kM Ω2
i , ∀ i ∈ {1, . . . , NM}, (8)

where kF and kM are the aerodynamic force and torque
constants and Assumption 3 applies [10, 22, 29].

Assumption 3. For simplicity, we assume that the aerody-
namic parameters kF and kM are constant. However, in reality,
they depend on the rotor speed, airflow, and air pressure.

According to Fig. 2, the thrust

T =

NM∑
i=1

Fi, (9)

combines the NM forces, defined by (7). Meanwhile, the
torques are given by

τx =

NM∑
i=1

−ly,i Fi, τy =

NM∑
i=1

lx,i Fi, τz =

NM∑
i=1

−sign(Ωi)Mi,

(10)
where lBi = (lx,i, ly,i)

⊤ indicates the ith rotor’s position.

M2
Ω3

Ω2

Ω1

Ω4 M1

F3

F4

xB

yB

zB

F2

M3

M4
F1

Fig. 2. Aerodynamic forces and torques of a quadcopter in X-configuration

E. Vehicle Capabilities

In order to consider the vehicle’s limits, the model is
constrained. It is common practice to divide the velocity of
a multicopter into two parts: the ground velocity

vg =
√
v2x + v2y , s.t. vg ≤ vg,max

and the climb/descent velocity

vc = |vz|, s.t. vc ≤ vc,max,

which are constrained by their respective maximum values
vg,max and vc,max. Moreover, the tilt angle

α = cos−1(cos(ϕ) cos(θ)) ≈
√
ϕ2 + θ2,

s.t. α ≤ αmax,

is constrained by its maximum value αmax and Remark 1 must
be considered to avoid singularities. Constraints on the angular
rates ωB should be included if the multicopter is equipped with
sensible instruments.
To represent the motors’ capabilities, the input is constrained
using (9), (10) and the motor speed limits

0 ≤ Ωi ≤ Ωmax, ∀ i ∈ {1, . . . , NM}.

Remark 2. The approximation error of the linearized model
decreases if the yaw angle ψ is constrained to ψ ≈ 0.
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III. ENERGY CONSUMPTION MODELING

In this study, we employ a component modeling approach
for the energy consumption modeling as the detailed model
design enables us to consider different UAV designs, envi-
ronmental influences, and use cases. In combination with an
accurate UAV model, a component model is adapted to fulfill
our requirements of accuracy, generalizability, and simulation
resource demand. In the following, we derive the individual
components of the power train and combine them to obtain
the ECM for electric-propelled UAVs.

avionics, payload,
additional actuators

BLDCESCBattery

ESC BLDC

Fig. 3. Common power train of an electric-propelled UAV

Fig. 3 shows the power train of an electric-propelled
UAV, which is divided into three prominent components. The
lithium-ion battery (LIB) stores the energy, which the electric
speed controller (ESC) transfers to the brushless direct current
(BLDC) motor, which drives a fixed rotor. The ESC controls
the BLDC motor, depending on a pulse width modulation
(PWM) control command provided by the flight controller. The
component model could be extended by including the avionics,
the payload, or additional actuators. However, the complexity
increase is only meaningful if they consume significant energy
compared to the BLDC motors.

A. Lithium-Ion Battery

The first component is the LIB, whose state is described by
the state of charge SoC and the battery voltage ub. Hussein
and Batarseh [17] and Zhou et al. [46] review several modeling
approaches for LIB cells. We adopt an equivalent circuit model
due to its descriptive formulation, possible short simulation
run-time, and good estimation accuracy. Commonly, LIBs
consist of multiple cells, which can be connected in series and
parallel, as shown in Fig. 4. For simplification, we assume:

Assumption 4. All LIB cells are identical and the load is
distributed evenly.

Considering Assumption 4, the number of cells connected
in series NS and parallel NP define the battery voltage ub and
battery current ib by

ub = NS uc, ib = NP ic, (11)

where uc and ic are the LIB cells’ voltage and current.

ub

ic

uc

ib

−

+

Battery

uoc

uRint

uth

uc Rint

Rth Cth

ic

+

+

−

−

Thevenin model

Fig. 4. Simplified battery circuit & Thevenin model

We define the portion of the already discharged battery
charge, also called the depth of discharge, as

DoD = DoD0 +
ηb

Qb

∫
ib dt, (12)

where DoD0 is the initial depth of discharge and ηb, Qb, ib are
the battery’s efficiency, capacity and current. This method is
called Coulomb counting and is characterized by its simplicity
and performance [30]. Commonly, this method is used to
describe the state of charge

SoC = 1−DoD, (13)

which is the portion of the remaining battery charge.
For the LIB cell model, we apply a first-order equivalent

circuit model, also known as Thevenin model. It describes
the LIB cell behavior accurately, while the simulation run-
time, the complexity, and the needed information about the
inner processes of the LIB cell are limited. Fig. 4 illustrates
the Thevenin model consisting of an ohmic resistance Rint,
an ideal voltage source uoc, and an RC parallel network
Rth∥Cth connected in series. The total internal resistance is
divided into the ohmic resistance Rint and the polarization
resistance Rth. If no load is applied, the LIB cell voltage
uc equals the open circuit voltage uoc. The polarization RC
network describes effects resulting from chemical reactions in
the electrode surfaces and the ion mass transfer inside the LIB
cell [16, 30]. According to Kirchhoff’s circuit laws, we define
the characteristic equations of the Thevenin model

d

dt
uth = − 1

Rth Cth
uth +

1

Cth
ic,

uc = uoc − uth −Rint ic,

where we insert (11), while considering (12) to obtain the
LIB’s characteristic equations

d

dt
DoD =

ηb

Qb
ib,

d

dt
uth = − 1

Rth Cth
uth +

1

NP Cth
ib,

ub = NS

(
uoc − uth −

Rint

NP
ib

)
.

(14)

Remark 3. Since the polarization effects are only considered
by one RC-network, the LIB cell behavior at the end of
discharge phase can not be reproduced accurately.
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To increase the accuracy of the LIB cell model, we define
the ideal voltage source uoc as dependent on the depth of
discharge DoD. Fig. 5 shows a generalized discharge curve of
a LIB cell (black graph) and the cutoff depth of discharge
DoDcutoff (red dot), set to 85%, which limits the depth of
discharge to avoid over-discharging.

0 0.2 0.4 0.6 0.8 1

3.4

3.6

3.8

4

4.2

DoD [-]

u o
c

[V
]

Open Circuit Voltage

real
linear
LPV1
LPV2
LPV3
cutoff

Fig. 5. Generalized discharge curve of a LiPo cell (black) [11], linear
approximation (blue), and LPV approximations (red, magenta, green)

Remark 4. The actual discharge curve of a LIB cell is highly
individual and can differ from the black graph in Fig. 5 due to
external circumstances (temperature, state of health, discharge
rate) and technological differences, et cetera.

According to the blue graph, the linear approximation

uoc = b0 + b1 DoD for 0 ≤ DoD ≤ DoDcutoff. (15)

is parameterized by the open circuit voltage parameters b0 and
b1. Due to the non-linearity of the discharge curve, we propose
to define a piece-wise linear function

uoc =

{ b0,1 + b1,1 DoD for DoD0 ≤ DoD ≤ DoD1,
b0,2 + b1,2 DoD for DoD1 ≤ DoD ≤ DoD2,
b0,3 + b1,3 DoD for DoD2 ≤ DoD ≤ DoD3,

(16)

where the index i ∈ {1, . . . , 3} indicates the active LPV
battery model. Depending on this index the corresponding
parameters b0,i, b1,i and the thresholds

[
DoDi−1,DoDi

]
are

chosen to fit the red-, magenta-, and green-colored graphs in
Fig. 5, respectively.

B. Electric Speed Controller

The second component is the ESC, which connects the
LIB with the BLDC motor and controls the BLDC motor,
depending on the PWM control command sPWM. Since the
BLDC motor will be modeled as a simplified direct current
(DC) motor, we model the ESC as a DC-to-DC converter,
which regulates the voltage supply to a DC motor. Then, the
ESC converts the battery voltage ub to the DC motor’s voltage

uDC = fESC(sPWM)ub,

depending on the function fESC(sPWM), which is approxi-
mately a linear function [25]. In order to formulate the relation
between the DC motor’s supply power and the ESC’s input
current

iESC =
1

ηESC
fESC(sPWM) iDC =

pDC

ηESC ub
, (17)

we consider the ESC’s efficiency ηESC and follow the energy
conservation law

pESC ηESC = pDC,

where pESC = iESC ub is the power supplied to the ESC.

C. Brushless Direct Current Motor with a fixed Rotor

The third component is the BLDC motor. It is a special
kind of synchronous machine, which is controlled by an ESC.
According to a commutation logic, which depends on the rotor
position, direct currents are applied to the three input wires of
the BLDC motor. By this, the magnetic poles of the stator
coils align with the rotor monopoles to initiate or maintain
the rotation of the rotor. For more information, see [5].

−

+

ug

Ω

τf
iDC

RDC
LDC +

−
ub

iESC

uDC

fESC

−

+
τL

ESC BLDC

RotorPWM

Fig. 6. Simplified ESC-BLDC circuit

Fig. 6 shows a simplified ESC-BLDC circuit. Since the
structure and dynamics of a BLDC motor are complex and
not continuous, we approximate its power consumption by a
simplified DC motor with a fixed rotor, based on [12, 21, 27].
Here, we assume:

Assumption 5. The BLDC motor is driving at a constant
speed and the motor friction torque is negligible due to liquid
lubrication.

As shown in Fig. 6, the simplified DC motor is built from
elementary electrical components. The resistances of the motor
and the inductance of the coils are summarized as the motor’s
internal resistance RDC and the motor’s inductance LDC. An
ideal power sink ug = Ω/KV represents the transformation of
electrical power to mechanical power, where KV is the voltage
constant of the motor and Ω is the motor speed. According to
Kirchhoff’s circuit laws, the motor voltage uDC is given by

uDC = uR + uL + ug = RDC iDC + LDC
d iDC

d t
+

1

KV
Ω

= RDC iDC +
1

KV
Ω,

(18)

where the motor current reads

iDC =
1

Kτ
τM =

1

Kτ

(
Jr
dΩ(t)

dt
+Df Ω+ τf + τL

)
= KV (Df Ω+ τL) .

(19)

It depends on the motor torque τM and the motor’s torque
constant Kτ , which is approximated by Kτ = 1/KV. The
motor torque τM represents the torque required to change the
motor speed Jr

dΩ
dt and to compensate for the viscous damping

of the motor Df Ω, the motor friction torque τf and the load
friction torque τL. Here, Jr is the moment of inertia of the
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rotor and Df is the viscous damping factor of the motor.
According to (8), the load friction torque τL = kM Ω2 equals
the aerodynamic torque produced by the rotor. Equations (18)
and (19) are simplified according to Assumption 5 to obtain
the power consumption of the BLDC motor

pDC = uDC iDC

= RDC K
2
V

(
Df Ω+ kM Ω2

)2︸ ︷︷ ︸
Pel

+Df Ω
2︸ ︷︷ ︸

Pmech

+ kM Ω3︸ ︷︷ ︸
Pout

. (20)

It consists of the electrical power loss Pel, the mechanical
power loss Pmech and the mechanical output power Pout.

D. Combined Energy Consumption Model
We combine all three components of the power train to

derive the ECM for electric-propelled UAVs. Fig. 3 illustrates
the standard circuit, where the ESC-BLDC connections are
connected in parallel to the battery. To derive the ECM, we
define the motor speeds and external power consumption ue =
(Ω1, . . . ,ΩNM)

⊤ as input and the state contains the depth of
discharge DoD, and the polarization voltage uth. Further, the
output contains the state of charge SoC, the battery voltage
ub and the battery current ib.

Considering (14), (17) and (20), the battery current

ib =

NM∑
i=1

iESC,i =
1

ub(DoD, uth, ib)

NM∑
i=1

pDC,i(Ωi)

ηESC,i
,

is defined as the sum of the input currents of the ESCs iESC,i,
where NM defines the number of BLDC motors. If the BLDC
motors do not consume any power, the battery current equals
zero. Therefore, we get

ib = ĩ−

√√√√ĩ2 − NP

NS Rint

NM∑
i=1

pDC,i(Ωi)

ηESC,i
, (21)

where ĩ substitutes for ĩ = NP (uoc(DoD)−uth)
2Rint

.

Remark 5. The power consumption of other components, like
the avionics, the payload, or additional actuators can be added
in (21) to the sum of power terms if they consume a significant
amount of power, compared to the BLDC motors.

With (12), (13), (14) and (21), we obtain the nonlinear state
space ECM for electric propelled UAVs by

ẋe = fe(xe,ue) + Γe,x,

ye = ge(xe,ue) + Γe,y,
(22)

with the state xe = (DoD, uth)
⊤, the input ue =

(Ω1, . . . ,ΩNM)
⊤ and the output ye = (SoC, ub, ib)

⊤, where
the right-hand sides of (22) read

fe(xe,ue) =


ηb

Qb
ib(·)

−
1

Rth Cth
uth +

1

NP Cth
ib(·)

 ,

ge(xe,ue) =


1−DoD

NS

(
uoc(DoD)− uth −

Rint

NP
ib(·)

)
ib(·)

 .

Here, ib(DoD, uth,Ω1, . . . ,ΩNM) is defined by (21) and
uoc(DoD) can be ether selected according to (15) or (16)
for the nonlinear or nonlinear parameter-varying (NPV) ECM.
Further, Γe,x and Γe,y represent uncertainties, originating from
modeling inaccuracies and external factors, as temperature
changes.

Considering Assumption 2, the general ECM for electric-
propelled UAVs is adjusted especially for multicopters to
derive a fitting discrete-time LPV ECM in Appendix A. For
the chosen set point, the hovering state with a fully charged
battery xe = (0, . . . , 0)⊤, the thrust TSP compensates for the
weight force, resulting in equal motor seeds ΩSP =

√
m g
kF NM

for all NM motors. Due to (9) and the properties of linear
models, the input ue is reduced to

ũe = ∆T = T − TSP,

which is the deviation of the thrust from the set point. After
the linearization, discretization, and reduction, we obtain the
discrete-time linear state-space multicopter ECM

xe(k + 1) = Ad,e xe(k) +Bd,e ũe(k) +Ed,e + Γe,x,

ye(k) = Cd,e xe(k) +Dd,e ũe(k) + ye,SP + Γe,y,

where Ad,e, Bd,e, Cd,e and Dd,e are the discrete-time state-
space matrices. Since the set point is not an equilibrium point,
Ed,e = fe(xe,SP,uc,SP)∆t and ye,SP = ge(xe,SP,uc,SP) are
added as an offset for the energy consumption during hovering.

E. Power Train Capabilities

In order to prevent damage to the battery, the output of the
ECM should be constrained by

SoCcutoff ≤ SoC ≤ 1,

umin NS ≤ ub ≤ umax NS,

−icharge,max ≤ ib ≤ idischarge,max,

where SoCcutoff is the cutoff state of charge, (umin, umax)
are the voltage boundaries for a LIB cell and
(icharge,max, idischarge,max) are the upper bound of the currents
during charge and discharge.

IV. SENSOR AND COMMUNICATION MODELS

Depending on the mission, UAVs are equipped with addi-
tional sensors, which often impose additional constraints on
the distance to a given target to capture or the velocity of the
UAV. For example, during surveillance missions it is necessary
to maintain a maximum distance to the ground and a maximum
ground velocity to ensure that the measurements are valid and
complete. The most common sensor types are cameras and
light detection and ranging sensors (LiDARs). Cameras are
widely used for visual tasks such as aerial imaging and object
detection, offering high resolution but are sensitive to lighting
and weather conditions. LiDARs, in contrast, provide precise
3D mapping and perform well in low-visibility environments,
though they are more data-intensive and costly. Each sensor
imposes requirements on the UAV operations and the mission
planning. Therefore, we derive the corresponding constraints
for both sensor types in the following.
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A. Camera Model

When using a camera for data collection, both the alignment
with the target and the spatial resolution of the image RI, must
be considered. The spatial resolution for an image taken from
a distance d

RI = I/L =
I

2 d tan (γ/2)
,

which is expressed in pixels per meter, depends on the
camera’s image resolution I and field of view γ. To ensure
a minimum spatial resolution RI,min, the UAV’s distance dt to
its target must satisfy

dt = ∥pt − p∥2 ≤ I

2RI,min tan (γ/2)
, (23)

where p and pt are the positions of the UAV and its target.
Further, the alignment of the camera is defined by the angle

χ = arccos

(
pt − p

∥pt − p∥2
RI

B aB
c

)
,

which measures how well the camera’s view aligns with the
target. Here, aB

c is the normalized camera mounting vector in
the body-fixed frame and the target gets centered in the image,
when the alignment angle χ is minimized.

For a fixed camera setup (see Fig. 7a), capturing the target
and the surrounding area of interest requires that the alignment
angle remains below a threshold defined by

χ ≤ γ/2− arctan

(
Lt

2 dt

)
,

where Lt ≤ I/RI,min is the diameter of the area of interest.
In a simpler case, the camera is mounted on a controlled

gimbal, adjusting aB
c to track the target. In this case χ ≈ 0

and it is sufficient to maintain the UAV’s flight altitude z ≤ zt
above the target altitude zt.

During surveillance missions, such as described by
Di Franco and Buttazzo [9] and shown in Fig. 7b, the camera
is often controlled to point towards the ground with the target
distance dt = |zt − z|. Increasing the UAV’s flight altitude,
while considering (23), allows for a larger captured area.
Depending on the image’s aspect ratio ρ, the UAV’s ground
velocity vg is constrained by

vg ≤ 2 |zt − z| tan (γ/2) (1− δc)

ρ Ts,c
,

where δc ∈ [0, 1] is the overlap of successive images and Ts,c
is camera’s sampling period.

a) b)

d
dt

χ

γ

target
Lt

ac

L

L L/
ρ

dtγ

Fig. 7. a) Fixed camera; b) Controlled camera facing towards ground;

B. LIDAR Model
LiDARs measure distances by emitting laser pulses that

reflect off objects and return to the receiver, allowing the
system to calculate the distance based on the light’s travel
time. In combination with position and orientation data, the
exact location of the point measurement is determined. By
scanning across different directions, a precise 3D map of the
environment, refastened by a point cloud, is created. The
sensor’s emitter and a receiver typically operate within a
horizontal field of view γh and vertical field of view γv up to
a defined effective LiDAR range rL. Often both are mounted
on a rotating axis to achieve a full scan of the horizontal plane
γh = 2π. The quality of these scans is expressed by the point
cloud density Rl in points per square meters or by the spacing
between points dp. Those depend on the vertical and horizontal
angular resolutions, Vres and Hres, as well as the distance to the
target dt [44]. In the following, we derive constraints on the
UAV’s operations for two different LiDAR use cases, shown
in Fig. 8, ensuring valid data collection.

γv rl

a) b)

γv

side view

rL

γv

Lh
Lv

γ∗h
dt

γ∗h
top view

Fig. 8. a) LiDAR for vertical scanning; b) LiDAR for horizontal scanning;

For the first LiDAR configuration, the sensor is mounted on
a gimbal to scan the vertical plane with its rotation axis parallel
to the ground, as shown in Fig. 8a. This setup is typically
used for ground measurements or mapping. To ensure adequate
point cloud density RL = Np/AL, the scanned area on the
ground AL = Lv Lh = 4 dt tan (γv/2) tan (γ

∗
h /2) with the

valid horizontal field of view γ∗h and dt = |zt − z| has to be
considered. The number of measurement points is then given
by Np = (γv γ

∗
h )/(Vres Hres). Ensuring a minimum point cloud

density RL,min, the distance dt must satisfy

dt ≤

√
γv γ∗h

4RL,min tan (γv/2) tan (γ∗h /2)
,

while dt ≤ rL cos (γv/2) and dt ≤ rL cos (γ∗h /2) ensure
valid measurements. Further, the UAV’s ground velocity vg
is constrained by

vg ≤ 2 |zt − z| tan (γv/2) (1− δc) fL,

where δL ∈ [0, 1] is the overlap of successive scans and fL is
the scanning rate.

For the second LiDAR configuration, the sensor is mounted
to scan the horizontal plane with its rotation axis aligned with
the UAV’s zB-axis, as shown in Fig. 8b. This configuration
is typically used for obstacle detection, requiring the UAV to
limit its ground velocity so that it can react in time to detected
obstacles. The ground velocity vg must satisfy

vg ≤ −aB,max tR +
√

(aB,max tR)2 + rL,
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where tR is the detection time and aB,max is the maximum
braking acceleration, approximated by aB,max ≈ αmaxg. Addi-
tionally, the tilt angle α should be constrained by the LiDAR’s
vertical field of view γv to maintain a clear detection of
obstacles in front of the UAV, with

α ≤ γv/2.

V. ENERGY AWARE MULTICOPTER MODEL

The derived multicopter and energy consumption models are
combined, as illustrated in Fig. 9, to obtain the discrete-time
NPV energy-aware multicopter model

ẋ = f(x,u) + Γx =

(
fu (xu, fc(u))
fe (xe,u)

)
+

(
Γu,x
Γe,x

)
,

y = g(x,u) + Γy = ge(xe,u) + Γe,y,

with the state x = (x⊤
u ,x

⊤
e )⊤, the input u = (Ω1, . . . ,ΩNM)

⊤

and the output y = ye. The transformation uu = fc(u) of the
input u into the input uu of the nonlinear multicopter model
(4) is derived in (9) and (10).

Meanwhile, the discrete-time LPV energy aware multicopter
model with the reduced input ũ = (ũ⊤

u , ũ
⊤
e )⊤ is given by

x(k + 1) = Adx(k) +Bdũ(k) +Ed + Γx,

y(k) = Cdx(k) +Ddũ(k) + ySP + Γy.

It comprises the discrete-time state-space matrices

Ad =

[
Ad,u 0
0 Ad,e

]
, Bd =

[
Bd,u 0
0 Bd,e

]
, Ed =

[
0

Ed,e

]
,

Cd =
[
0 Cd,e

]
, Dd =

[
0 Dd,e

]
.

x

y

Nonlin. UAV
u

fc(u)

NPV ECM

uu

ue
xe

ye

x(k + 1)

y(k)

Lin. UAV

LPV ECM
ũe(k)

xe(k + 1)

ye(k)

ũu(k)

xu

xu(k + 1)

fT (·)

L(k)

xu(k)

ũu(k)

Fig. 9. Structure of the nonlinear (top) and linear (bottom) energy aware
multicopter model

The separation of the inputs for the multicopter model
and the ECM allows for considering aerodynamic effects that
are not included in the linear multicopter model. Since the
horizontal and vertical motion dynamics are not coupled, we
correct the necessary thrust during tilted flight by

∆T =
√
T 2

v + T 2
h − Tη − TSP. (24)

Here, Tv = T cos(α) = TSP + L is the vertical thrust
component and Th = T sin(α) ≈ m gα is the horizontal
thrust component. It is observed that a small-size multicopter
in forward flight consumes equal or even less power compared
to hovering until a threshold velocity is reached [6, 39]. This is

the result of multiple rotor efficiency increasing aerodynamic
effects, such as the increased air inflow velocity through the
rotors or the effective translational lift [1, 40]. Due to the
nonlinear and difficult-to-model nature of these effects, we
approximate the increased efficiency by reducing the necessary
thrust for velocities below the threshold vth by

Tη =

{
ηETL m g
vth

vg for vg ≤ vth,

ηETL m g for vg ≥ vth.

Here, ηETL =

√
1 +

(
cF vth
m g

)2
− 1 results in an equal power

consumption for hovering and for steady horizontal flight with
vg = vth.

Accurately representing the vehicle’s capabilities, the con-
straints outlined in Sections II-E and III-E must be satisfied.
Further, if the UAV is equipped with a sensor the constraints
in Section IV must be considered during measurements.

Remark 6. For the parameter identification the masses of the
UAV, battery and equipment has to be summed up to the total
mass m. Additionally, the inertia tensor J must be adjusted
regarding the battery and equipment, preferring to be attached
close to the UAV’s body.

VI. DISCUSSION

In the following, we discuss the modeling of the UAVs
and their energy consumption,and validate them by actual test
flight data.

A. Multicopter Model

In Section II, we derived a multicopter model (4) that
is suitable for UAS swarms with various UAVs because it
is easily adaptable to fit all sorts of multicopter configura-
tions. However, the models have their limitations in terms
of accuracy. We employ Assumption 3 for the aerodynamic
parameters kF and kM, which we define for the hovering state
(no external airflow, constant motor speeds). This leads to
an estimation error for the aerodynamic forces and torques.
In addition, the models have no upper limit for their flight
altitude, since the aerodynamic parameters do not decrease
depending on the air pressure. Additional aerodynamic effects
such as the effective translational lift or the dynamic air inflow
of the rotors, should be considered to improve the accuracy
[40]. The approximations on the dynamics and parameters
result in uncertainties, which should be considered for path
planning to ensure that the paths are safe and will not lead
to collisions. Unfortunately, these are impossible to predict
and only can be partly modeled. Furthermore, the mapping
between the inputs of the linear multicopter model (5) to the
motor speeds is only valid under the condition outlined in
Remark 2.

B. Energy Consumption Models

In Section III, we derived an ECM (22) that is easily
adaptable to different electric-propelled UAVs. To validate the
ECM and the individual component models, we identify the
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model parameters of a ”Holybro S500 V2”, which are listed
in Appendix C. Some parameters are taken directly from data
sheets, other unknown parameters are fitted using the greyest
algorithm in Matlab, see [38], and data from a calibration flight
(TD), recorded by the Pixhawk autopilot [34]. The models
are validated with measurements from additional test flights,
which are defined in Appendix D.
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Fig. 10. Supply Power estimation of the nonlinear (red) and linear (blue)
ESC-BLDC models, compared to measurements (black) of actual test flights

Fig. 10 shows the combined supply power estimation of
all four BLDC motors for the nonlinear and linearized ESC-
BLDC model. It turns out, that the supply power is estimated
adequately during flight. However, the nonlinear model overes-
timates the supply power at high motor speeds. This behavior
results from Assumption 3 in (20), since the supply power
increases with the fourth power of Ω, which is actual damped
by a decreasing kM. It also shows that the linearized model
often underestimates the power consumption slightly for motor
speeds below the set point.

0 200 400 600 800

15

16

17

Vo
lta

ge
[V

]

Validation of the Battery Model

lin. LPV TD

0 100 200 300 400 500
15

16

17

Vo
lta

ge
[V

]

VD1

0 50 100 150 200 250 300 350
15

16

17

Time [s]

Vo
lta

ge
[V

]

VD2

Fig. 11. Battery voltage estimation of the linear (blue) and LPV (cyan) battery
models, compared to measurements (black) of actual test flights

Fig. 11 shows the battery voltage estimation of the battery
model (14) employing a linear and a LPV Thevenin model as
LIB cells. The LPV battery model estimates the battery voltage
with high accuracy. However, the estimation error increases
during the relaxation phase. This is a known characteristic of
the Thevenin model and is solved by the Dual-Polarization
Model, which uses an additional RC-network in series to
represent different polarization effects [16, 30].
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Fig. 12. Energy consumption estimation of the NPV (magenta) and LPV
(cyan) ECMs, compared to measurements (black) of validation test flight VD2

To validate the combined ECM, the energy consumption
estimates of several ECM formulations are compared with the
measurements from the test flights. As an example, Fig. 12
shows the battery state measurements and estimates using
the NPV and LPV ECMs for the second validation test
flight. While both models slightly underestimate the energy
consumption, the NPV ECMs show better estimation results
than the LPV ECMs due to the overestimated supply power of
the ESC-BLDC model. All ECMs show the same estimation
errors for the relaxing phase as their corresponding battery
models. As metric for comparison, we use the state of charge
estimation error ferror = |∆SoC−∆ ˜SoC|·100%, where ∆SoC
and ∆ ˜SoC are the actual and estimated differences in the state
of charge change SoC after five minutes of flight.

TABLE I
STATE OF CHARGE ESTIMATION ERRORS AFTER FIVE MINUTES.

nonlin. NPV lin. LPV
TD 0.40% 0.22% 0.46% 0.29%

VD1 0.34% 0.18% 0.55% 0.39%
VD2 0.89% 0.66% 1.46% 1.25%

As shown in Tab. I, the ECMs can accurately estimate the
state of charge, and the estimation errors are less than 2%
even for flight profiles that deviate significantly from the set
point. Furthermore, parameter-varying variants of the ECMs
can improve the estimation accuracy. The ECMs show a self-
amplifying effect for the estimation errors, which is present
in the simulation because we use do not correct the state
estimations by actual measurements.
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C. Energy Aware Multicopter Model in Path Planning

In [14], the developed discrete-time linear energy aware
multicopter model and the parameters of the ”Holybro S500
V2”, are implemented in an online moving horizon path
planning algorithm to plan energy efficient paths for a UAS
swarm on a search and rescue mission, resulting in the flight
paths drawn in Fig. 13. Additionally, Fig. 14 illustrates the
results of the energy consumption simulation of the two UAVs.
Note, that UAV 2 is already partly discharged at the beginning
of the mission and returns during the mission to its base, where
it lands and deactivates itself.

Fig. 13. UAS swarm on a search-and-rescue mission in a small flooded
village employing two UAVs to autonomously cover the search area;
UAV: position (black cross), past path (black line), planned path (blue dots);
Moving obstacle (e.g. a rescue helicopter): past path (red line) [14]
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Fig. 14. Energy consumption simulation for two UAVs [14]

The state of charge, the battery voltage and the battery
current of UAV 1 and UAV 2 are shown in blue and red,
respectively. It can be seen that UAV 2 is drawing a higher
current to compensate for its lower charge and battery voltage.
The ECM can reproduce the desired effects that affect the
energy consumption. It increases when climbing, turning,
braking, or accelerating and decreases when descending. Due
to (24) the power consumption during horizontal flight at
maximum velocity is only slightly higher, compared to a
steady hover flight, which also is observable in reality.

VII. CONCLUSION

In this study, we developed a modular modeling approach
for multicopter UAVs, with a focus on their energy consump-
tion and applicability to control and planning applications.

We derived an adaptable multicopter model capable of rep-
resenting a wide range of multicopter configurations, making
it suitable for heterogeneous UAS swarms. In doing so, we
incorporated important factors such as vehicle capabilities,
external disturbances, and uncertainties to ensure the model
closely represents real-world flight dynamics. Moreover, we
derived an ECM for electric-propelled UAVs. By adopting
a component-based modeling approach, the detailed model
design enables us to consider different UAV designs, enhanc-
ing the adaptability of the model. A scheme for an electric-
propelled UAV’s power train was designed, consisting of
BLDC motors (modeled as simplified direct current motors),
ESCs (modeled as DC-DC-converters), and LIBs (modeled
as networks of LIB cells employing an equivalent circuit
design approach). Together, these components form the ECM,
which allows for accurate estimation of the battery state
based on motor speeds and power demands from additional
subsystems, like the avionics or the payload. This approach
ensures adaptability across a wide range of electric-propelled
UAVs. The combined nonlinear model was further linearized
and discretized for a multicopterUAV, making it suitable
for integration into control and planning algorithms. This is
demonstrated by its use in the path planner developed in
the companion study. In addition, sensor models for camera
and LiDAR systems were derived, offering the flexibility to
integrate mission-specific constraints and sensor limitations
into the planning process.

Overall, this modular approach provides a solid foundation
for detailed analysis and optimization of multicopter UAV op-
erations, enabling more precise control and mission execution
under real-world conditions.

APPENDIX A
DISCRETE-TIME LINEAR STATE SPACE MODELS

We linerize the nonlinear models (4) and (22) around the
hovering state with a fully charged battery

xu,SP = (0, . . . , 0)⊤, xe,SP = (0, 0)⊤,

uu,SP = (TSP, 0, 0, 0, 0)
⊤, ue,SP = (ΩSP, . . . ,ΩSP)

⊤,

du,SP = (0, . . . , 0)⊤,

wherein the multicopter maintains its position while the thrust
TSP = m g compensates for the weight force, resulting in
motor speeds of ΩSP =

√
m g
NM kF

. In the following uncertainties
are not considered.

Remark 7. In linearized models, deviations from the set point
are used. For example, the state deviation ∆x is defined as
∆x = x − xSP. However, when the variable is 0 at the set
point, ∆ is omitted for clarity.
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A. Discrete-time Linear Multicopter Model

For the multicopter model, this set point is an equilibrium
point and the linear model is given by

ẋu = fu,lin(xu, ũu,du)

=



vx
vy
vz

−g (θ cos(ψSP) + ϕ sin(ψSP))− cFx (vx − vw,x)/m
−g (θ sin(ψSP)− ϕ cos(ψSP))− cFy (vy − vw,y)/m

−L/m− cFz (vz − vw,z)/m
ωx
ωy
ωz

(τx − ωx cτx)/Jxx
(τy − ωy cτy)/Jyy
(τz − ωz cτz)/Jzz



.

For ψSP = 0, the transformation matrices RI
B and R−1

Ψ equal
identity matrices, resulting in a direct transformation of vectors
and rotation rates between the body-fixed and inertial frame.
Therefore, the alignment of the xB- and yB-axis is not affected
by the yaw angle ψ anymore. Likewise, the alignment of
the zB-axis is not affected by the roll and pitch angels ϕ, θ.
Since the thrust T now only acts in negative zI-direction, we
replace it with the lift L ≈ T −TSP. Further, the difference in
rotor speeds Ωr, defined by (6), does not affect the dynamics
anymore, so we reduce the input to

ũu = (L, τx, τy, τz)
⊤.

This linear model is discretized with a sampling time of ∆t
using Taylor-Lie series, as described in Appendix B. In order
to more accurately approximate the discrete-time model a
discretization order Ndis ≥ 2 is recommended due to the high
dynamics of the multicopter. Finally, the discrete-time linear
state-space multicopter model is given by

xu(k + 1) = Ad,u xu(k) +Bd,u ũu(k) +Hd,u du(k),

where Ad,u, Bd,u and Hd,u are the discrete-time system, input
and disturbance matrices.

B. Discrete-time Linear Energy Consumption Model

We start with the already linear LIB equations (14)

ẋb = Ab xb +Bb ub,

yb = Cb xb +Db ub,

with the battery state xb = (DoD, uth)
⊤, input ub = ib and

output yb = (SoC, ub, ib)
⊤, and the state-space matrices

Ab =

[
0 0
0 −1/(Rth Cth)

]
, Bb =

[
ηb/Qb

1/(NP Cth)

]
,

Cb =

 −1 0
NS b1 −NS
0 0

 , Db =

 0
−(NS Rint)/NP

1

 .

Next, we derive from (20) a linear approximation of the
power consumption of a BLDC motor

∆pDC =
dpDC

dΩ2

∣∣∣∣
SP
∆Ω2 = κDC ∆Ω2

depending on the motor speed squared around the set point,
where κDC substitutes for

κDC = K2
V RDC(2 k

2
M Ω2

SP+3 kM Df ΩSP+D
2
f )+

3

2
kM ΩSP+Df.

Combining all BLDC motors together, while considering (9)
and Assumption 2, we formulate the total power consumption
of the BLDC motors pDC,Σ depending on the thrust T by

∆pΣ =

NM∑
i=1

∆pDC =
κDC

kF
∆T,

The power consumption of the BLDC motors during hovering

pDC,SP = RDC K
2
V

(
Df ΩSP + kM Ω2

SP

)2
+Df Ω

2
SP + kM Ω3

SP,

pΣ,SP = NM pDC,SP

is calculated by (20).
To connect the BLDC motors with the battery, we derive

from (21) the linear approximation for the current ib drawn
from the battery by the ESCs:

∆ib =

NM∑
i=1

∆iESC,i = κDoDDoD + κuthuth + κp∆pΣ,

where κDoD, κuth and κp substitute for

κDoD =
NP b1
2Rint

(1− κ), κuth =
NP

2Rint
(κ− 1),

κp =
κ

NS b0 ηESC
, κ−1 =

√
1− 4Rint

NS NP b20 ηESC
pΣ,SP.

From (20) and (21), we derive the current draw from the
battery during hovering

ib,SP =
NP b0
2Rint

(
1− κ−1

)
.

Finally, we define for the linear multicopter ECM, the state
xe = xb(DoD, uth)

⊤, the input ũe = ∆T and the output
ye = yb = (SoC, ub, ib)

⊤, which is ye,SP = Db ib,SP at the
set point. Combining all components of the power train, the
linear ECM is given by

ẋe = fe,lin(xe, ũe) = Ae xe +Be ũe +Ee,

ye= ge,lin(xe, ũe) = Ce xe +De ũe + ye,SP,

with the state-space matrices

Ae = Ab +Bb
(
κDoD κuth

)
, Be = Bb

κp κDC

kF
,

Ce = Cb +Db
(
κDoD κuth

)
, De = Db

κp κDC

kF
.

Since the set point is not an equilibrium point, we add

Ee = Bb ib,SP

as an offset for the energy consumption during hovering.
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This linear model is discretized with a sampling time of ∆t
using Taylor series, since a discretization order Ndis = 1 is
sufficient due to the direct influence of the input on the state.
Then, the discrete-time linear state-space ECM is given by

xe(k + 1) = Ad,e xe(k) +Bd,e ũe(k) +Ed,e,

ye(k) = Cd,e xe(k) +Dd,e ũe(k) + ye,SP,

with the discrete-time system, input and disturbance matrices

Ad,e = I+Ae∆t, Bd,e = Be, Ed,e= Ee∆t,

Cd,e = Ce, Dd,e = De.

Remark 8. Here, the parameters b0 and b1 can be ether
selected according to (15) or (16) for the linear or LPV ECM.

APPENDIX B
DISCRETIZATION USING TAYLOR-LIE SERIES

For discretizations, we adopt Lie-derivatives

L1
f f(t,x,u,d) =

∂ f

∂ t
(t,x,u,d) . . .

+∇x f(t,x,u,d) · f(t,x,u,d),

Lkf f(t,x,u,d) =
∂
(
Lk−1
f f

)
∂ t

(t,x,u,d) . . .

+∇x

(
Lk−1
f f

)
(t,x,u,d) · f(t,x,u,d),

to increase the accuracy of the discrete-time system dynamics
approximation. Then, the discrete-time model is described by

x(k + 1) = fd(t,x,u,d,∆t) = x+ f(t,x,u,d) ·∆t

+

Ndis∑
k=2

Lk−1
f f(t,x,u,d) · ∆t

k

k!
,

where ∆t is a constant sampling time, and Ndis is the dis-
cretization degree [18].

APPENDIX C
MODEL PARAMETERS

TABLE II
VEHICLE PARAMETERS AND LIMITATIONS

Quadcopter ”Holybro S500 V2” (with battery)
m = 1.45 kg ℓ = 0.24m Jxx = Jyy = 0.0158 kg m2

NM = 4 vth = 10m/s Jzz = 0.0252 kg m2

vmax = 13.5m/s vz,max = 5m/s δUAS = 0.37m
αmax = 30◦ ωmax = 15◦/s cF,i = 0.27 (N s)/m
lx,i = ly,i =

√
2/2 ℓ = 0.17m cτ,i = 0.1 (N m s)/rad

ESC ”BLHeli-S 20A” & BLDC ”AIR2216II” & Rotor ”T1045II”
RDC = 57.5mΩ kF = 1.21 · 10−5 N/(rad/s)2

KV = 96.34 (rad/s)/V kM = 1.74 · 10−7 Nm/(rad/s)2

Ωmax = 1032 rad/s Jr = 9.86 · 10−5 kg m2

uDC,norm = 16V ηESC = 0.86

LIB ”Gens Ace B-50C-5000-4S1P-Bashing”
NS = 4 NP = 1 Qb = 18000As ηb = 1
Rint = 6.62mΩ Rth = 1.56mΩ Cth = 15.6 kF
uc,min = 2.75A uc,max = 4.2A idischarge,max = 250A
ub,norm = 14.8V DoDcutoff = 0.85 DoDmax = 0.7

b0 = 4.2V b1 = −0.5765V DoD0 = 0

b0,1 = 4.2V b1,1 = −0.8395V DoD1 = 0.2

b0,2 = 4.1727V b1,2 = −0.7028V DoD2 = 0.4

b0,3 = 4.0529V b1,3 = −0.4034V DoD3 = 0.9

APPENDIX D
TEST FLIGHTS WITH A ”HOLYBRO S500 V2”

• Trainings Data (TD): hovering with frequently impulsive
changes in altitude; indoors

• Validation Data 1 (VD1): rectangle trajectory following;
medium cruise velocity (vcruise = 19km/h); outdoors

• Validation Data 2 (VD2): rectangle trajectory following;
high cruise velocity (vcruise = 43km/h); outdoors

Remark 9. The flight profile of the validation test flights does
not represent a horizontal flight because the autopilot could
not maintain altitude during braking or acceleration.

REFERENCES

[1] Federal Aviation Administration. Helicopter flying handbook
(FAA-H-8083-21B). Skyhorse Publishing, 2019.

[2] S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. Alonso,
R. Confalonieri, R. Guidotti, J. Del Ser, N. Dı́az-Rodrı́guez,
and F. Herrera. Explainable artificial intelligence (xai): What we
know and what is left to attain trustworthy artificial intelligence.
Information Fusion, 99:101805, 04 2023.

[3] R. Alyassi, M. Khonji, A. Karapetyan, S. C. Chau, K. El-
bassioni, and C. Tseng. Autonomous recharging and flight
mission planning for battery-operated autonomous drones. IEEE
Transactions on Automation Science and Engineering, 20(2):
1034–1046, 2023.

[4] I. Asti, T. Agustinah, and A. Santoso. Obstacle avoidance with
energy efficiency and distance deviation using knn algorithm
for quadcopter. In 2020 International Seminar on Intelligent
Technology and Its Applications (ISITIA), pages 285–291, 2020.

[5] G. Babiel. Elektrische Antriebe in der Fahrzeugtechnik: Lehr-
und Arbeitsbuch. Springer Vieweg, 3 edition, 2020.

[6] U. C. Cabuk, M. Tosun, O. Dagdeviren, and Y. Ozturk. Mod-
eling energy consumption of small drones for swarm missions.
IEEE Transactions on Intelligent Transportation Systems, 2024.

[7] G. Cai, B.M. Chen, and T.H. Lee. Unmanned Rotorcraft
Systems. Springer London, 2011.

[8] R. D’Andrea. Guest editorial can drones deliver? IEEE
Transactions on Automation Science and Engineering, 11(3):
647–648, 2014.

[9] C. Di Franco and G. Buttazzo. Energy-aware coverage path
planning of uavs. In 2015 IEEE International Conference on
Autonomous Robot Systems and Competitions, pages 111–117,
2015.

[10] H. Elkholy. Dynamic modeling and control of a quadrotor using
linear and nonlinear approaches. Master’s thesis, American
University in Cairo, 2014.

[11] B. C. Florea and D. D. Taralunga. Blockchain iot for smart
electric vehicles battery management. Sustainability, 12(10),
2020.

[12] Y. Fouad, N. Rizoug, O. Bouhali, and M. Hamerlain. Optimiza-
tion of energy consumption for quadrotor uav. In International
Micro Air Vehicle Conference and Flight Competition (IMAV),
2017.

[13] P. C. Garcia, R. Lozano, and A. E. Dzul. Modelling and Control
of Mini-Flying Machines. Springer London, 2005.

[14] S. Gasche, C. Kallies, A. Himmel, and R. Findeisen. Energy
aware and safe path planning for unmanned aircraft systems.
arXiv.org, 2025. (preprint).

[15] G. Hattenberger, M. Bronz, and J. Condomines. Evaluation of
drag coefficient for a quadrotor model. International Journal
of Micro Air Vehicles, 15, 2023.

[16] H. He, R. Xiong, and J. Fan. Evaluation of lithium-ion battery
equivalent circuit models for state of charge estimation by an
experimental approach. Energies, 4:582–598, 2011.



14 PREPRINT: THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE.

[17] A. Hussein and I. Batarseh. An overview of generic battery
models. In 2011 IEEE Power and Energy Society General
Meeting, pages 1–6, 2011.

[18] N. Kazantzis, K. T. Chong, J. H. Park, and Alexander G.
Parlos. Control-Relevant Discretization of Nonlinear Systems
With Time-Delay Using Taylor-Lie Series. Journal of Dynamic
Systems, Measurement, and Control, 127(1):153–159, 04 2004.

[19] Z. Kingston, M. Moll, and L. E. Kavraki. Sampling-based
methods for motion planning with constraints. Annual review of
control, robotics, and autonomous systems, 1(1):159–185, 2018.

[20] J. Kuffner and S. LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proceedings 2000 ICRA. Millen-
nium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings, volume 2, pages 995–
1001, 2000.

[21] M. Li, G. Jia, S. Gong, and R. Guo. Energy consumption model
of bldc quadrotor uavs for mobile communication trajectory
planning. IEEE Wireless Communications Letters, 2022.

[22] I. Lovas and M. Andras. Quadcopter power consumption
analyzation at different landing trajectories. In 2018 IEEE
18th International Symposium on Computational Intelligence
and Informatics (CINTI), pages 217–222, 2018.

[23] T. T. Mac, Copot C., D. T. Tran, and R. De Keyser. Heuristic
approaches in robot path planning: A survey. Robotics and
Autonomous Systems, 86:13–28, 2016.

[24] D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli,
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