
A Fully Analog Pipeline for Portfolio Optimization

James S. Cummins∗ and Natalia G. Berloff
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
(Dated: November 12, 2024)

Portfolio optimization is a ubiquitous problem in financial mathematics that relies on accurate
estimates of covariance matrices for asset returns. However, estimates of pairwise covariance could be
better and calculating time-sensitive optimal portfolios is energy-intensive for digital computers. We
present an energy-efficient, fast, and fully analog pipeline for solving portfolio optimization problems
that overcomes these limitations. The analog paradigm leverages the fundamental principles of
physics to recover accurate optimal portfolios in a two-step process. Firstly, we utilize equilibrium
propagation, an analog alternative to backpropagation, to train linear autoencoder neural networks
to calculate low-rank covariance matrices. Then, analog continuous Hopfield networks output the
minimum variance portfolio for a given desired expected return. The entire efficient frontier may
then be recovered, and an optimal portfolio selected based on risk appetite.

I. INTRODUCTION

Portfolio optimization involves creating an investment
portfolio that balances risk and return. The objective
is to allocate assets optimally to maximize expected re-
turns while minimizing risk. Naturally, this problem is of
great interest to financial organizations and is pivotal in
risk management. However, the problem, formulated by
Markowitz’s mean-variance model [1], must be solved in
practice. Namely, it is well known that estimates of pair-
wise covariance between assets are notoriously poor [2].
A large financial company may have hundreds of thou-
sands of assets n covering equities, bonds, derivatives,
and more, but with only a small sample of observations
over the desired timescale. The samples tend to include
significant amounts of noise, distorting the underlying
relationships between the assets. The symmetric covari-
ance matrix has n(n+1)/2 total unique terms: n(n−1)/2
pairwise correlations and n variances. Hence, the number
of unique terms behaves as O(n2), which leads to signifi-
cant potential for an ill-conditioned covariance matrix [3].
To overcome this issue, factor models were introduced
that vastly reduce the dimensionality, and thus the num-
ber of numerical estimates required [4]. Factor methods
produce low-rank covariance matrices that retain only
the largest eigenvalues and discard small eigenvalues as-
sociated with noise. Despite this development, the com-
putation of optimal portfolios remains energy-intensive
as the efficient frontier is mapped out in n dimensions.
In high-frequency trading, this becomes a time-sensitive
computation as assets are purchased and sold on mi-
crosecond timescales, and portfolios must be regularly
rebalanced not to exceed risk appetites. Much attention
has been focused on portfolio optimization in the high-
frequency domain [5–7], including the use of evolutionary
algorithms to update efficient frontiers [8]. By using such
fundamental principles as minimizing entropy, energy,

∗ correspondence address: jsc95@cam.ac.uk

and dissipation [9], or, perhaps, incorporating quantum
phenomena like superposition and entanglement [10], we
can advance and surpass the classical computations of
these problems. At the forefront of this drive to alternate
architectures is the integration of analog, physics-based
algorithms and hardware, which involve translating com-
plex optimization problems into universal spin Hamilto-
nians [11–13]. Indeed, the mean-variance portfolio opti-
mization framework can be encoded into a Hamiltonian’s
coupling strengths with the physical system recovering
the Hamiltonian’s ground state, which corresponds to
the optimal portfolio solution [14, 15]. Efficient mapping
from the original problem description to spin Hamilto-
nian enables the problem to remain manageable despite
increasing complexity [16].

In Section II, we introduce the mean-variance opti-
mization framework for calculating optimal portfolios.
Then, in Section III, we show that analog continuous
Hopfield networks can solve portfolio optimization prob-
lems by evolving to the minimum of an energy function
that encodes the problem parameters. In Section IV, we
address the issues of estimating pairwise covariance by
introducing the low-rank approximation that relies on a
low-dimensional latent variable representation. In Sec-
tion V, we show that calculating such a representation
can be done using linear autoencoder neural networks,
and in Section VI how these networks can be trained
on analog hardware using equilibrium propagation. Sec-
tion VII brings everything together, starting with raw
data observations and working through the entire analog
pipeline.

II. MEAN-VARIANCE OPTIMIZATION

We define µi as the expected return of asset i, and
[Σ]ij = σij = Cov(i, j) as the covariance between assets
i and j. The decision variables are wi, the proportion of
the total investment in asset i. For a universe of securi-
ties with n assets, the Markowitz mean-variance portfolio

ar
X

iv
:2

41
1.

06
56

6v
1 

 [
q-

fi
n.

PM
] 

 1
0 

N
ov

 2
02

4

mailto:jsc95@cam.ac.uk


2

optimization problem is

min
w

wTΣw

s.t. µTw = R,

1Tw = 1,

0 ≤ wi ≤ 1,

(1)

for i = 1, . . . , n, and the condition wi ≥ 0 prohibits short-
ing [14]. The variance wTΣw quantifies the portfolio
risk for positive semidefinite matrix Σ, while R is the
desired expected return of the portfolio. µ and Σ are
not known a priori and must be estimated from histor-
ical data. The efficient frontier is calculated by solving
(1) for various R. The efficient frontier is the set of port-
folios that minimize the risk for a given R. We illustrate
a frontier in Fig. (1) for a toy model with n = 2 assets. It
was recently suggested that portfolio optimization prob-
lems could be solved on analog spatial-photonic Ising ma-
chines for equal-weighted portfolios, that is, wi ∈ {0,1/q}
for q selected assets [15]. We go beyond this constraint
by utilizing analog Hopfield networks and consider the
quadratic continuous optimization problem (1). In Sec-
tion III, we aim to recover the optimal asset weights w,
given known parameters µ and Σ.

III. CONTINUOUS HOPFIELD NETWORK

A continuous Hopfield network is a type of Hopfield
neural network which has continuous states and dynam-
ics [17]. It is an analog computational network for solving
optimization problems. For a network of size n, the i-th
network element at time t is described by a real input
xi(t), and the network dynamics are governed by

dxi

dt
= −p(t)xi +

n

∑
j=1

Jijvj +mi, (2)

where vi = g(xi) is a nonlinear activation function, p(t)
is an annealing parameter, mi are the offset biases, and
Jij = [J]ij are elements of the symmetric coupling matrix
J. Should g(x) be a non-decreasing function, then the
steady states of the continuous Hopfield network (2) are
the minima of the Lyapunov function

E = p(t)
n

∑
i=1
∫

vi

0
g−1(x)dx −

1

2

n

∑
i,j=1

Jijvivj −
n

∑
i=1

mivi. (3)

We choose the functional form of g(x), such that when
p(t) → 0, the minima of E occur for vi ∈ [0,1] and cor-
respond to the minima of −vTJv. Therefore, by setting
J = −Σ, we can minimize the variance wTΣw of problem
(1). To satisfy the constraints in problem (1) we intro-
duce Lagrange multiplier-like scalars λ1, λ2 and seek to
minimize the expression

H =wTΣw + λ1(µ
Tw −R)2 + λ2(1

Tw − 1)2. (4)

Figure 1. (a) The hyperbola in variance-return space for a
portfolio of n = 2 assets A and B. The positively sloped por-
tion of this hyperbola is the efficient frontier. The expected
returns are µA = 0.1 and µB = 0.6. The (co)variances are
σAA = 0.2, σBB = 0.4, and σAB = σBA = −0.1. The blue circle
represents the portfolio consisting only of asset A, and the
corresponding investment weights are w = [1,0]T. Likewise,
the red circle is the portfolio consisting only of asset B. The
minimum variance portfolio, shown as a green circle, is the
combination of weights w that minimizes the total variance
wTΣw. The purple circle is the portfolio that maximizes
the Sharpe ratio Sr. The Sharpe ratio is a measure of risk-

adjusted return and is defined as Sr = µTw/√wTΣw. (b)
The Sharpe ratio Sr for each portfolio in the efficient frontier.
We now see that the purple circle is indeed the portfolio that
maximizes the Sharpe ratio.

Therefore, after discarding constants, we seek to mini-
mize

H = −
1

2
wTJw −mTw, (5)

where J = −2Σ − 2λ1µµ
T − 2λ211

T, and m = 2Rλ1µ +
2λ21. Equation (5) can be directly encoded into the Hop-
field network (2), and if required, m can be absorbed into
J by introducing an additional auxiliary spin. The non-
decreasing monotonic function g(x) is chosen to be the
logistic function g(x) = 1/[1 − exp(−x)] to limit possible
values of vi such that 0 ≤ vi ≤ 1. We illustrate the Hop-
field network dynamics in Fig. (2) for a randomly gen-
erated covariance matrix Σ and expected return vector
µ. The energy minimization properties of Hopfield net-
works make them particularly suitable for solving com-
binatorial optimization problems. Further extensions
have been proposed to increase convergence to optimal
states in challenging optimization problems. For exam-
ple, the first-order Eq. (2) can be momentum-enhanced
and replaced with a second-order equation leading to Mi-
crosoft’s analog iterative machine [18] or Toshiba’s bifur-
cation machine [19].

IV. LOW-RANK APPROXIMATION

We now focus on calculating a low-rank approximation
of the covariance matrix, which will be used in (1). If



3

Figure 2. (a) Hopfield network dynamics for a portfolio of
n = 25 assets with R = λ1 = λ2 = 1. The dynamical sys-
tem evolves according to Eq. (2), which in turn minimizes
Eq. (5). Each line represents one asset weight wi. (b) The
value of expression (5) during the network dynamics. Covari-
ance matrix Σ and expected return vector µ are calculated
from sampling N = 10 observations of returns x from IID
random normal variables xj ∼ N(1,1), where j = 1,2, . . . ,N .
The low number of observations N results in a noisy positive
semidefinite covariance matrix Σ whose pairwise entries σij

are nonzero. The externally controlled annealed parameter
has form p(t) = p0(1 − t/T ), where T is the total annealing
period. Here, p0 = 0.01 and T = 100.

xi ∈ Rn are the i-th sample of asset returns over N total
samples, and we assume that E[x] = 0, then the sample
covariance matrix is

S =
1

N

N

∑
i=1

xix
T
i . (6)

When the number of samples N is of the same magnitude
as n, then the sample covariance matrix usually suffers a
large estimation error [2, 20]. Many low-rank factor anal-
ysis techniques exist to improve the covariance matrix
estimate. Here, we consider asset returns x as random
variables that follow the model

x =As + e, (7)

where x ∈ Rn is the observed data, A ∈ Rn×r is a factor
loading matrix, s ∈ Rr is the latent variable, and e ∈ Rn

is uncorrelated random noise, where r ≪ n [21]. Here,
s represents macroeconomic factors like the growth rate
of the GDP, inflation, unemployment, etc. We assume
that s and e are uncorrelated and that data samples are
independent and identically distributed. The covariance
matrix is then Σ = E[xxT]. This gives

Σ =AE[ssT]AT
+E[eeT] (8)

=APAT
+Ψ, (9)

where P ≡ E[ssT] ∈ Rr×r has rank(P) ≤ r, rank(A) ≤ r,
and Ψ is a diagonal matrix containing the variance of

noise on its diagonal

Ψ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
1 0 ⋯ 0
0 σ2

2 0
⋮ ⋱ 0
0 ⋯ 0 σ2

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

Since rank(AB) ≤ min(rank(A), rank(B)), then
rank(APAT) ≤ r. Therefore, we have decomposed the
covariance matrix Σ into a positive semidefinite low-
rank matrix plus a positive semidefinite diagonal matrix.
Defining M ≡ APAT, low-rank factor analysis concerns
the estimation of M and Ψ. To calculate M and Ψ we
solve the minimization problem

min
M,Ψ

∣∣S −M −Ψ∣∣2F

s.t. rank(M) ≤ r,

Σ ⪰ 0,

(11)

where ∣∣ ⋅ ∣∣F denotes the Frobenius norm [22]. A common
classical procedure for calculating matrix M in problem
(11) using digital computers is given by the following
steps:

1. Construct the singular value decomposition (SVD)
of S. Since S is symmetric, its eigendecomposition
is the same as the SVD, and we write S =UΛUT,
where U is the matrix of eigenvectors and Λ is the
diagonal matrix of eigenvalues.

2. Derive from Λ the matrix Λr formed by replacing
with zeros the n − r smallest eigenvalues on the di-
agonal of Λ.

3. Compute and output M = UΛrU
T as the rank-r

approximation to S.

Under the assumption E[x] = 0, the SVD method ex-
actly replicates principal component analysis (PCA). The
rank of M is at most r: this follows from the fact that
Λr has at most r non-zero values. Indeed, the Eckart-
Young-Mirsky theorem proves that this procedure yields
the matrix of rank less than or equal to r with the low-
est possible Frobenius error [23]. The diagonal matrix is
estimated as Ψ = diag(S −M), where diag(⋅) represents
a diagonal matrix whose elements are [Ψ]ii = [S −M]ii
and [Ψ]ij = 0 for i ≠ j [24]. In addition, we constrain
[Ψ]ii ≥ 0, since the diagonal elements correspond to vari-
ances of the error variables. This guarantees that Σ is
positive semidefinite. The eigendecomposition presented
here becomes computationally expensive as the data size
grows. Alternatively, autoencoders – particularly when
implemented using stochastic gradient descent – can han-
dle larger datasets and higher-dimensional data more ef-
ficiently than PCA [25]. Additionally, when integrating
dimensionality reduction as part of a larger neural net-
work framework, an autoencoder can be easily embedded
within the pipeline, whereas PCA would need to be ap-
plied as a separate pre-processing step [26].



4

Figure 3. Training a linear autoencoder via (a)-(c) back-
propagation (BP), and (d)-(f) with equilibrium propagation
(EP). Input and output layers have size 50, while the sin-
gle hidden layer has size 5. The networks are trained on 50
vectors x1, . . . ,x50 of size 50 whose elements are randomly
sampled from the normal distribution N(0,1). (a)-(f) illus-
trate the element-wise absolute difference between the 50×50
matrix X = [x1, . . . ,x50] and its reconstructed output ABX
at different epochs. (g) An illustrative example of the en-
coder/decoder Hopfield network structure trained with EP.
(h) The overall network loss for BP and EP over epoch time.
The black horizontal dashed line corresponds to the loss of
the equivalent SVD/PCA method described in Section IV.

V. LINEAR AUTOENCODERS

A linear autoencoder is a classic neural network model
for unsupervised learning that is trained to learn the
identity function. The output and input layers have
the same number of nodes, while the middle layer has
a fewer nodes. It aims to approximate the input through
learning linear encodings and decodings between input
and latent space. The encoder B ∈ Rr×n maps input
X = [x1, . . . ,xN ] ∈ Rn×N into a low-dimensional la-
tent space [s1, . . . , sN ], and the decoder A ∈ Rn×r maps
[s1, . . . , sN ] back to the original representation X. We
therefore recover the same model as in Eq. (7), and
training the linear autoencoder becomes the minimiza-
tion problem [27]

min
A,B

∣∣X −ABX∣∣2F. (12)

We do not explicitly express the learnable biases in the
network as these may be absorbed into the encoderB and

decoder A by introducing an auxiliary row into X that
is permanently clamped to values of 1. We illustrate the
training of a linear autoencoder in Fig. (3)(a)-(c) with
the backpropagation method and compare it to the PCA
in Fig. (3)(h). A linear autoencoder is related to the
PCA. Indeed, under mild nondegeneracy conditions, any
A at a local minimizer recovers the top rank-r eigenspace
of XXT [28]. However, unlike the actual PCA, the coor-
dinates of the output of the middle layer in the network
are correlated and are not sorted in descending order of
variance [29]. Autoencoder neural networks typically use
backpropagation to train the weights. However, back-
propagation is energy-intensive and not biologically plau-
sible.

VI. EQUILIBRIUM PROPAGATION

On dedicated analog hardware, equilibrium propaga-
tion is an energy-efficient alternative to backpropagation
[30]. Therefore, in the supervised learning setting stud-
ied here, it may be used to train the weights of a lin-
ear autoencoder. Equilibrium propagation is an energy-
based model because it relies on the concept of energy
minimization to learn and make predictions. We con-
sider the continuous Lyapunov function (3) with p(t) = 1
and mi = 0 for all i, where here the symmetric coupling
weights Jij are to be learned, and nonlinear activation
function g(x) need not be the same as in Section III.
Neurons xi are split in three sets: the input neurons,
which are always clamped, the hidden neurons, and the
output neurons. The discrepancy between the desired
output y and the realized output x̂ is measured by the
cost function

C =
1

2
∣∣y − x̂∣∣22, (13)

which forms part of the total energy function F = E+βC.
The clamping factor β ≥ 0 is a real-valued scalar that
allows the output neurons to be weakly clamped [31].
The continuous-time dynamical system evolves according
to the differential equation of motion

dxi

dt
= −

∂F

∂xi
= −

∂E

∂xi
− β

∂C

∂xi
, (14)

which is formed of two parts. The first is the internal
force induced by the internal Hopfield energy, given by
Eq. (2) for all i, and the second, the external force, is
induced by the cost function C as

−β
∂C

∂xi
= β(yi − xi), i ∈ Y, (15)

for nodes in the output layer Y. Equilibrium propagation
has two modes: the free phase and the weakly clamped
phase. In the free phase β = 0 and only the inputs are
clamped. The network then converges to a fixed point x∗
and the output units are read out. In the weakly clamped



5

phase β > 0, which induces an external force that acts
on the output units as in Eq. (15). This force nudges
the outputs from their fixed point values in the direction
of the target values yi. This perturbation propagates
among the hidden neurons before a new fixed point x∗β is
found. Then, another weakly clamped phase is executed,
this time with β → −β leading to the weakly clamped
equilibrium x∗−β . It was shown that the weakly clamped
phase implements the propagation of error derivatives
with respect to the synaptic weights [31]. In the limit
β → 0, the update rule is

∆Jij ∝
1

β

⎛
⎜
⎝

∂F

∂Jij
∣
x∗
β

−
∂F

∂Jij
∣
x∗−β

⎞
⎟
⎠
, (16)

which is a second-order approximation to the standard
backpropagation derivative [32]. The process is iterated,
at each step updating the weights Jij to minimize the
loss function C. We choose activation function

g(x) = {
x if ∣x∣ ≤ c

c ⋅ sgn(x) otherwise,
(17)

with constant c, so that under the condition that ∣xi∣ ≤ c
for all i, Eq. (2) is linear and can thus represent a linear
autoencoder. In this case, the output x̂ of Eq. (2) is then
the solution to the linear differential equation dx/dt =
(J − I)x, and therefore

x̂ = lim
t→∞x(t) = lim

t→∞ exp{(J − I)t}x(0). (18)

The constant c in Eq. (17) is chosen to be large enough
such that after training, all neurons obey ∣xi∣ ≤ c, and we
can associate the Hopfield network as a linear autoen-
coder. To achieve a steady state in Eq. (18), at least one
eigenvalue of J− I should be zero, with all others having
a negative real part.

Proposition. We state, with proof given in Ref. [28],
that for any fixed n × r matrix A, Eq. (12) attains its
minimum for B = (ATA)−1AT.

Lemma. The n × n matrix J − I, where J = AB, has at
least one zero eigenvalue, with all others having negative
real part.

Proof. J =AB =A(ATA)−1AT, and therefore

J2
=A(ATA)−1ATA(ATA)−1AT (19)

=A(ATA)−1AT, (20)

which shows that J is idempotent, that is J2 = J. It
follows that J is a projection operator on the column
space C(J) along its null space N(J). The n eigenvalues
λi of J are either 0 or 1: λixi = Jxi = J

2xi = λiJxi = λ
2
ixi,

which implies λi ∈ {0,1}. By construction, J has rank
at most r, and therefore there are at least n − r zero
eigenvalues. It follows that there are between 1 and r
nonzero eigenvalues of J, which must have value λi = 1.

Since J − I has eigenvalues µi = λi − 1, then µi ∈ {−1,0}.
Therefore, J − I has between 1 and r zero eigenvalues,
with all others being equal to −1.

The Lemma guarantees that should equilibrium prop-
agation learn the weights that minimize Eq. (12), the
corresponding Hopfield network will converge to a steady
state. Yet, during training, this will, in general, not be
the case, and positive eigenvalues of J − I will produce
exponential growth in Eq. (18). However, Eq. (18) only
holds in the linear regime of the activation function (17).
Exponential growth is prevented by the symmetric clip-
ping incorporated into the nonlinear activation function
g(x) for neurons with ∣xi∣ > c.
In the linear regime, the overall network dynamics is

represented by the square matrix limt→∞ exp{(J − I)t},
which for linear autoencoders we seek to decompose into
its non-square constituent parts: encoder B and decoder
A. We achieve this by treating the encoder and decoder
as separate Hopfield networks, as shown in Fig. (3)(g),
each with their own energy function. The encoder set-
tles into an equilibrium representing the latent vector s
without taking into account the decoder. s is then used
as a fixed input to the decoder which then settles into
its own equilibrium. The decoder then undergoes the
weakly clamped phases, and its weights are updated ac-
cording to Eq. (16). The encoder weights also need to be
optimized to lower the reconstruction loss at the decoder
output, which is achieved by setting

∂C

∂xi
= lim

β→0

1

2β

⎛

⎝

∂F

∂xi
∣
x
(dec)
β

−
∂F

∂xi
∣
x
(dec)
−β

⎞

⎠
, i ∈ Y, (21)

in Eq. (14), where x
(dec)
β is the weakly clamped decoder

equilibrium state, and Eq. (21) only pertains to neurons
in the encoder output layer Y. Equation (21) follows from
the fact that it can be shown that equilibrium propaga-
tion also allows for finding the gradient of the loss with
respect to the input [33]. We note that J, which contains
the couplings of the continuous Hopfield network, is now
a (n + r) × (n + r) matrix on account of the number of
nodes in the encoder and decoder networks. Nonetheless,
the factor loading matrix A can be recovered as the n×r
block corresponding to the nodes of the decoder output
layer. The equilibrium propagation training procedure is
illustrated in Fig. (3)(d)-(f) and compared to backprop-
agation and the PCA in Fig. (3)(h).

VII. RESULTS

We present our results in an order consistent with the
portfolio optimization process a company or institution
may take. We start with raw data samples and construct
a low-rank covariance matrix approximating the true co-
variance matrix. This is a common procedure because
the number of observations is often smaller than the num-
ber of assets, leading to significant noise that can distort



6

Figure 4. (a) The sample covariance matrix S for n = 100 financial stocks selected from the S&P 500 index. S is calculated
from Eq. (6), with N = 50 time series samples. (b) The r = 10 low-rank approximation APAT of the covariance matrix, as
calculated by training a continuous Hopfield network via equilibrium propagation. (c) The element-wise absolute difference
between the sample covariance matrix and its low-rank approximation. (d) The hyperbola in variance-return space for possible
portfolios. Each point along the hyperbola is calculated by solving (1) for a specific return value R using Eq. (2).

the underlying relationships between the assets. Next,
we calculate the efficient frontier, which produces opti-
mal portfolios for each level of desired expected return
R.
We begin by collecting real data samples xi ∈ Rn

for i = 1,2, . . . ,N from stock returns of a selection of
n = 100 stocks in the S&P 500 index. We restrict our-
selves to only N = 50 observations such that the sample
covariance matrix has a tendency to contain significant
noise. Two continuous Hopfield networks, structured as
the encoder and decoder parts of a linear autoencoder,
are trained using equilibrium propagation. The latent
variables [s1, . . . , sN ] are calculated as the subset Y of
steady-state solutions of the encoder network, while the
factor loading matrix A is the n× r block of the decoder
matrix representation limt→∞ exp{(J − I)t} correspond-
ing to its output layer Y. In practice, we cannot take
the limit to infinity, and instead, we use a suitably large
value of t such that exp{(J−I)t} changes minimally from
t to t + 1. The low-rank approximation to the covari-
ance matrix is calculated as APAT, where P = E[ssT].
We depict the full-rank sample covariance matrix and
the equilibrium propagation-based low-rank approxima-
tion in Figs. (4)(a) and (b) respectively. Figure (4)(c)
then illustrates the element-wise absolute difference be-
tween these two covariance matrices. The low-rank ap-
proximation is plugged into (1) and solved for the port-
folio weights w using the continuous Hopfield network
of Eq. (2). We minimize the portfolio variance subject
to the constraint µTw = R for incremental values of R.
In Fig. (4)(d), we plot the corresponding variances and
returns for range R = [0,1]. The efficient frontier is iden-
tified, and an optimal portfolio can be selected based on
risk appetite. In particular, the minimum variance and
maximum Sharpe ratio portfolios can be established.

Analog Hopfield networks can be implemented as elec-
tronic circuits [34] and photonic neural networks [35].
Photonic systems operate on picosecond to femtosecond
timescales as high bandwidth signals flow through a sin-
gle optical waveguide. Consequently, such implementa-
tions can have dense connectivity while maintaining fast
convergence times. However, physical analog platforms
are subject to noise sensitivity, thermal effects, and non-

idealities in circuit components which can degrade per-
formance. In addition, real-world portfolio optimization
problems often involve complex constraints such as trans-
action costs, market liquidity, regulatory requirements,
cardinality constraints, and tax considerations. While
some of these can be readily incorporated into the ob-
jective function (5), for example, an ℓ1-norm can enforce
sparsity to satisfy a cardinality constraint, others take
more complex forms. For instance, a hybrid approach
that combines analog Hopfield networks with digital com-
puting could be explored.

VIII. CONCLUSIONS

This paper introduces a fully analog pipeline for port-
folio optimization problems. Starting with raw data sam-
ples, the proposed pipeline leverages the energy-efficient
analog operation of continuous Hopfield networks to cal-
culate optimal portfolio weights. The analog pipeline dis-
tinguishes itself from traditional digital methods by its
speed and scalability, with applications in time-sensitive
domains such as high-frequency trading. At the heart
of the pipeline are continuous Hopfield networks, used in
two separate applications: autoencoder neural networks
and minimum variance portfolios.

The autoencoder network yields the latent variables
and factor loading matrix, which are then used to cal-
culate a low-rank approximation of the covariance ma-
trix. After that, a Hopfield network applies the quadratic
mean-variance model to determine optimal portfolio
weights. By shifting to analog architectures, we reduce
the reliance on binary logic operations typical of digital
systems, paving the way for a more energy-efficient ap-
proach to computation. This efficiency can reduce power
consumption in data centers and other computing envi-
ronments, addressing the growing energy demands of dig-
ital computing. Specifically, companies can reduce their
energy consumption while optimizing large portfolios as
part of their risk management processes.



7

ACKNOWLEDGMENTS

J.S.C. acknowledges the PhD support from the EP-
SRC. N.G.B. acknowledges support from HORIZON
EIC-2022-PATHFINDERCHALLENGES-01 HEISING-
BERG Project 101114978 and Weizmann-UK Make Con-
nection Grant 142568.

[1] H. Markowitz, The Journal of Finance 7, 77 (1952).
[2] O. Ledoit and M. Wolf, Journal of Financial Economet-

rics 20, 187 (2022).
[3] J. M. Tabeart, S. L. Dance, A. S. Lawless, N. K. Nichols,

and J. A. Waller, Tellus A: Dynamic Meteorology and
Oceanography 72, 1 (2020).

[4] J. Bai and S. Ng, Econometrica 70, 191 (2002).
[5] Q. Liu, Journal of Applied Econometrics 24, 560 (2009).
[6] N. Goumatianos, I. Christou, and P. Lindgren, Procedia

Economics and Finance 5, 298 (2013).
[7] F. A. Ziegelmann, B. Borges, and J. F. Caldeira, Brazil-

ian Review of Econometrics 35, 23 (2015).
[8] P. Filipiak and P. Lipinski, in Applications of Evolution-

ary Computation: 20th European Conference, Proceed-
ings, Part I 20 (Springer, 2017) pp. 34–50.

[9] S. K. Vadlamani, T. P. Xiao, and E. Yablonovitch, Pro-
ceedings of the National Academy of Sciences 117, 26639
(2020).

[10] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser,
arXiv preprint quant-ph/0001106 (2000).

[11] A. Lucas, Frontiers in Physics 2, 5 (2014).
[12] N. G. Berloff, M. Silva, K. Kalinin, A. Askitopoulos,

J. D. Töpfer, P. Cilibrizzi, W. Langbein, and P. G.
Lagoudakis, Nature Materials (2017).

[13] K. P. Kalinin, A. Amo, J. Bloch, and N. G. Berloff,
Nanophotonics 9, 4127 (2020).

[14] J. E. Beasley, in Theory Driven by Influential Applica-
tions (Informs, 2013) pp. 201–221.

[15] R. Z. Wang, J. S. Cummins, M. Syed, N. Stroev,
G. Pastras, J. Sakellariou, S. Tsintzos, A. Askitopou-
los, D. Veraldi, M. C. Strinati, et al., arXiv preprint
arXiv:2406.01400 (2024).

[16] G. De las Cuevas and T. S. Cubitt, Science 351, 1180
(2016).

[17] J. J. Hopfield, Proceedings of the National Academy of
Sciences 81, 3088 (1984).

[18] K. Kalinin, G. Mourgias-Alexandris, H. Ballani, N. G.
Berloff, J. H. Clegg, D. Cletheroe, C. Gkantsidis,

I. Haller, V. Lyutsarev, F. Parmigiani, L. Pickup, et al.,
arXiv preprint arXiv:2304.12594 (2023).

[19] H. Goto, Scientific Reports 6, 1 (2016).
[20] R. Zhou, J. Ying, and D. P. Palomar, IEEE Transactions

on Signal Processing 70, 4020 (2022).
[21] P. Stoica and P. Babu, IEEE Transactions on Signal Pro-

cessing 71, 1699 (2023).
[22] C. D. Manning, Introduction to Information Retrieval

(Syngress Publishing, 2008).
[23] C. Eckart and G. Young, Psychometrika 1, 211 (1936).
[24] D. Bertsimas, M. S. Copenhaver, and R. Mazumder,

Journal of Machine Learning Research 18, 1 (2017).
[25] D. P. Kingma and M. Welling, arXiv preprint

arXiv:1312.6114 (2013).
[26] Y. LeCun, Y. Bengio, and G. Hinton, Nature 521, 436

(2015).
[27] T. Li, R. Mehta, Z. Qian, and J. Sun, in ICML Workshop

on Uncertainty and Robustness in Deep Learning (2020).
[28] P. Baldi and K. Hornik, Neural Networks 2, 53 (1989).
[29] E. Plaut, arXiv preprint arXiv:1804.10253 (2018).
[30] T. Van Der Meersch, J. Deleu, and T. Demeester, in

Associative Memory & Hopfield Networks in 2023 (2023).
[31] B. Scellier and Y. Bengio, Frontiers in Computational

Neuroscience 11, 24 (2017).
[32] A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grol-

lier, and D. Querlioz, Frontiers in Neuroscience 15,
633674 (2021).

[33] B. Scellier, arXiv preprint arXiv:2103.09985 (2021).
[34] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu,

C. Li, Z. Liu, M. Foltin, S. Yu, Q. Xia, et al., Nature
Electronics 3, 409 (2020).

[35] A. N. Tait, T. F. De Lima, E. Zhou, A. X. Wu, M. A.
Nahmias, B. J. Shastri, and P. R. Prucnal, Scientific
Reports 7, 7430 (2017).


	A Fully Analog Pipeline for Portfolio Optimization
	Abstract
	Introduction
	Mean-Variance Optimization
	Continuous Hopfield Network
	Low-Rank Approximation
	Linear Autoencoders
	Equilibrium Propagation
	Results
	Conclusions
	Acknowledgments
	References


