
A Composable Game-Theoretic Framework for Blockchains
Zeta Avarikioti

TU Wien, Common Prefix
Vienna, Austria

Georg Fuchsbauer
TU Wien

Vienna, Austria

Pim Keer
TU Wien

Vienna, Austria

Matteo Maffei
TU Wien, Christian Doppler

Laboratory Blockchain Technologies
for the Internet of Things

Vienna, Austria

Fabian Regen
TU Wien

Vienna, Austria

ABSTRACT
Blockchains rely on economic incentives to ensure secure and de-
centralised operation, making incentive compatibility a core design
concern. However, protocols are rarely deployed in isolation. Appli-
cations interact with the underlying consensus and network layers,
and multiple protocols may run concurrently on the same chain.
These interactions give rise to complex incentive dynamics that
traditional, isolated analyses often fail to capture.

We propose the first compositional game-theoretic framework
for blockchain protocols. Our model represents blockchain proto-
cols as interacting games across layers—application, network, and
consensus. It enables formal reasoning about incentive compati-
bility under composition by introducing two key abstractions: the
cross-layer game, which models how strategies in one layer influ-
ence others, and cross-application composition, which captures
how application protocols interact concurrently through shared
infrastructure.

We illustrate our framework through case studies on HTLCs,
Layer-2 protocols, and MEV, showing how compositional analy-
sis reveals subtle incentive vulnerabilities and supports modular
security proofs.

1 INTRODUCTION
Blockchains currently secure more than $3 trillion in digital assets.
As most operate in an open, permissionless fashion, such as Bit-
coin and Ethereum, their security fundamentally relies on financial
incentives. That is, participants invest resources, whether computa-
tional power or cryptocurrency holdings, in exchange for rewards
such as block rewards and transaction fees.

This incentive-driven security model supports a broader ecosys-
tem commonly referred to as Web3—a decentralised digital environ-
ment where applications operate on distributed networks rather
than being governed by centralised entities. Web3 is composed of
multiple interdependent layers, each fulfilling distinct roles. At its
core, the blockchain (or consensus) layer is responsible for ordering
transactions in a trustless manner. On top of it operates the appli-
cation layer, which includes decentralised applications (dApps) and
Layer 2 (L2) solutions designed to enhance functionality, efficiency,
and scalability of the underlying blockchain layer. Underpinning
these layers is the network layer, which facilitates secure and reliable
communication among geographically distributed participants.

These layers do not operate in isolation. Their interdependence
gives rise to complex security dependencies that fall outside the scope
of traditional game-theoretic models, which typically focus on a

single layer while abstracting away the rest. In particular, incentives
leak across layers, introducing subtle but critical vulnerabilities.
Notable examples of such cross-layer issues include timelock bribing
attacks [8, 36] andMaximal Extractable Value (MEV) exploits [22]. In
timelock bribing attacks, adversaries at the application layer bribe
validators to censor transactions, allowing them to extract funds
from protocols relying on time-based smart contracts. MEV exploits,
in contrast, arise from validators (or external actors) observing
pending transactions and manipulating their inclusion on-chain–
for instance, via frontrunning, backrunning, or sandwich attacks [47].
While timelock bribing constitutes an explicit security breach, MEV
exploits reflect an emergent consequence of misaligned incentives
between the network and consensus layers. Both cases underscore
the limitations of layer-specific security models and highlight the
need for a compositional game-theoretic security framework; one
that captures the incentive dynamics spanning multiple layers and
supports the design of economically secure blockchain protocols.

Nevertheless, existing analyses largely fail to address this need.
Prior works either do not account for rational behaviour, remain-
ing rooted in cryptographic models that assume participants are
honest or Byzantine, e.g., [23, 27, 29, 31, 45], or adopt monolithic
rational models that abstract away cross-layer interactions, e.g.,
[2, 9, 10, 13, 26, 30, 37]. As a result, none of these approaches offer a
general, composable framework capable of reasoning about cross-layer
incentive dynamics or the concurrent execution of multiple application
protocols on a shared blockchain infrastructure.

1.1 Our Contributions
This work addresses this gap by introducing a composable game-
theoretic framework for blockchains that enables formal reasoning
about protocol security across multiple layers of the blockchain
stack. To this end, we characterise and formalise the distinct layers
of a blockchain ecosystem—the application, network, and consensus
layers—alongside the interfaces that govern their interactions.

We first define the blockchain game, which models the strategic
behaviour of miners or validators in response to a set of fee-paying
transactions. We then define the application game, which captures
the actions of protocol participants operating an application-layer
protocol and whose outcome is a set of transaction triples (each
consisting of a transaction, a fee, and a timestamp) intended for sub-
mission to the blockchain. Finally, we introduce the network game,
a novel intermediary layer that models how these transactions are

ar
X

iv
:2

50
4.

18
21

4v
1

 [
cs

.G
T

]
 2

5
A

pr
 2

02
5

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 2

disseminated to the consensus layer. This is the layer where phe-
nomena such as Maximal Extractable Value (MEV) emerge, as it
governs the visibility and timing of transactions across the system.

To reason about incentive security in such settings, we introduce
a rigorous notion of game-theoretically secure protocols. Informally,
we require that the expected utility of protocol participants does
not increase when the protocol is executed in a composed setting—
interacting with the blockchain game, the network game, and other
application games—compared to when it is executed in isolation. At
the core of our framework are two new constructs: the cross-layer
game, which integrates the application, network, and blockchain
layers to capture their strategic interplay, and cross-application com-
position, which enables reasoning about the concurrent execution
of multiple protocols on a shared blockchain infrastructure.

We demonstrate the expressiveness and generality of our frame-
work through a number of illustrative applications. First, we model
and analyse the composition of Hashed Timelock Contracts (HTLCs)
across multiple payment channels, identifying those parameter
regimes under which compositional security holds in the presence
of rational participants. Second, we revisit, using our framework,
a recent payment channel protocol [4] and derive tighter incen-
tive bounds by leveraging a more expressive blockchain model.
Finally, we illustrate how even a simple broadcast network model
can, when composed with an application game, lead to rational min-
ers deviating from consensus to exploit MEV opportunities. This
showcases how our framework can surface emergent vulnerabilities
that layer-specific analyses fail to capture.

Beyond these detailed examples, we outline a broader class of set-
tings that our framework naturally captures. These include interac-
tions between decentralized exchanges and oracles, cross-chain pro-
tocols such as atomic swaps, and multi-layer incentive mechanisms
like proposer-builder separation (PBS). While not formalised as case
studies, these examples underscore the versatility and broader appli-
cability of our framework for reasoning about complex, concurrent
protocols within modern blockchain ecosystems.

Summary of Contributions. Our contributions are as follows:

• We develop the first composable game-theoretic framework for
blockchain ecosystems, capturing incentive interactions across
application, network, and consensus layers.

• We formalise three core games—the blockchain game, the applica-
tion game, and the network game—and define their composition.

• We introduce the notions of cross-layer games and of cross-
application composition to enable compositional reasoning about
protocol security under rational participants.

• We apply our framework to multiple case studies showcasing
its ability to capture incentive dynamics, expose vulnerabilities,
and improve security through composition. We further outline
broader applications to demonstrate the framework’s potential
to model complex settings such as cross-application, cross-chain,
and multi-layer interactions.

Paper Organisation. Section 1.2 reviews prior work. In Section 2,
we introduce our framework by translating protocols into formal
games, which allows us to define incentive compatibility in a com-
posable setting. Section 3 then formalises the composition of these

games and identifies conditions under which incentive compatibil-
ity is preserved. To illustrate the applicability of our framework,
Section 4 presents several representative case studies. Finally, Sec-
tion 5 discusses the framework’s limitations and outlines directions
for future research.

1.2 Related Work
Layer-specific models. A large body of work studies incentive

mechanisms within isolated layers of the blockchain stack. At
the consensus layer, researchers have analysed block rewards [18,
20, 25] and transaction fee mechanisms [14, 15, 40]. Other works
model consensus dynamics using rational agents [1–3, 16, 18, 30, 32–
34, 37, 44]. Similarly, other works restrict their analysis on the net-
work layer, e.g. [12]. Several works conduct a rational analysis on
the application layer, either targeting specific applications like auc-
tions [21] or off-chain systems like payment channels [5, 6, 9, 10, 39].
However, these results assume fixed behaviour from other layers
and do not account for strategic interactions across layers or with
other applications. In contrast, our framework explicitly models
such cross-layer and cross-application dependencies.

Monolithic protocol analyses. Some works jointly analyse proto-
col layers, especially in Layer-2 constructions where application
behaviour and miner incentives interact [4, 7, 8, 11, 24, 41, 42]. For
instance, [41, 42] model how rational miners affect the execution
of HTLCs. However, these analyses are monolithic, capturing the
entire system in a single game. This limits extensibility and com-
positional reasoning: security properties must be re-derived from
scratch for each new protocol interaction. Our approach instead de-
fines modular game components with formally specified interfaces,
allowing reuse and composition across protocols.

MEV and dynamic incentives.Daian et al. [22] introduced the con-
cept of Maximal Extractable Value (MEV), showing how application-
level transactions influence miner strategies. Follow-up work has
explored incentive-aligned auction designs and mitigation tech-
niques [24], but analyses remain tightly coupled to specific systems
and do not generalise to arbitrary protocol interactions. Our frame-
work generalises MEV through the network game, an abstraction
that sits between the application and blockchain layers. This allows
for systematic reasoning about its impact across a wide range of
protocol designs.

Cross-application and cross-layer security.More closely related to
our approach is the work by Zappalà et al. [46], which aims to for-
malise secure protocol composition. Unlike our framework, theirs
assumes independence between subgames rather than deriving it,
limiting applicability for systems with interdependent protocols.
For example, in their analysis of the Lightning Network [38], they
treat HTLCs as independent if all transactions are posted on time,
thereby sidestepping strategic deviations. Their approach defines
security conditions statically and does not account for the dynamic
strategic behaviours that can arise during execution. In contrast,
our framework handles compositional reasoning even when games
are not independent, enabling the analysis of incentive-driven in-
teractions such as adversarial timing or MEV extraction across
concurrent protocols.

Compositional game theory. Our work is inspired by composi-
tional game theory [28], which uses category-theoretic tools to

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 3

model complex systems as compositions of modular components
called open games. While this approach offers a powerful and ele-
gant abstraction, it remains largely theoretical and lacks concrete
results about how strategic behaviour composes. Moreover, it does
not address domain-specific settings like blockchains, where in-
centives are shaped by structured interfaces such as transaction
propagation and fee mechanisms. In contrast, our framework in-
stantiates these compositional principles in the blockchain setting,
leveraging its layered architecture to define explicit interfaces and
enabling formal reasoning about incentive compatibility and strate-
gic behaviour across interdependent protocols. This enables us to
derive concrete results that would be challenging to obtain using
the abstract approach of Ghani et al. [28].

Rational protocol design and simulation-based models. Our ap-
proach also differs fundamentally from Rational Protocol Design
(RPD)[13, 26], which models security as a Stackelberg game be-
tween a protocol designer and an attacker, with utilities defined
via ideal functionalities in the simulation paradigm. While RPD
inherits compositionality from the Universal Composability (UC)
framework[19], this form of composition corresponds to subrou-
tine replacement and does not address how strategic behaviour
composes across protocols. In contrast, our framework models
composition at the level of incentives and strategic interaction,
allowing us to reason about equilibrium properties in composed
games. For instance, RPD can capture the behaviour of a single
validator extracting MEV in a fixed environment, but it lacks the
tools to analyse how MEV opportunities arise from the strategic
interplay of multiple protocols, such as DEX arbitrage, oracle ma-
nipulation, or searcher-builder auctions, operating concurrently
over shared infrastructure. Our framework, by explicitly modelling
the application, network, and consensus layers, supports such anal-
yses and enables formal reasoning about incentive alignment in
systems where protocols interact dynamically and adversarially.

Automated tools. Recent automated tools for reasoning about ra-
tional security, such as CheckMate [17], focus on verifying strategic
properties in isolated protocols using symbolic game representa-
tions. These tools provide valuable automation but do not model
layered architectures or inter-protocol interactions. In contrast,
our framework is designed to analyse composed systems spanning
multiple layers and concurrent applications.

This work.While prior works offer valuable insights into ratio-
nal security, they either focus narrowly on isolated components,
assume idealised independence between interacting parts, lack a
modular framework for capturing the dynamic nature of incentive
interactions across protocols and layers, or are too abstract to yield
concrete results in blockchain settings. Our framework fills this
gap by enabling modular, game-theoretic analysis of blockchain
systems as they are deployed in practice.

2 MODEL
Our framework aims to support a broad class of protocols operating
atop a common blockchain infrastructure. We consider three dis-
tinct layers: a network layer, composed of nodes that communicate
over a peer-to-peer network; a consensus layer, which establishes
an ordered sequence of transactions; and an application layer, that

captures the internal logic of decentralised applications. Our frame-
work models each of these layers separately and formalises their
interfaces. This enables us to reason about the composition of the
different layers and consequently study the game-theoretic security
properties of protocols operating within a blockchain ecosystem in
a modular way.

Application

Network

Blockchain/Consensus

Transactions

Transactions

Transaction Ordering
Utility

Utility

Utility

Game-theoretic security concerns the behaviour of rational play-
ers who act to maximise their utility, typically measured in cryp-
tocurrency holdings. A protocol is said to be incentive-compatible
(IC) if following its prescribed behaviour yields the highest expected
utility for all participants, making deviation unprofitable.

Participants behave rationally if they act to maximise their utility.
The utility function can be defined to model different behaviours.
For instance, participants may always follow the protocol, which
can be modelled by assigning infinite utility when they comply
and zero otherwise. Alternatively, adversarial participants may
derive utility from minimising another participant’s utility. In the
following, we make the natural assumption that everyone tries to
maximise their cryptocurrency holdings, but we stress that our
framework can accommodate other utility functions as well.

We assume that participants can collude, meaning they can co-
ordinate strategies and aggregate their utilities. Colluding partic-
ipants effectively merge into a single entity capable of executing
joint actions. They can also freely share any information they pos-
sess. Conversely, non-colluding participants can only communi-
cate through the blockchain. We will formally define collusion and
information-sharing later in this work.

Remark 2.1. Incentive compatibility does not assess the quality of a
protocol’s design. A flawed protocol – such as one that destroys half of
all participants’ funds – could still be IC if rational participants adhere
to its prescribed actions. While such protocols may be impractical,
our focus is solely on whether rational agents will follow the protocol
once they choose to participate.

The cryptocurrency holdings of all players (which they try to
maximise) are determined by the state of the blockchain. This state
can be updated by players broadcasting transactions over the net-
work. The role of the blockchain is to create an ordered sequence
of transactions. We will denote by X the set of all transactions that
could be made within the blockchain ecosystem, and denote by
Ω the set of all orderings of (a subset of) transactions in X. We
abstract the behaviour of the blockchain as the following mapping.

Definition 2.2. We define a blockchain behaviour 𝛽 : X → Ω as
a function which has as input a set 𝑋 ∈ X of transactions, and
outputs a sequence (𝐴𝑡)𝑡≥0 of blocks of transactions, where for
each 𝑡 ≥ 0, 𝐴𝑡 ⊆ 𝑋 is a sequence of transactions. We call 𝐴𝑡 a block
and a specific instance of the output a (blockchain) ordering.

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 4

Remark 2.3. Our definition of a blockchain behaviour is as ab-
stract as possible, in order to accommodate for the widest range of
existing blockchain systems. It should be noted that the transactions
inX are defined to implicitly contain all the information necessary for
the function 𝛽 to determine an ordering. For example, a transaction in
X may implicitly define a transaction fee, as well as a time at which
its existence becomes known to 𝛽 . Explicitly keeping track of these fee
and time attributes will in fact be crucial for our framework.

This ordered sequence of transactions can then be executed ac-
cording to a specific set of rules, which leads to an update in the
state. Concretely, given an ordering (𝐴𝑡)𝑡≥0 ∈ Ω, the set of exe-
cution rules defines for each participant 𝑖 its balance in the block-
chain ecosystem. This can be abstracted with an execution function
𝜔𝑖 : Ω → R, which for a given ordering returns the balance of a
given participant 𝑖 .

2.1 The Blockchain Game
We are interested in turning a blockchain behaviour into an object,
which we can reasonwith game-theoretically. After all, the ordering
that comes out upon input of a set of transactions is potentially de-
termined by decisions made by rational actors, who try to maximise
a given utility. These actors could be miners in a Proof-of-Work
blockchain, or validators in a Proof-of-Stake blockchain.

To this end, we introduce the blockchain game. This is not a
game in the traditional game-theoretic sense due to the lack of a
utility function. To keep our framework as modular as possible, we
refrain from defining the utility function as part of this blockchain
game, but introduce it only in Section 3.1. The players in this game
are the miners or validators. Upon input of a set of transactions,
their decisions will lead to a certain blockchain ordering. In our
framework, we explicitly mention two attributes alongside each
transaction: a posting time and a transaction fee. This does not
contradict Definition 2.2, as this information is considered to be
already present in the transaction, we just explicitly keep track of
it. Intuitively, the posting time determines when a miner/validator
learns about the existence of a transaction, and the transaction fee
determines what utility the miner/validator receives by including
that transaction in the ordering. By explicitly stating the posting
time and transaction fee, we extract from the transaction the infor-
mation that players in the blockchain game need to make decisions.
We therefore speak of transaction triples. These are tuples (𝑥, 𝑡, 𝑓),
with 𝑥 a transaction, 𝑡 ∈ N0 the posting time of that transaction,
and 𝑓 ∈ R≥0 the transaction fee. For a given set 𝑋 of transactions,
we denote by Y(𝑋) the set of all sets of transaction triples of 𝑋 , i.e.,
Y(𝑋) = P({(𝑥, 𝑡, 𝑓) : 𝑥 ∈ 𝑋, 𝑡 ∈ N0, 𝑓 ∈ R≥0}).

The blockchain game thus takes as input a set of transaction
triples 𝑌 for some set of transactions 𝑋 . The players in this game
then all decide on a strategy, which results in an ordering 𝑏 ∈
O𝑀 (𝑌) of the transactions present in 𝑌 , i.e., the transactions in
𝑋𝑌 = {𝑥 ∈ 𝑋 : ∃𝑡 ∈ N0, ∃𝑓 ∈ R≥0 : (𝑥, 𝑡, 𝑓) ∈ 𝑌 }. We denote here
by O𝑀 (𝑌) ⊆ Ω the set of all possible orderings from an input set
𝑌 of transaction triples for a given set of blockchain game players
𝑀 . Recall that Ω is the set of all possible orderings. More correctly,
given 𝑌 , the strategies of the players give a strategy profile, which
results in a probability measure on O𝑀 (𝑌), as there might still be
an element of randomness involved in determining the ordering.

Definition 2.4 (Blockchain Game). Let 𝑌 ∈ Y(𝑋) be a set of trans-
action triples for some set 𝑋 of transactions. Denote by 𝑋𝑌 =

{𝑥 ∈ 𝑋 : ∃𝑡 ∈ N0, ∃𝑓 ∈ R≥0 : (𝑥, 𝑡, 𝑓) ∈ 𝑌 } the set of transactions
present in 𝑌 . The blockchain game B𝑌 induced by 𝑌 is a tuple
(𝑀,𝑌, Σ𝑏𝑔, 𝜋𝑏𝑔), where:
• 𝑀 is the set of miners/validators, which are the players of the
blockchain game, together with their respective hashrates (for
miners) or stakes (for validators).

• Σ𝑏𝑔 is the set of strategy profiles. For any (𝑥, 𝑡, 𝑓) ∈ 𝑌 , players
of the blockchain game only become aware of the transaction 𝑥
and its fee 𝑓 at time 𝑡 .

• 𝜋𝑏𝑔 : Σ𝑏𝑔 → D(O𝑀 (𝑌)) is the ordering function, which maps
every strategy profile in Σ𝑏𝑔 to a probability measure on O𝑀 (𝑌).

It will be useful later to keep track of which player in 𝑀 will
receive the transaction fee for a specific transaction by introducing
a dedicated function, which we call the fee function.

Definition 2.5 (Fee function). For a set of miners𝑀 and a set of
transaction triples𝑌 , we define the fee function 𝜙 = (𝜙 𝑗) 𝑗∈𝑀 , where
for each 𝑗 ∈ 𝑀 , 𝜙 𝑗 : O𝑀 (𝑌) → P(𝑌) maps each ordering to the set
of transaction triples for which 𝑗 receives the transaction fees.

It is far from trivial to capture all of the complexity of a block-
chain behaviour in the format of a blockchain game. Simplifications
are therefore necessary. For now, we assume a simple blockchain
behaviour with a random leader selection, in the spirit of Bitcoin,
where each miner1 can decide on which transactions to include
and at what time, but always builds on the same chain and does
not withhold valid blocks that it found, as in selfish mining [25].
We also assume that the transactions we input into this game are
the only fee-paying ones, so there are no other ways, such as other
transactions or block rewards, by which the miners can gain funds.
We call this blockchain game the Censor-Only Miner Game, since
a miner’s only power is to decide whether or not, and if so, when,
to include a transaction. Due to our framework’s modularity, we
can in the future easily swap out this model for a more complicated
one that adheres to the blockchain game format.

Definition 2.6 (Censor-Only Miner Game (COMG)). The Censor-
Only Miner Game (COMG) B0,𝑌 induced by 𝑌 is defined as the tuple
(𝝀, 𝑌 , Σ𝑏𝑔,0, 𝜋𝑏𝑔,0), where
• 𝝀 =

(
𝜆 𝑗

)𝑚
𝑗=0 specifies the hashrate distribution (or the distribution

of stake in PoS), where 𝜆𝑚 ≥ 𝜆𝑚−1 ≥ . . . ≥ 𝜆1 > 0 are the
hashrates of the𝑚 largest miners, and 𝜆0 ≥ 0 is the remainder
hashrate, aggregating the hashrate of miners so small that they
will always include any transaction that is valid at the time of
mining. Note that a valid distribution requires

∑𝑚
𝑗=0 𝜆 𝑗 = 1. This

naturally yields a set of miners𝑀 = {0, . . . ,𝑚}.
• To describe Σ𝑏𝑔,0 and 𝜋𝑏𝑔,0, we will describe how the game is
played. The game proceeds in rounds indexed by 𝑡 , starting from
round 𝑡 = 0. At the start of round 𝑠 ≥ 0, all miners learn about
the transaction triples which have posting time 𝑠 . Each miner
𝑗 will create a block proposal 𝑏 𝑗,𝑠 for that round, which may
include any of the transactions that miner is aware of. At the end
of the round, one of the𝑚 + 1 block proposals will be randomly
selected according to the hashrate distribution 𝝀. We call this

1In practice, mining pools decide, but we refer to them as miners for simplicity.

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 5

block proposal the block at round 𝑠 , and denote it by 𝑏𝑠 . All
miners become aware of that block before the start of the next
round. The strategy of miner 𝑗 ∈ 𝑀 \ {0} consists of a sequence
of functions (𝜇 𝑗,𝑡)𝑡≥0, which maps for each 𝑡 ≥ 0 the sequence
(𝑏𝑠)𝑡−1𝑠=0 to a block proposal 𝑏 𝑗,𝑡 . The set Σ𝑏𝑔,0 can be constructed
from this strategy definition, as can the ordering function 𝜋𝑏𝑔,0.

2.2 The Application Game
The transaction triples that will serve as the input of the blockchain
game will come from the specific application that we are study-
ing. Our goal is now to encapsulate everything that can happen
while running some application protocol, into a game-like struc-
ture. Studying this structure will allow us to determine whether
a protocol Π is secure, i.e., incentivises participants to follow the
intended protocol behaviour. The idea is that the internal protocol
logic, and how the application outputs are submitted to the block-
chain, should be represented by a strategy profile, which is then
mapped to a set of transaction triples that serves as input to the
blockchain game. Our framework will be able to reason about any
protocol Π that can be written as a tuple (𝑁,A, 𝜎𝑎), with 𝑁 the set
of protocol participants, A a parametrised application game, and
𝜎𝑎 the intended protocol behaviour(s) (IPB).

Definition 2.7 (Application Game). An application game A is a
tuple (𝑁,𝑋, Σ𝑎, 𝜋𝑎), where:
• 𝑁 is the set of 𝑛 = |𝑁 | application protocol participants, referred
to as (protocol) players.

• 𝑋 is the set of all transactions that could be included in the
blockchain as a result of the application protocol.

• Σ𝑎 is the set of strategy profiles, where a strategy profile 𝜎𝑎 ∈ Σ𝑎
is a vector of strategies (𝜎𝑎,𝑖)𝑖∈𝑁 , where a strategy 𝜎𝑎,𝑖 specifies
what a player 𝑖 ∈ 𝑁 does at each point in the game.

• 𝜋𝑎 : Σ𝑎 → Y(𝑋) is the outcome function, which maps each
strategy profile 𝜎𝑎 ∈ Σ𝑎 to a set of transaction triples.

Definition 2.8. A parametrised application game is a collection
A = (A𝑝)𝑝∈P , where P is some parameter set, and A𝑝 is an
application game (𝑁,𝑋𝑝 , Σ

𝑝
𝑎 , 𝜋

𝑝
𝑎) for each 𝑝 ∈ P.

Remark 2.9. For a given set 𝑋 of transactions, we can interpret
the collection (B𝑌)𝑌 ∈Y(𝑋) as a parametrised blockchain game with
parameter space Y(𝑋). We may then denote B𝑌 = (𝑀,𝑌, Σ𝑌

𝑏𝑔
, 𝜋𝑌

𝑏𝑔
)

to clearly indicate the dependency of Σ𝑏𝑔 and 𝜋𝑏𝑔 on 𝑌 .

Henceforth, we only consider protocols Π that can be written
as a tuple (𝑁, (A𝑝)𝑝∈P , (𝜎

𝑝
𝑎)𝑝∈P). We also assume that there will

always be exactly one player in 𝑁 who can broadcast a specific
transaction and who can alter its fee. To this end, we define for
each 𝑝 ∈ P a so-called player function.

Definition 2.10 (Player function). Given a parametrised appli-
cation game (A𝑝)𝑝∈P with A𝑝 = (𝑁,𝑋𝑝 , Σ

𝑝
𝑎 , 𝜋

𝑝
𝑎), we define for

each 𝑝 ∈ P the player function 𝜒𝑝 : 𝑁 → P(𝑋𝑝), which maps each
player to the set of transactions of which the fees are paid for by 𝑖 .

2.3 The Network Game
The application game outputs a set of transaction triples, but these
do not immediately become inputs to the blockchain game. In prac-
tice, transactions are relayed over a communication network, whose

structure determines how and when they are observed. For instance,
in a synchronous setting with a global clock, all blockchain par-
ticipants see the same transactions at the same time. In contrast,
in more realistic settings, where mempool visibility may vary and
adversarial actors can selectively delay or withhold propagation,
participants may receive different subsets of transactions at differ-
ent times, leading to diverging views and strategic behavior.

The network model we choose induces a so-called network game.
Players in this game could be protocol participants, as well as play-
ers in the blockchain game. For example, the L2 participants might
have the option to share their transactions only with specific block-
chain game players2. This, together with network assumptions,
may lead to players in the blockchain game having different per-
spectives on the outcome of the application game. Moreover, in
settings where the ordering of transactions within blocks in the
blockchain might be of importance, such as Maximal Extractable
Value (MEV), [22] a flexible network game is crucial.

Definition 2.11 (Network Game). Let 𝑌 ∈ Y(𝑋) be a set of trans-
action triples for some set 𝑋 of transactions. The network gameN𝑌

induced by 𝑌 is a tuple (𝑁,𝑀,𝑌, Σ𝑛𝑔, 𝜋𝑛𝑔), where
• 𝑁 is the set of 𝑛 = |𝑁 | application protocol participants, referred
to as (protocol) players.

• 𝑀 is the set of miners/validators, which are the players of the
blockchain game, together with their respective hashrates (for
miners) or stakes (for validators).

• Σ𝑛𝑔 is the set of strategy profiles, where a strategy profile 𝜎𝑛𝑔 ∈
Σ𝑛𝑔 is a vector of strategies (𝜎𝑛𝑔,𝑖)𝑖∈𝑁 , where a strategy 𝜎𝑛𝑔,𝑖
specifies what a player 𝑖 ∈ 𝑁 does at each point in the game.

• 𝜋𝑛𝑔 = (𝜋𝑛𝑔,𝑗) 𝑗∈𝑀 is the outcome function, where 𝜋𝑛𝑔,𝑗 : Σ𝑛𝑔 →
Y(𝑋) maps each strategy profile 𝜎𝑛𝑔 ∈ Σ𝑛𝑔 to the set of transac-
tion triples shared with 𝑗 for the upcoming blockchain game.
Remark 2.12. In general, blockchain players may receive different

sets of transaction triples. Definition 2.4 extends naturally by taking
as input a tuple (𝑌𝑗) 𝑗∈𝑀 , with each player 𝑗 receiving only 𝑌𝑗 . The
resulting blockchain game O𝑀 ((𝑌𝑗) 𝑗∈𝑀) produces orderings based
on individual views. Henceforth, we assume a synchronous network
model with instantaneous message delivery and a global clock, as is
common in prior work [27, 31]. This implies that all blockchain players
observe the same outcome from the application game. That is, we
assume for any set𝑋 of transactions and set 𝑌 of transaction triples in
Y(𝑋) the network game with Σ𝑛𝑔 =

{
𝜎𝑛𝑔

}
such that 𝜋𝑛𝑔,𝑗 (𝜎𝑛𝑔) = 𝑌

for each 𝑗 ∈ 𝑀 . To simplify notation, we henceforth omit the network
game, except in Section 4.3, where MEV motivates a richer model.

3 COMPOSITION
In the previous section we have introduced game-theoretic repre-
sentations of the different layers of a blockchain ecosystem. We
will now discuss how these representations relate to each other,
and how we can form a game in the traditional sense out of them.

3.1 Cross-layer Composition
Protocols deployed on a blockchain rarely operate in isolation.
Instead, their security depends not only on the protocol logic at the
2Think for example, in the context of Bitcoin, about services that allow for the sharing
of a transaction with one specific miner, such as the Mempool Accelerator (https:
//mempool.space/accelerator) or Marathon Slipstream (https://slipstream.mara.com/)

https://mempool.space/accelerator
https://mempool.space/accelerator
https://slipstream.mara.com/

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 6

application level but also on how these applications interact with the
underlying network and consensus layers. For instance, a protocol
that assumes timely inclusion of transactions may become insecure
if blockchain participants have incentives to censor or reorder them.
To reason about such interactions systematically, we introduce the
cross-layer game—a formal construction that composes application,
network, and blockchain games into a unified model.

This composition allows us to evaluate how strategies in one
layer, such as transaction selection by miners, affect outcomes and
incentives in other layers, such as protocol correctness or reward
allocation. At the core of this construction is a utility function
that maps each blockchain ordering 𝑏 to payoffs for all players in
the application and blockchain games. This allows us to formally
reason about the incentive compatibility of a protocol executed over
a blockchain behaviour 𝛽 , which we assume can be instantiated as
a blockchain game B𝑌 for any set of transaction triples 𝑌 .

Definition 3.1 ((Parametrised) Cross-layer Game). Consider a pro-
tocol Π =

(
𝑁, (A𝑝)𝑝∈P , (𝜎

𝑝
𝑎)𝑝∈P

)
as defined in Section 2.2 with

parametrised application game (A𝑝)𝑝∈P and a blockchain be-
haviour 𝛽 that can be modelled by a blockchain game B (with
player set𝑀). The parametrised cross-layer game with respect to 𝛽
of the protocol Π is a collection (C𝑝

Π,𝛽
)𝑝∈P , where for each 𝑝 ∈ P,

C𝑝

Π,𝛽
is a cross-layer game with respect to 𝛽 of the protocol Π, which

is defined as a tuple (A𝑝 ,BA𝑝 , 𝜔), where
• A𝑝 = (𝑁,𝑋𝑝 , Σ

𝑝
𝑎 , 𝜋

𝑝
𝑎) is an application game, which yields for

every strategy 𝜎𝑎 ∈ Σ
𝑝
𝑎 a set 𝜋𝑝𝑎 (𝜎𝑎) of transaction triples.

• BA𝑝 =

(
B
𝜋
𝑝
𝑎 (𝜎𝑎)

)
𝜎𝑎∈Σ𝑝𝑎

is the collection of blockchain games,

where B
𝜋
𝑝
𝑎 (𝜎𝑎) =

(
𝑀, 𝜋

𝑝
𝑎 (𝜎𝑎), Σ

𝜋
𝑝
𝑎 (𝜎𝑎)

𝑏𝑔
, 𝜋

𝜋
𝑝
𝑎 (𝜎𝑎)

𝑏𝑔

)
for each 𝜎𝑎 ∈

Σ
𝑝
𝑎 . This implies for each 𝜎𝑎 ∈ Σ

𝑝
𝑎 and 𝜎𝑏𝑔 ∈ Σ

𝜋
𝑝
𝑎 (𝜎𝑎)

𝑏𝑔
an output

probability measure 𝑃𝜎𝑏𝑔 on O𝑀 (𝜋𝑎 (𝜎𝑎)).
• 𝜔 = (𝜔𝑖)𝑖∈𝑁∪𝑀 specifies the execution function for each of the
application and blockchain game players. This defines moreover
a utility function𝑢𝑝

𝑖
for each 𝑖 ∈ 𝑁 ∪𝑀 . Indeed, first observe that

the tuple 𝜎𝑐 = (𝜎𝑎, (𝜎𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎
) can be seen, up to natural

identification, as a strategy profile of the cross-layer game. We
therefore denote the set of cross-layer strategy profiles{
(𝜎𝑎, (𝜎𝜋

𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎
) : 𝜎𝑎 ∈ Σ

𝑝
𝑎 ,∀𝜎′𝑎 ∈ Σ

𝑝
𝑎 : 𝜎𝜋

𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

∈ Σ
𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

}
by Σ

𝑝
𝑐 . The utility function for player 𝑖 ∈ 𝑁 ∪ 𝑀 can then be

defined as a function 𝑢𝑝
𝑖
: Σ𝑝𝑐 → R which maps3

(𝜎𝑎, (𝜎𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎
) ↦→

∫
O𝑀 (𝜋𝑝

𝑎 (𝜎𝑎))
𝜔𝑖 (𝑏)d𝑃

𝜎
𝜋
𝑝
𝑎 (𝜎𝑎)

𝑏𝑔

(𝑏). (1)

Because we are explicitly keeping track of the transaction fees, it
will be useful to write 𝜔𝑖 (𝑏) = �̃�𝑝

𝑖
(𝑏) − ∑

(𝑥,𝑡,𝑓) ∈𝑏:𝑥∈𝜒𝑝 (𝑖) 𝑓 , for
all 𝑖 ∈ 𝑁 and each 𝑏 ∈ O𝑀 (𝑌), where �̃�𝑝

𝑖
is modified accordingly

for each 𝑝 ∈ P, and to write𝜔 𝑗 (𝑏) = �̃� 𝑗 (𝑏)+
∑

(𝑥,𝑡,𝑓) ∈𝜙 𝑗 (𝑏) 𝑓 , for
all 𝑗 ∈ 𝑀 and each 𝑏 ∈ O𝑀 (𝑌), where �̃� 𝑗 is modified accordingly.

3Weusemeasure-theoretic notation for generality and conciseness.𝑃
𝜎𝑌
𝑏𝑔

will generally,

if not always, be a discrete measure.

We have now defined an actual game, where first, for any 𝑝 ∈ P,
players in 𝑁 choose a strategy profile 𝜎𝑎 ∈ Σ

𝑝
𝑎 in the application

game, and players in 𝑀 determine a strategy profile 𝜎𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

∈

Σ
𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

for every 𝜎′𝑎 ∈ Σ
𝑝
𝑎 . The utility function 𝑢 then assigns a

utility to each player in 𝑁 ∪𝑀 , given the combined strategy profile

𝜎𝑐 = (𝜎𝑎, (𝜎𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎
). To analyse the game-theoretic security

of a protocol Π =
(
𝑁, (A𝑤)𝑤∈𝐸×𝑁 , (𝜎𝑤𝑎)𝑤∈𝐸×𝑁

)
with respect to

a given 𝛽 , we must construct the game C𝑝

Π,𝛽
for each 𝑝 ∈ P and

examine its utility function. In particular, we are interested in how
the utility changes when players deviate from the IPB.

Definition 3.2 (Deviation). Consider a cross-layer game C𝑝

Π,𝛽
with

strategy profile space Σ𝑝𝑐 . Let 𝜎𝑐 , 𝜎′𝑐 ∈ Σ
𝑝
𝑐 be two arbitrary strategy

profiles. A strategy profile 𝜎𝑐 can be interpreted as a vector of strate-
gies for all players in the cross-layer game, i.e., 𝜎𝑐 =

(
𝜎𝑐,𝑖

)
𝑖∈𝑁∪𝑀 ,

where 𝜎𝑐,𝑖 = 𝜎𝑎,𝑖 for 𝑖 ∈ 𝑁 \𝑀 , 𝜎𝑐,𝑖 = (𝜎𝜋
𝑝
𝑎 (𝜎 ′

𝑎)
𝑏𝑔,𝑖

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎
for 𝑖 ∈ 𝑀 \𝑁 ,

and 𝜎𝑐,𝑖 =

(
𝜎𝑎,𝑖 , (𝜎𝜋

𝑝
𝑎 (𝜎 ′

𝑎),𝑖
𝑏𝑔

)
𝜎 ′
𝑎∈Σ

𝑝
𝑎

)
for 𝑖 ∈ 𝑁 ∩ 𝑀 . A strategy

𝜎′𝑐 = (𝜎′
𝑐,𝑖
)𝑖∈𝑁∪𝑀 is called a deviation from 𝜎𝑐 by 𝑖 if 𝜎𝑐,𝑖 ≠ 𝜎′𝑐,𝑖 and

𝜎𝑐,𝑗 = 𝜎
′
𝑐,𝑗

for all 𝑗 ∈ (𝑁 ∪𝑀) \ {𝑖}.

A key goal of our framework is to reason about collusion without
sacrificing composability. To achieve this, we formalise a reduction
mechanism that preserves strategic structure and utility. While our
initial definition of deviation focuses on unilateral actions, real-
world settings often involve coordinated deviations by coalitions
of protocol participants. We will define a coalition or collusion
as any group of players that act as one player. Such a collusion
can consist of multiple players from the application layer, and
include one player from the blockchain layer. The latter is mainly
for simplicity in the rest of the text. Moreover, it is without loss of
generality for many blockchain games. For example, for COMG, we
could consider an instance of this blockchain game with hashrate
distribution 𝝀 = (𝜆0, . . . , 𝜆 𝑗 , . . . , 𝜆𝑘 , . . . , 𝜆𝑚) in which two miners
𝑗, 𝑘 ∈ 𝑀 collude as a different instance of that blockchain game
where 𝑗 and 𝑘 are replaced by one miner with hashrate 𝜆 𝑗 + 𝜆𝑘 .

To model collusions formally, we introduce an 𝜂-collusion reduc-
tion (CR), which maps a game G to a reduced game G̃ in which a
set of colluding players is represented by a single aggregated player.
The function 𝜂 specifies how coalitions in G are mapped to unified
players in G̃, enabling structured analysis of coalition strategies
while preserving the utility semantics of the original game. Note
that the game G can refer to an application game, a network game, a
blockchain game, or most likely, a cross-layer composition of differ-
ent layer games. Due to our construction of the layer games, even
a cross-layer composition will always have the form (𝑁, ∗, Σ, 𝜋),
where 𝑁 is some player set, Σ a strategy profile set, and 𝜋 some
kind of outcome function. ∗ indicates any additional layer-specific
components that would be present.

Definition 3.3 (𝜂-CR). Let G = (𝑁, ∗, Σ, 𝜋) and G̃ = (�̃� , ∗, Σ̃, �̃�)
be two application games. Let 𝜂 : 𝑁 → 𝑁 be a transformation of 𝑁 .
We say that G̃ is an 𝜂-collusion reduction (CR) of G if �̃� = 𝑁 , Σ̃ = Σ,
�̃� = 𝜋 and any other additional components are also equal. Every

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 7

player 𝑖 ∈ 𝜂 (𝑁) now decides on a strategy 𝜎𝑖 = (𝜎 𝑗) 𝑗∈𝜂−1 (𝑖) , which
means deciding on the strategies of all 𝑗 ∈ 𝑁 for which 𝜂 (𝑗) = 𝑖 .

Remark 3.4. We assume from now on that if the player set 𝑁
contains a subset 𝑁𝑏𝑔 of players from a blockchain game, every trans-
formation 𝜂 : 𝑁 → 𝑁 satisfies 𝜂 (𝑗) = 𝑗 for all 𝑗 ∈ 𝑁𝑏𝑔 .

Note that all the players in 𝑁 are still part of the 𝜂-CR G̃, except
some of them will have no actions to take. The 𝜂-CR G̃ of a game G
can again be used to construct—or already is—a cross-layer game.
With our definition of utility in (1), the utility of any player in 𝑖 ∈ �̃�
can be written as the sum of the utilities of the players in 𝜂−1 (𝑖).
This effectively defines the CR of a cross-layer game, from which
we can define the CR of a protocol.

Definition 3.5 (CR of a protocol). Consider two instances Π =

(𝑁, (A𝑝)𝑝∈P , (𝜎
𝑝
𝑎)𝑝∈P) and Π̃ = (𝑁, (Ã𝑝)𝑝∈P , (𝜎

𝑝
𝑎)𝑝∈P) of the

same protocol, leading with a blockchain behaviour 𝛽 (implying a
player set𝑀) and an execution function 𝜔 to respective collections
of cross-layer games (A𝑝 ,BA𝑝 , 𝜔)𝑝∈P and (Ã𝑝 ,BÃ𝑝 , 𝜔)𝑝∈P . We
say that Π̃ is a CR of Π, if there exists an 𝜂 : 𝑁 ∪𝑀 → 𝑁 ∪𝑀 such
that for every 𝑝 ∈ P, the cross-layer game (Ã𝑝 ,BÃ𝑝 , 𝜔) is a CR,
more specifically an 𝜂-CR, of the cross-layer game (A𝑝 ,BA𝑝 , 𝜔).

The CR of a protocol essentially groups together each collusion of
players into one player, which will make the decisions of all players
within that collusion. Definition 3.2 naturally applies to the CR of
a cross-layer game; a deviation by a player in the CR corresponds
to multiple deviations by multiple players in that cross-layer game.

As the blockchain game players are assumed not collude with
each other, we can look at the blockchain game as a black box.
That is, given a set of transaction triples, the blockchain game
will output a probability measure over the appropriate space of
blockchain orderings. Intuitively, we could thus pre-compute the
strategy profiles that the miners/validators in the blockchain game
would form, for any possible set of transaction triples.

Definition 3.6 (Optimal strategy sets of 𝑋 w.r.t. 𝛽). For a given
blockchain 𝛽 , an execution function𝜔 and a set𝑌 ∈ Y(𝑋), we define
the completed blockchain game (B𝑌 , 𝜔). This is just the blockchain
game induced by 𝑌 , together with the utility function 𝑢 = (𝑢 𝑗) 𝑗∈𝑀 ,
where 𝑢 𝑗 : Σ𝑏𝑔 → R≥0 for 𝑗 ∈ 𝑀 is defined, similarly to (1), as the
expected fees obtained by player 𝑗 , together with any other funds
that can be claimed by 𝑗 according to the execution function, i.e.,
𝑢 𝑗 (𝜎𝑏𝑔) =

∫
O𝑀 (𝑌) 𝜔 𝑗 (𝑏)d𝑃𝜎𝑏𝑔 (𝑏). One can compute the set of strat-

egy profiles Σ𝑌𝑏𝑔 , containing all (mixed-strategy) Nash equilibria
of (B𝑌 , 𝜔), after iterated removal of weakly dominated strategies4.
We call Σ𝑌𝑏𝑔 the optimal strategy set for 𝑌 w.r.t. 𝛽 . Similarly, we call

elements of Σ𝑌𝑏𝑔 the optimal strategy profiles for 𝑌 w.r.t. 𝛽 and de-

note them by 𝜎𝑏𝑔5. The collection (Σ𝑌𝑏𝑔)𝑌 ∈Y(𝑋) is the collection of
optimal strategy sets of 𝑋 . Keep in mind that an (optimal) strategy
profile in the cross-layer game would be a collection of (optimal)

4We assume that the blockchain model leads to a completed blockchain game such
that this set is non-empty.
5Note that𝜎𝑏𝑔 could be a mixed strategy, but it will still yield a probability distribution
on the appropriate space of blockchain orderings and is thus well-defined within our
framework.

strategy profiles for 𝑌 , for all 𝑌 that could be the outcome of the
application game.

Remark 3.7. For ease of presentation, we will henceforth assume
that for a given blockchain behaviour 𝛽 (implying player set 𝑀),
an execution function 𝜔 and a set 𝑌 ∈ Y(𝑋), |Σ𝑌𝑏𝑔 | = 1, i.e., there
will be a unique optimal strategy profile, denoted by 𝜎𝑌

𝑏𝑔
for 𝑌 w.r.t.

𝛽 . This allows us to define a utility function immediately for an
application game A = (𝑁,𝑋, Σ𝑎, 𝜋𝑎) as follows. For 𝑖 ∈ 𝑁 ∪𝑀 , let
𝑢𝑖 : Σ𝑎 → R map 𝜎𝑎 ↦→

∫
O𝑀 (𝜋𝑎 (𝜎𝑎)) 𝜔𝑖 (𝑏)d𝑃𝜎𝜋𝑎 (𝜎𝑎)

𝑏𝑔

(𝑏). We will

denote the completed application game w.r.t. 𝛽 as (A, 𝛽, 𝜔). The
definition of a CR easily extends to this completed application game.

As discussed earlier, a protocol is considered game-theoretically
secure if rational players, or coalitions thereof, have no incentive
to deviate from the prescribed strategy profile. For a given set of
transactions 𝑋 and a blockchain behaviour 𝛽 , we have defined
the optimal strategy sets of 𝑋 with respect to 𝛽 , allowing us to
describe how rational blockchain players will respond to any set
of transaction triples in Y(𝑋). With these components in place, we
can now define the notion of incentive compatibility for a protocol.

Definition 3.8 (IC w.r.t. 𝛽). Let Π =

(
𝑁, (A𝑝)𝑝∈P , (𝜎

𝑝
𝑎)𝑝∈P

)
be

a protocol, 𝛽 a blockchain behaviour (implying player set𝑀) and
(C𝑝

Π,𝛽
)𝑝∈P the corresponding collection of cross-layer games. We

say that Π is IC w.r.t. 𝛽 if for each 𝑝 ∈ P, the pair ((A𝑝 , 𝛽, 𝜔), 𝜎𝑝𝑎) is
IC w.r.t. 𝛽 . That is, after removal of weakly dominated strategies, the
strategy profile 𝜎𝑝𝑎 is a Nash equilibrium for every CR of (A𝑝 , 𝛽, 𝜔).
In other words, for each 𝜂 : 𝑁 ∪𝑀 → 𝑁 ∪𝑀 , we have for each
𝑖 ∈ 𝜂 (𝑁 ∪𝑀) and deviation 𝜎𝑎 from 𝜎

𝑝
𝑎 by 𝑖 , that 𝑢𝑖 (𝜎𝑝𝑎) ≥ 𝑢𝑖 (𝜎𝑎).

3.2 Cross-application Composition
A central goal of our framework is to reason about the incentive se-
curity of protocols not just in isolation, but when deployed together.
We refer to this property as security under composition. While the
previous section focused on a single protocol’s interaction with
the blockchain, real-world systems often involve multiple applica-
tions operating concurrently. These may interfere with each other
through shared blockchain resources—affecting both strategy and
outcome. To capture such settings, we now formalise the composi-
tion of parametrised application games. For simplicity, we assume
that the sets of transactions 𝑋1 and 𝑋2 generated by two protocols
Π1 and Π2 are disjoint; otherwise, we would no longer be modelling
two distinct protocols, but rather a single unified one.

Definition 3.9 (g-composition of parametrised application games).
Given the parametrised application games A1 := (A𝑝

1)𝑝∈P and
A2 := (A𝑞

2)𝑞∈Q , where for any 𝑝 ∈ P, A𝑝

1 = (𝑁1, 𝑋
𝑝

1 , Σ
𝑝

𝑎,1, 𝜋
𝑝

𝑎,1)
and any 𝑞 ∈ Q, A𝑞

2 = (𝑁2, 𝑋
𝑞

2 , Σ
𝑞

𝑎,2, 𝜋
𝑞

𝑎,2), and g is a collection
of functions g = (𝑔𝑝)𝑝∈P , where 𝑔𝑝 : Σ

𝑝

𝑎,1 → Q, we define
the 𝑔-composition of A2 and A1, denoted by A2 ◦g A1, as the
parametrised application game A2 ◦g A1 = (A𝑝)𝑝∈P , where for
any 𝑝 ∈ P, A𝑝 =

(
𝑁,𝑋𝑝 , Σ

𝑝
𝑎 , 𝜋

𝑝
𝑎

)
is defined by

• 𝑁 = 𝑁1 ∪ 𝑁2 is the set of players,
• 𝑋𝑝 = 𝑋

𝑝

1 ∪ ⋃
𝑞∈𝑔𝑝 (Σ𝑝𝑎,1)

𝑋
𝑞

2 is the set of transactions,

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 8

• Σ
𝑝
𝑎 is the set of strategy profiles, which up to natural identification

equals Σ𝑎,1 ×
∏

𝜎𝑎,1∈Σ𝑎,1 Σ
𝑔𝑝 (𝜎𝑎,1)
𝑎,2 .

• 𝜋
𝑝
𝑎 : Σ𝑝𝑎 → Y(𝑋𝑝) is the outcome function, mapping each 𝜎𝑎 =

(𝜎𝑎,1, (𝜎𝑎,2,𝜎𝑎)𝜎𝑎∈Σ𝑎,1) ∈ Σ
𝑝
𝑎 to 𝜋𝑝

𝑎,1 (𝜎𝑎,1) ∪ 𝜋
𝑔𝑝 (𝜎𝑎,1)
𝑎,2 (𝜎𝑎,2,𝜎𝑎,1).

Since the composition of two parametrised application games is
again a parametrised application game, we can use it to construct a
cross-layer game with respect to a blockchain behaviour 𝛽 . We can
now say whether two protocols are IC w.r.t 𝛽 under g-composition.

Definition 3.10 (IC w.r.t. 𝛽 under g-composition). Consider a block-
chain behaviour 𝛽 , an execution function 𝜔 , and two protocols
Π1 =

(
𝑁1, (A𝑝

1)𝑝∈P , (𝜎
𝑝

𝑎,1)𝑝∈P
)
,Π2 =

(
𝑁2, (A𝑞

2)𝑞∈Q , (𝜎
𝑞

𝑎,2)𝑞∈Q
)
.

We say that Π1 and Π2 are IC w.r.t. 𝛽 under g-composition if Π1 is IC
w.r.t. 𝛽 , Π2 is IC w.r.t. 𝛽 , and if for each 𝑝 ∈ P, ((A𝑝 , 𝛽, 𝜔), 𝜎𝑝𝑎) is
IC w.r.t. 𝛽 , where (A𝑝)𝑝∈P = A2 ◦g A1 and for each 𝑝 ∈ P, 𝜎𝑝𝑎 is

given, up to natural identification, by 𝜎𝑝𝑎 =

(
𝜎
𝑝

𝑎,1, (𝜎
𝑔𝑝 (𝜎𝑎)
𝑎,2)

𝜎𝑎∈Σ𝑝𝑎,1

)
.

Determining which protocols remain IC under g-composition,
and under what conditions on the blockchain and execution models,
is a challenging problem. In general, such results require specific
structural assumptions about the protocols, player utilities, and the
environment. We now highlight preliminary results in the setting
of additive execution functions. In the next section, we demonstrate
the applicability of our framework through illustrative examples
grounded in practical blockchain protocols.

Definition 3.11. Consider a blockchain behaviour 𝛽 (implying
player set𝑀) and an execution function 𝜔 . We say that the execu-
tion function 𝜔 is additive, if for any two different parametrised
application games (A𝑝

1)𝑝∈P and (A𝑞

2)𝑞∈Q , for every collection of
functions g = (𝑔𝑝)𝑝∈P , and for every 𝑝 ∈ P and 𝑖 ∈ 𝑁 ∪𝑀 , the
utility function 𝑢𝑝

𝑖
: Σ𝑝𝑎 → R of the completed application game

((A2 ◦g A1)𝑝 , 𝛽, 𝜔) is given by the map (𝜎𝑎,1, (𝜎𝑎,2,𝜎 ′
𝑎
)𝜎 ′

𝑎∈Σ𝑎,1) ↦→
𝑢
𝑝

1,𝑖 (𝜎𝑎,1)1{𝑖∈𝑁1 }+𝑢
𝑔𝑝 (𝜎𝑎,1)
2,𝑖 (𝜎𝑎,2,𝜎𝑎,1)1{𝑖∈𝑁2 } , where𝑢

𝑝

1,𝑖 is the util-
ity function of the completed application game (A𝑝

1 , 𝛽, 𝜔) and 𝑢
𝑞

2,𝑖
the utility function of the completed application game (A𝑞

2 , 𝛽, 𝜔).

A simple result holds for compositions with collections g =

(𝑔𝑝)𝑝∈P , where for each 𝑝 ∈ P,𝑔𝑝 is a constant function of𝜎𝑎 ∈ Σ
𝑝
𝑎 ,

i.e., for all 𝜎𝑎 ∈ Σ
𝑝
𝑎 , 𝑔𝑝 (𝜎𝑎) = 𝑞 for some 𝑞 ∈ Q.

Theorem 3.12 (B.1). Let 𝛽 be a blockchain behaviour and 𝜔 an
additive execution function. Let Π1 = (𝑁1, (A𝑝

1)𝑝∈P , (𝜎
𝑝

𝑎,1)𝑝∈P)
and Π2 = (𝑁2, (A𝑝

2)𝑞∈Q , (𝜎
𝑞

𝑎,2)𝑞∈Q) be two IC protocols w.r.t. 𝛽 .
ThenΠ1 andΠ2 are IC w.r.t. 𝛽 under g-composition, for each collection
g = (𝑔𝑝)𝑝∈P of constant functions, i.e., where for each 𝑝 ∈ P, there
exists some 𝑞𝑝 ∈ Q such that 𝑔𝑝 (𝜎𝑎,1) = 𝑞𝑝 for each 𝜎𝑎,1 ∈ Σ

𝑝

𝑎,1.

4 ILLUSTRATIVE USE CASES
To illustrate the applicability of our framework, we present a se-
quence of examples and analyse their security properties. We begin
by studying COMG in more detail. Next, we consider the closing of
a Hashed Timelock Contract (HTLC) in a payment channel (PC). In
particular, we stress that the miners’ behaviour analysed in COMG

can be directly reused for the HTLC closing. This illustrates how
our framework supports modular analysis across layers.

We then extend the setting to include a second PC, enabling us
to reason about cross-application interactions. We further analyse
a recent PC construction introduced by Aumayr et al. [4], which
is designed to be secure against rational miners. We show how to
prove this construction secure in a more systematic and modular
fashion. Unlike the original, more ad hoc proof, our framework
supports replacing the underlying blockchain model when deemed
unfit for a specific application of the PC construction.

Finally, we conclude by outlining a broader class of applications,
including cross-dApp interactions, cross-chain protocols, and multi-
layer mechanisms such as proposer-builder separation (PBS). While
not formalised here, these examples illustrate the wider applica-
bility of our framework to modelling incentive dynamics across
heterogeneous blockchain protocols and deployment architectures.

4.1 The Censor-Only Miner Game
In several of the forthcoming examples, we must determine the
probability distribution over blockchain orderings induced by a
given set of transaction triples. Since most examples adopt COMG
as their blockchain model, we begin by analysing it in greater detail.
Specifically, we investigate theminer strategy that maximises utility
in the completed COMG ((𝝀, 𝑌 , Σ𝑏,0, 𝜋𝑏,0), 𝜔), where 𝑌 is a set of
transaction triples and 𝜔 is a Bitcoin-like execution function. This
execution function is designed such that only orderings consistent
with Bitcoin’s rules (e.g., no double-spends, proper timelocks) are
incentivised. Accordingly, we assume that miners avoid proposing
block orderings containing invalid transactions—such as double-
spends or prematurely spendable outputs.

Intuitively, when a miner observes a valid transaction that does
not conflict with existing ones and offers a positive fee, it is rational
to include it immediately in that miner’s block proposal for the cur-
rent round. Since all miners behave identically, the transaction will
be included with probability one in the round it becomes available.

The situation becomes more intricate when the transaction set
contains mutually exclusive elements, such as transactions spend-
ing the same inputs. If multiple such transactions can be included
immediately, miners will prefer the one yielding the highest fee.
By “preferring” a transaction, we mean ordering it ahead of its
competitors so that it is executed while the others are rendered
invalid. A more subtle question arises when two mutually exclusive
transactions offer different timing constraints: one is immediately
includable, while the other is subject to a timelock. This tension
has been explored in various mining models [4, 8, 43]. We now
examine this scenario in the context of COMG. To do so, we con-
sider the minimal setting where 𝑌 = {(𝑥1, 𝑡1, 𝑓1), (𝑥2, 𝑡2, 𝑓2)}, with
𝑥1 available from time 0 and 𝑥2 only from time 𝑇 . Let us analyse
the miner’s optimal strategy in this case and outline the resulting
blockchain dynamics. We distinguish multiple cases; (1) if 𝑡1 < 𝑡2,
the miners will only be aware of 𝑥1 at round 𝑡1 and will thus include
𝑥1 right away. Otherwise, (2) if 𝑡1 > 𝑡2, the miners will be aware
of 𝑥2 earlier. (a) If 𝑡2 < 𝑇 , the miners cannot yet include 𝑥2, (i) if
also 𝑡1 < 𝑇 , the miners have to decide from round 𝑡1 whether to
include or censor 𝑥1. (ii) If 𝑡1 > 𝑇 , the miners will include 𝑥2 at𝑇 as
they are not aware of 𝑥1. (iii) If 𝑡1 = 𝑇 , either transaction could be

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 9

mined, so the transaction will be included which yields the higher
fee. If both fees are equal, either transaction has a probability of
1/2 of being included. Alternatively, (b) if 𝑡2 ≥ 𝑇 , the miners will
include 𝑥2 at 𝑡2 as they are again not aware of 𝑥1. Finally, (3) if
𝑡1 = 𝑡2, we have two cases: (a) if 𝑡1 = 𝑡2 < 𝑇 , the miners have to
decide from round 𝑡1 whether to include or censor 𝑥1, and (b) if
𝑡1 = 𝑡2 ≥ 𝑇 , either transaction could be mined, so the transaction
which yields the higher fee will be included. If both fees are equal
either transactions has a probability of 1/2 to be included.

The non-trivial cases are (2) (a) (i) and (3) (a). The former re-
duces to the latter, so we will, without loss of generality, narrow
down our analysis to the setting where 𝑡1 = 𝑡2 = 0 and 𝑇 > 0. We
will also assume that 𝑓1 < 𝑓2. Indeed, if 𝑓1 > 𝑓2, even if the two
transaction were valid at the same time, the miners would already
favour 𝑥1, even more so if 𝑥1 is valid before 𝑥2. A similar argument
could be made for 𝑓1 = 𝑓2; miners would prefer to obtain a fee
𝑓1 = 𝑓2 now rather than the same fee later, at 𝑇 . Similar to [36], we
determine for each miner 𝑗 = 1, . . . ,𝑚, at each round 𝑡 = 0, . . . ,𝑇 ,
whether this miner should include 𝑥1 in its block template for round
𝑡 , or censor 𝑥1 with the aim of including 𝑥2 later. We present our
findings in Theorem 4.1, which we prove in Appendix B.2.

Theorem 4.1 (B.2). Consider the COMG (𝝀, 𝑌 , Σ𝑏𝑔,0, 𝜋𝑏𝑔,0) with
hashrate distribution 𝝀 =

(
𝜆 𝑗

)𝑚
𝑗=0, and 𝑌 =

{
(𝑥1, 0, 𝑓1), (𝑥2, 0, 𝑓2)

}
,

such that 𝑥2 can be included at or after round 𝑇 > 0. Assume that
𝑓1 < 𝑓2. Then the optimal strategy (𝜎𝑡

𝑏𝑔,𝑗
)𝑇
𝑡=0 for miner 𝑗 = 1, . . . ,𝑚

is to include 𝑥1 if 𝑡 < 𝑡∗
𝑗
, and to censor 𝑥1 until 𝑇 if 𝑡 ≥ 𝑡∗

𝑗
, for any

𝑡 = 0, . . . ,𝑇 , where we let 𝑡∗
𝑗
= 𝑇 − ⌈𝜌 𝑗 ⌉, where 𝜌 𝑗 (𝑓1, 𝑓2;𝝀) is defined

recursively as

𝜌 𝑗 = ⌈𝜌 𝑗−1⌉ +
log 𝑓1

𝜆 𝑗 𝑓2
− ∑𝑗−1

𝑖=ℓ+1 (⌈𝜌𝑖 ⌉ − ⌈𝜌𝑖−1⌉) log
(∑𝑚

𝑘=𝑖
𝜆𝑘

)
log

∑𝑚
𝑘=𝑗

𝜆𝑘
,

for 𝑗 = ℓ + 1, . . . ,𝑚, where ℓ is defined such that 𝜆ℓ ≤ 𝑓1/𝑓2 < 𝜆ℓ+1.
For 𝑗 = 1, . . . , ℓ , we have 𝜌 𝑗 = 0.

Moreover, the probability 𝑝 (𝑇 ;𝝀, 𝑓1, 𝑓2) that 𝑥1 is included instead
of 𝑥2 is 1 if 𝑇 > ⌈𝜌𝑚⌉ and for ⌈𝜌 𝑗−1⌉ < 𝑇 ≤ ⌈𝜌 𝑗 ⌉ is given by

𝑝 (𝑇 ;𝝀, 𝑓1, 𝑓2) = 1 − ©­«
𝑚∑︁
𝑘=𝑗

𝜆𝑘
ª®¬
𝑇−⌈𝜌 𝑗−1 ⌉ 𝑗−1∏

𝑖=1

©­«
(
𝑚∑︁
𝑘=𝑖

𝜆𝑘

) ⌈𝜌𝑖 ⌉−⌈𝜌𝑖−1 ⌉ª®¬.
Intuitively, this theorem tells us for any hashrate distribution,

at what time before 𝑇 each miner will start censoring 𝑥1. This
enables us to determine at every point in time before 𝑇 with what
probability 𝑥1 will be censored until 𝑇 . In particular, this allows us
to determine how long a timelock should be in order to have a zero
probability of censoring for given values of 𝑓1 and 𝑓2.

4.2 Timelock-based Games
Building on our analysis of miner incentives in isolation, we now
shift to the application layer to demonstrate how these incentives
affect protocol execution in a compositional setting.

4.2.1 An HTLC in a Payment Channel. We begin with a classic
protocol, Hashed Timelock Contracts (HTLCs) inside a PC, to show
how miners directly impacts the incentives of PC participants.

Assume that Alice and Bob have a PC, where the current state
is that Alice holds a balance 𝑣𝐴 , Bob a balance 𝑣𝐵 , and there is an

amount 𝑣 locked in an HTLC fromAlice to Bob, with timelock𝑇 and
secret 𝑠 . The channel can be closed in this state with a transaction
𝑥𝐻 . The HTLC is a transaction output in 𝑥𝐻 which can be spent in
two ways. Bob can claim the amount 𝑣 by posting the transaction
𝑥
𝐵
. To be able to post this transaction, Bob needs to include the

secret 𝑠 in the transaction witness. If Bob did not do so after 𝑇
blocks, Alice can get her funds back by posting 𝑥

𝐴
.

Alice and Bob can collaborate in order to update the state of their
channel. They can also always close the channel by posting one of
the fully-signed commitment transactions they have. We present
an application game that certainly oversimplifies the protocol, but
that will be able to describe the IPB. In this game, we assume that if
Alice and Bob collaborate, they either decide to revert the payment,
leading to a transaction 𝑥𝑅 where Alice holds 𝑣𝐴 + 𝑣 and Bob 𝑣𝐵 , or
to complete the payment, leading to a transaction 𝑥𝑃 where Alice
holds 𝑣𝐴 and Bob 𝑣𝐵 + 𝑣 .

Definition 4.2 (HTLC Application Game). We define the HTLC
application game H𝑝 with parameter 𝑝 = (𝑡𝑠 , 𝑡𝑒), timelock 𝑇 , secret
𝑠 (which Bob learns at time 𝑡𝑠), and values (𝑣𝐴, 𝑣𝐵, 𝑥) between 𝐴 and
𝐵 as an application game with player set 𝑁 = {𝐴, 𝐵}, and where
(𝑋, Σ𝑎, 𝜋) are defined implicitly by the sequence (𝐻𝑡)𝑡

𝑒

𝑡=0, where
𝐻𝑡 is defined by Figures 1a and 1b.

By the notation 𝑌 ∪ 𝐻𝑡+1, we mean that we move on to playing
𝐻𝑡+1, but that the set 𝑌 will be outputted additionally to every
leaf of 𝐻𝑡+1. Whenever a transaction triple is preceded by “𝐴 :” or
“𝐵 :”, this indicates that Alice or Bob, respectively, will post that
transaction triple, and will decide at that point in the game on
the transaction fee. In other words, an action is concealed within
this node. If this notation is absent, the fee is indicated to be zero,
meaning that this transaction will only be included if no other
conflicting transactions are posted. This is to simulate the case
in which the channel remains open. In that case, no fees are paid
and Alice and Bob can keep using the channel. Finally, we have
indicated in red the IPB for 𝑡 < 𝑇 , which amounts to doing nothing
as long as the secret is unknown, and Bob sharing it once he learns
it, and in green the IPB for 𝑡 ≥ 𝑇 , which amounts to reverting the
payment off-chain once the timelock expired.

First of all, note that setting P = N0 × N0 defines an obvious
parametrised application game (H𝑝)𝑝∈P . Second, realise that H𝑝

is essentially a game tree with at each leaf a set of transaction triples.
By playing the completed HTLC application game, implied by some
𝛽 and 𝜔 , we can replace these sets of transaction triples by utilities
for Alice and Bob. Standard computational tools could be used to
solve this game, especially for larger 𝑡𝑒 .

We can however make some general statements for the com-
pleted HTLC application game. Let us consider the game H𝑝 with
𝑝 = (0,𝑇), where 𝑇 > 0 is the timelock. This specific choice of
parameters already captures a lot of interesting behaviour, and is
quite general. Indeed, one can convince themselves that at time
𝑡 = 𝑇 , every strategy that brings the game to the next round𝐻𝑇+1 is
strictly dominated by an action in𝐻𝑇 , in which Alice will definitely
try to revert the payment or get 𝑥𝐴 included. Furthermore, we can
think of a game with 𝑡𝑠 = 𝑡 ′ > 0 and timelock 𝑇 > 𝑡 ′ as a game
with 𝑡𝑠 = 0 and timelock 𝑇 ′ = 𝑇 − 𝑡 ′.

One can show that forH (0,𝑇) , the IPB as defined in Definition 4.2
is actually not IC w.r.t 𝛽0, where 𝛽0 is modelled by COMG with

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 10

A

Ht+1

no refund refund

B

ß
A : (xH , t, fH

t)
A : (xA, t, fA

t)

™
∪Ht+1

reject

{
(xR, t, fR

t = 0)
}

accept

B

ß
A : (xH , t, fH

t)
A : (xA, t, fA

t)

™
∪Ht+1

reject

{
(xR, t, fR

t = 0)
}

accept

(a) Tree for 𝐻𝑡 for 𝑡 < 𝑡𝑠 . If 𝑡 = 𝑡𝑒 , replace
𝐻𝑡+1 by ∅.

B

on-chain
share

no share

A

ß
B : (xH , t, fH

t)
B : (xB , t, fB

t)

™
∪Ht+1

ignore




B : (xH , t, fH

t)
B : (xB , t, fB

t)
A : (xA, t, fA

t)



 ∪Ht+1

react

A

{
(xP , t, fP

t = 0)
}

update

ß
B : (xH , t, fH

t)
B : (xB , t, fB

t)

™
∪Ht+1

no update

A

Ht+1

no refund refund
B

ß
A : (xH , t, fH

t)
A : (xA, t, fA

t)

™
∪Ht+1

reject

{
(xR, t, fR

t = 0)
}

accept

B

ß
A : (xH , t, fH

t)
A : (xA, t, fA

t)

™
∪Ht+1

reject

{
(xR, t, fR

t = 0)
}

accept

(b) Tree for 𝐻𝑡 for 𝑡 ≥ 𝑡𝑠 . If 𝑡 = 𝑡𝑒 , replace 𝐻𝑡+1 by ∅.

hashrate distribution 𝝀. To make it IC, we would have to alter the
red lines starting from 𝑡 = 𝑡∗𝑚 (𝑓 𝐵, 𝑣 ;𝝀,𝑇), where 𝑡∗𝑚 is as defined
in Theorem 4.1, and where 𝑓 𝐵 is the maximum fee Bob is willing
to pay for 𝑥𝐵 . Indeed, from that point onward, Alice can force Bob
to close the channel and with nonzero probability she will manage
to censor Bob’s 𝑥𝐵 , at least forcing Bob to pay a fee higher than
𝑓 𝐵 in order to get his 𝑥𝐵 in (and paying no fees herself), or at
best censoring 𝑥𝐵 and turning a profit herself. This deviation from
Alice has a strictly greater expected utility. We will omit the exact
description of this IC strategy profile.

On the other hand, notice that for any value of 𝑓 𝐵 , Bob can
choose the timelock 𝑇 > 0 accordingly in order for 𝑡∗𝑚 (𝑓 𝐵, 𝑣 ;𝝀,𝑇)
to be strictly greater than zero. In that case, we will always end
up down the path (share,update) in the tree for 𝐻0, at the end of
which Alice and Bob update their channel, as it is not rational for
either of them to deviate6. Hence, for suitable 𝑇 and 𝑓 𝐵 , the IPB
will lead to the game ending up down the path (share,update) in
the tree for 𝐻0.

For𝑇 = 0, the IPB indicated in Definition 4.2 is not IC w.r.t. 𝛽0, as
Bob is indifferent between updating the channel collaboratively and
closing the channel and paying at most 𝑣 in fees to get 𝑥𝐵 included
(which happens with probability 1/2) if Alice also pays 𝑣 in fees to
get 𝑥𝐴 included. Finally, for 𝑡𝑠 > 𝑇 , the analysis is trivial as Bob
will not learn the secret before the game ends. The indicated IPB is
again not IC here as in the round 𝑡 = 𝑇 , Bob is actually indifferent
between accepting and rejecting.

4.2.2 Two HTLCs, Two Payment Channels. The HTLC within a
PC is arguably among the simplest protocols in the blockchain
setting. As we have seen, even this basic construction can fail to be
IC. Nonetheless, under certain conditions, Alice and Bob may still
adhere—at least partially—to the IPB. We now extend our analysis
to a setting with two PCs, each containing an HTLC. While incen-
tive compatibility under g-composition is clearly unattainable, this
example offers insight into how compositional effects can reshape
incentive structures.

To this end, consider two PCs: one between Alice and Bob, and
one between Charlie and Dave. We assume both channels set up
their HTLCs at 𝑡 = 0, with timelocks 𝑇1,𝑇2, secrets 𝑠1, 𝑠2, and
values (𝑣𝐴, 𝑣𝐵, 𝑣1), (𝑣𝐶 , 𝑣𝐷 , 𝑣2), respectively. We model both PCs
via parametrised HTLC application games (H (𝑡𝑠1 ,𝑡𝑒1)

1) (𝑡𝑠1 ,𝑡𝑒1) ∈P and

6Assuming Alice prefers to keep the channel open; otherwise she would be indifferent
to not updating and letting Bob close the channel and thus letting him pay the fees.

(H (𝑡𝑠2 ,𝑡𝑒2)
2) (𝑡𝑠2 ,𝑡𝑒2) ∈Q with P = Q = N0 × N0. By defining suitable

compositions, we can reason about non-trivial cases where one
channel’s behaviour may influence the other. Assume for simplicity
that 𝑡𝑒1 = 𝑡𝑒2 = 𝑇 := 𝑇1 ∨𝑇2. As in the single-channel case, this only
removes dominated strategies.

Let us now study, without loss of generality, two kinds of com-
positions of (H (𝑝,𝑇)

1)
𝑝∈N0

and (H (𝑞,𝑇)
2)

𝑞∈N0
. Trivially, we could

define the collection g𝑖𝑛𝑑 = (𝑔𝑖𝑛𝑑𝑞)
𝑞∈N0

where for all 𝑞 ∈ N0,

𝑔𝑖𝑛𝑑𝑞 (𝜎𝑎,2) = 𝑞 for every 𝜎𝑎,2 ∈ Σ
(𝑞,𝑇)
𝑎,2 . This “independent” com-

position would correspond with the two channels having nothing
to do with each other, except that Bob and Dave learn 𝑠1 and 𝑠2,
respectively, at the same time 𝑞 ∈ N0. It is useful to keep in mind
that we could have defined the “HTLC in PC”-IPB differently, and
would now have been able to apply Theorem 3.12 to conclude that
these modified protocols are secure under g𝑖𝑛𝑑 -composition.

Another collection we could define is g𝑑𝑒𝑝 = (𝑔𝑑𝑒𝑝𝑞)
𝑞∈N0

where

for all 𝑞 ∈ N0, 𝑔𝑑𝑒𝑝𝑞 (𝜎𝑎,2) = 𝜏𝐶 (𝜎𝑎,2) for every 𝜎𝑎,2 ∈ Σ
(𝑞,𝑇)
𝑎,2 , where

𝜏𝐶 (𝜎𝑎,2) ∈ N0 is the time at which Charlie learns the secret when
strategy profile 𝜎𝑎,2 ∈ Σ

(𝑞,𝑇)
𝑎,2 is chosen. This “dependent” composi-

tion essentially reflects a setting in which Charlie and Bob are the
same entity (or where Charlie passes the secret on to Bob as soon
as he learns it). Note that we could have either 𝑠1 = 𝑠2 or 𝑠1 ≠ 𝑠2;
after all, it does not really matter as the composition encapsulates
the dynamic that Bob can figure out 𝑠1 as soon as Charlie learns 𝑠2.

This dependent composition poses some additional conditions
that the two protocols should have had to satisfy in order to be
secure under g𝑑𝑒𝑝 -composition. In particular, consider a CR in
which Alice and Dave are one party, and Bob and Charlie are one
party. That is, we have the channels Dave-Charlie (H1) and Charlie-
Dave (H2). Then 𝑇1 should be sufficiently larger than 𝑇2 to prevent
Dave from deviating and hence avoiding Charlie losing funds.

Theorem 4.3 (B.3). In the above setting, with the usual COMG,
it is necessary in order for Dave not to deviate from the IPB, that

𝑡∗𝑚 (𝑓𝐶1 , 𝑣1;𝝀,𝑇1) + 1 ≥ 𝑡∗𝑚 (𝑓 𝐷2 , 𝑣2;𝝀,𝑇2).

4.2.3 Wormhole Attack. We conclude this section by noting that
the parametrised game approach easily scales to multiple composi-
tions. We could model for example the composition of three chan-
nels Alice-Bob, Bob-Charlie and Charlie-Dave. All channels have
set up an HTLC at 𝑡 = 0, with timelocks 𝑇1,𝑇2,𝑇3, secrets 𝑠1, 𝑠2, 𝑠3
and values (𝑣𝐴1 , 𝑣

𝐵
1 , 𝑣1), (𝑣

𝐵
2 , 𝑣

𝐶
2 , 𝑣2), (𝑣

𝐶
3 , 𝑣

𝐷
3 , 𝑣3), respectively. We

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 11

assume moreover that the timelocks satisfy the condition in Theo-
rem 4.3, mutatis mutandis.

The PCs are modelled via parametrised HTLC application games
(H (𝑡𝑠1 ,𝑇)

1)
𝑡𝑠1 ∈N0

, (H (𝑡𝑠2 ,𝑇)
2)

𝑡𝑠2 ∈N0
and (H (𝑡𝑠3 ,𝑇)

3)
𝑡𝑠3 ∈N0

, where we let
𝑇 := 𝑇1∨𝑇2∨𝑇3. By clever use of compositions, we can accommodate
for the possibility of Bob and Dave colluding, in such a way that
Bob learns the secret 𝑠1 at the same time that Dave learns 𝑠3. Indeed,
we can study the following composition H := H1 ◦g12 H2 ◦g23 H3,
where g23 would be like g𝑑𝑒𝑝 , i.e. g23 = (𝑔23𝑟)

𝑟 ∈N0
with for all

𝑟 ∈ N0, 𝑔23𝑟 (𝜎𝑎,3) = 𝜏𝐷 (𝜎𝑎,3) for every 𝜎𝑎,3 ∈ Σ𝑟,𝑇
𝑎,3 , and where

g12 would be like g𝑖𝑛𝑑 , i.e. g12 = (𝑔12𝑞)
𝑞∈N0

with for all 𝑞 ∈ N0,

𝑔12𝑞 (𝜎𝑎,2) = 𝑞 for every 𝜎𝑎,2 ∈ Σ
𝑞,𝑇

𝑎,2 . From now on, we refer with
Dave to both Bob and Dave.

Theorem 4.4 (B.4). In the above setting, with usual COMG, Dave
deviates from the IPB in H1 ◦g12 H2 ◦g23 H3 if 𝑣2 > 𝑣3.

In essence, Theorem 4.4 states that Dave will manage to steal
the routing fee meant for Charlie, as usually 𝑣2 = 𝑣3 + 𝑓𝐶𝑟𝑜𝑢𝑡𝑒 in
order to reward 𝑓𝐶𝑟𝑜𝑢𝑡𝑒 Charlie for routing the payment. Charlie, in
the meantime, is simply under the impression that the payment
failed. This shows that the currently used HTLC construction in
for example the Lightning Network is vulnerable to the so-called
wormhole attack [35]. Mitigations to this attack are known, which in
terms of our framework would make it impossible to have the g12-
composition as we defined it now, forcing a dependent composition
ofH1 andH2, similar to g23.

4.2.4 A CRAB Payment Channel. Unlike the prior examples, where
the structure of the underlying PC was kept implicit, we now con-
sider a specific construction in detail. In particular, Lightning-style
channels are known to be vulnerable to bribing attacks whenminers
behave rationally [4]. To address this, Aumayr et al. [4] introduced
the CRAB channel, a design that mitigates such attacks. The core
idea is to let the participants each put in an additional collateral 𝑐
into the channel, that will be rewarded to a miner in case a partic-
ipant misbehaves by publishing an old channel state. The CRAB
construction introduces a delay 𝑇 before which the party closing
the channel cannot claim their balance. In Appendix A, we write
the CRAB channel closing protocol as an application game K𝑇 ,
which leads us to the following result.

Theorem 4.5 (B.5). In, (K𝑇 ,B0,K𝑇 , 𝜔), Alice will not post an old
commitment transaction if𝑇 > ⌈𝜌𝑚 (𝑐, 𝑣 ;𝝀)⌉, where 𝝀 is the hashrate
distribution assumed in B0,K𝑇 .

Remark 4.6. If we assume the worst-case hashrate distribution
𝝀 = (0, 12 ,

1
2), we have 𝜌1 = 𝜌2 equal to 0 if 𝑐

𝑣 > 1
2 and equal to ∞

otherwise, so we retrieve the same condition as Aumayr et al. [4] that
𝑐 > 𝑣

2 in order for Alice not to post an old commitment transaction.
We stress once again that we can easily keep the application game as is
and study the CRAB channel under different blockchain assumptions
without changing the proof.

4.3 A Simple Example of MEV
The previous examples focused on how application-layer strategies
interact with a fixed blockchain model. We now shift focus to the

network layer, exploring how transaction propagation itself can
shape incentives and strategic behaviour. Until now, the network
game has been kept intentionally simple: all players in the block-
chain game receive the full set of transaction triples produced by the
application game. We now consider a richer network game where
application-layer players can selectively forward transactions to
specific blockchain participants. This models limited propagation
which can influence MEV outcomes and strategic behaviour.

Consider the following abstract model of a DeFi smart contract
where a user 𝑈 makes a trade by placing a buy limit order, i.e.,
a transaction 𝑥

𝑈
, that buys some asset for a price up to 𝑙 . The

current price is 𝑙 − 𝑠 , with 𝑠 ≥ 0, and so if 𝑥
𝑈

were included as
is, 𝑈 would have utility 𝑠 . However, the miners are also able to
interact with the smart contract and are thus part of the application
game. Upon seeing 𝑥

𝑈
, each miner has the capability to front- and

backrun, or sandwich, 𝑥
𝑈
. In particular, each miner 𝑗 ∈ 𝑀 could

add a transaction 𝑥
𝐹,𝑗

before 𝑥
𝑈

buying the asset at price 𝑙 − 𝑠 ,
and a transaction 𝑥

𝐵,𝑗
after 𝑥

𝑈
, selling the asset again at price 𝑙 . In

doing so, the miner captures 𝑠 and 𝑈 is left with utility 0, as the
transaction now buys at price 𝑙 instead of 𝑙 − 𝑠 .

We model this by playing the application game A = ({𝑈 } ∪
𝑀, {𝑥

𝑈
} ∪ {𝑥

𝐹,𝑗
, 𝑥

𝐵,𝑗
} 𝑗∈𝑀 , Σ𝑎, 𝜋𝑎). The set 𝑀 contains the min-

ers, who are all part of the application game and can thus mon-
itor the intents of other players. The strategy profile set Σ𝑎 re-
flects this by corresponding to a simultaneous game in which each
miner gets to decide whether or not construct sandwiching trans-
actions, upon seeing 𝑥

𝑈
. We will assume that (𝑥

𝑈
, 0, 𝑓) ∈ 𝜋𝑎 (𝜎𝑎)

for each 𝜎𝑎 ∈ Σ𝑎 , with 𝑓 > 0 some fixed fee. Afterwards, we
play for a given 𝜋𝑎 (𝜎𝑎) a network game where 𝑈 gets to decide
to which miners to send (𝑥

𝑈
, 0, 𝑓), i.e., the network game N =

({𝑈 }, 𝑀, 𝜋𝑎 (𝜎𝑎),P(𝑀), 𝜋𝑛𝑔), where 𝜎𝑛𝑔 ∈ P(𝑀) is the strategy
profile containing the set of miners that 𝑈 chose to share 𝑥

𝑈
with,

and 𝜋𝑛𝑔 (𝜎𝑛𝑔) is the tuple (𝜋𝑛𝑔,𝑗 (𝜎𝑛𝑔)) 𝑗∈𝑀 where for each 𝑗 ∈ 𝑀 ,
𝜋𝑛𝑔,𝑗 (𝜎𝑛𝑔) is defined as 𝜋𝑎 (𝜎𝑎) ∩ {(𝑥

𝐹,𝑗
, 0, 0), (𝑥

𝐵,𝑗
, 0, 0)} if 𝑗 ∈ 𝜎𝑛𝑔

and 𝜋𝑎 (𝜎𝑎) ∩ {(𝑥
𝐹,𝑗
, 0, 0), (𝑥

𝐵,𝑗
, 0, 0)} \ {(𝑥

𝑈
, 0, 𝑓)} otherwise. Re-

mark that although the miners might already know 𝑈 wants to
make the trade 𝑥

𝑈
, they would only be willing to sandwich 𝑥

𝑈
if

they have actually received 𝑥
𝑈
as input to the blockchain game.

For a given 𝜋𝑛𝑔 (𝜎𝑛𝑔), the subsequent blockchain game is given by
(𝑀, 𝜋𝑛𝑔 (𝜎𝑛𝑔), Σ𝑏𝑔, 𝜋𝑏𝑔)7. We specify Σ𝑏𝑔 = {𝐻,𝐷} |𝑀 | , where each
miner decides whether to (𝐻) just include 𝑥

𝑈
, or to (𝐷) sandwich 𝑥

𝑈
,

if they were to receive the transaction 𝑥
𝑈
. One miner 𝑗 ∈ 𝑀 then

gets selected at random (proportional to its hashrate) to propose the
blockchain ordering, which will either be 𝑏 = 𝑏𝐻,𝑗 (containing only
𝑥
𝑈
) or 𝑏 = 𝑏𝐷,𝑗 (containing 𝑥𝐹,𝑗 , 𝑥𝑈 , 𝑥𝐵,𝑗). This implicitly defines

the ordering function 𝜋𝑏𝑔 . We moreover specify, for each possible
ordering 𝑏, the execution function 𝜔 for𝑈 as 𝜔𝑈 (𝑏) = 𝑠 if 𝑏 = 𝑏𝐻,𝑗

for some 𝑗 ∈ 𝑀 and 𝜔𝑈 (𝑏) = 0 if 𝑏 = 𝑏𝐷,𝑗 for some 𝑗 ∈ 𝑀 , and for
each 𝑗 ∈ 𝑀 as 𝜔 𝑗 (𝑏) = 𝑓 1𝑏=𝑏𝐻,𝑗

+ (𝑓 + 𝑠)1𝑏=𝑏𝐷,𝑗
.

From the above formulation, it is clear that without any addi-
tional measures, the miners will always choose strategy 𝐷 . Given
that,𝑈 will always end up with zero utility and does not have any
preference with regards to which miner to share (𝑥

𝑈
, 0, 𝑓) with. A

simple countermeasure to this inevitable MEV scenario would be to

7Notice the abuse of notation, 𝜋𝑛𝑔 (𝜎𝑛𝑔) is a tuple of sets of transaction triples.

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 12

introduce a trusted miner, holding a proportion 𝜆𝐻 of the hashrate.
We can model this miner as a player with only the strategy 𝐻 (or
equivalently assign a utility of −∞ to any strategy profile where
this miner has strategy 𝐷). Consequently, it is clear that𝑈 will only
share (𝑥

𝑈
, 0, 𝑓) with the trusted miner.

4.4 Broader Applications
Our framework is designed to facilitate compositional reasoning in
complex blockchain environments where incentive alignment arises
from the interaction of multiple protocols and layers. While earlier
case studies have formalised specific constructions, the framework
naturally generalises to a broader class of real-world settings. This
subsection outlines three principal categories that reflect common
compositional patterns in practice, each introducing distinct mod-
elling requirements and incentive dynamics. Detailed examples are
provided in Appendix C.
(i) Cross-application composition:Multiple decentralised ap-

plications (dApps) share a common blockchain infrastructure
and may interact implicitly through shared state or timing de-
pendencies. Representative examples include arbitrage between
decentralised exchanges (DEXs) or oracle-driven feedback loops,
where strategic behaviour emerges only from the interplay of
otherwise independent systems.

(ii) Cross-blockchain composition: Protocols such as atomic
swaps coordinate actions across independent blockchains with
distinct execution environments and trust models. By treating
each chain as a separate game and specifying inter-chain de-
pendencies explicitly, our framework enables modular analysis
under heterogeneous assumptions.

(iii) Complex Network and Multi-layer Dynamics: Architec-
tures like proposer-builder separation (PBS) span the applica-
tion, network, and consensus layers. Ourmodel treats each layer
explicitly, supporting rigorous reasoning about how network-
level logic (e.g., auctions among builders) and consensus-level
inclusion policies jointly affect incentive compatibility.
These categories illustrate how the framework accommodates

modern protocol designs that defy traditional single-layer analy-
sis. Concrete examples corresponding to each setting are outlined
informally in Appendix C, focusing on how the framework could
be instantiated to capture the relevant dynamics. Although these
use cases are not fully formalised, they demonstrate how modular
reasoning can be leveraged to isolate critical assumptions, detect
edge-case vulnerabilities, and explore design alternatives.

Crucially, each category supports meaningful questions that
would be difficult to approach without a layered and compositional
model. In cross-application scenarios, it enables formal reasoning
about whether composability introduces profitable but unintended
deviations, e.g., does arbitrage across DEXs destabilise pricingmech-
anisms, or can oracle design be hardened against feedback-driven
manipulation? In cross-chain protocols, our framework provides
the structure to analyse swap soundness under heterogeneous se-
curity assumptions, e.g., how do differences in block times, censor-
ship resistance, or finality affect incentive compatibility? Finally,
in multi-layer systems such as PBS and MEV auctions, the frame-
work enables principled mechanism design: which auction formats
discourage censorship? When does exclusive order flow lead to

centralisation? How should fees and rebates be structured to align
incentives across builders, searchers, and proposers? These exam-
ples demonstrate how the layered, compositional design of our
framework provides a modular and rigorous foundation for evalu-
ating incentive properties in emerging blockchain protocols.

5 CONCLUSION
In this work, we presented a compositional framework for analysing
the game-theoretic security of blockchain protocols. Unlike tradi-
tional approaches that analyse individual protocols in isolation
or assume fixed-layer behaviour, our model embraces the modu-
lar structure of modern blockchain ecosystems by decomposing
them into layered games. Each layer—the application, network, and
blockchain—is formalised as a strategic game, and interactions are
expressed through explicitly defined interfaces. This layered archi-
tecture allows us to reason not only about the behaviour of each
component but also about how incentive flows propagate across
the system.

At the core of our approach lies the definition of cross-layer
games and cross-application composition, which enable reasoning
about concurrent protocol execution and emerging vulnerabilities
such as bribing, censorship, and MEV. These abstractions support
modular security analysis: properties of individual layers or pro-
tocols can be verified and then composed, facilitating the study of
more complex interactions without rederiving the entire system’s
behaviour. Our use of parametrised games further introduces mod-
elling flexibility, allowing protocols to interleave in time or through
shared components.

Through detailed case studies, we demonstrate the expressive-
ness and utility of our framework. These examples show how ex-
isting incentive misalignments can be captured and formalised,
revealing both subtle vulnerabilities and new levers for robust pro-
tocol design.

This work also opens several directions for future research. First,
extending the framework to capture richer network models, in-
cluding asynchronous message propagation, selective delivery, or
targeted censorship, would better reflect the operational character-
istics of blockchain networks. Second, formalising the translation
from protocol specifications to application games is essential to
enable broader applicability and automation. Third, identifying the
classes of protocols that satisfy compositional incentive compatibil-
ity under various assumptions would clarify the expressive limits
of the framework. Finally, generalising the framework to support
parametrised families of blockchain environments, e.g., based on
hashrate distributions or latency assumptions, and exploring alter-
native definitions of incentive compatibility could yield practically
relevant, robust security guarantees across diverse deployments.

Our framework bridges a long-standing gap between incentive-
aware protocol analysis and modular security reasoning. It pro-
vides a foundation for understanding the strategic behaviour of
blockchain participants in complex, multi-protocol environments
and contributes to the development of provably secure, incentive-
aligned decentralised systems.

REFERENCES
[1] Ittai Abraham, Danny Dolev, and Joseph Y Halpern. 2013. Distributed protocols

for leader election: A game-theoretic perspective. In Distributed Computing:

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 13

27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18, 2013.
Proceedings 27. Springer, 61–75.

[2] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe
Martin, and Carl Porth. 2005. BAR fault tolerance for cooperative services. In
Proceedings of the twentieth ACM symposium on Operating systems principles.
45–58.

[3] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. 2019. Rationals vs byzantines in consensus-based blockchains.
arXiv preprint arXiv:1902.07895 (2019).

[4] Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, and Subhra Mazumdar. 2024.
Securing Lightning Channels against Rational Miners. In Proceedings of the 2024
on ACM SIGSAC Conference on Computer and Communications Security. 393–407.

[5] Lukas Aumayr, Zeta Avarikioti, Iosfi Salem, Stefan Schmid, and Michelle
Yeo. 2025. X-Transfer: Enabling and Optimizing Cross-PCN Transactions. In
Financial Cryptography and Data Security (FC).

[6] Zeta Avarikioti, Lioba Heimbach, Yuyi Wang, and Roger Wattenhofer.
2020. Ride the Lightning: The Game Theory of Payment Channels. In
Financial Cryptography and Data Security (FC). 264–283. https://doi.org/10.
1007/978-3-030-51280-4_15

[7] Zeta Avarikioti, Eleftherios Kokoris Kogias, Roger Wattenhofer, and Dionysis
Zindros. 2021. Brick: Asynchronous Incentive-Compatible Payment Channels.
In Financial Cryptography and Data Security (FC).

[8] Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos. 2022.
Suborn Channels: Incentives Against Timelock Bribes. In
Financial Cryptography and Data Security (FC).

[9] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Watten-
hofer. 2020. Cerberus Channels: Incentivizing Watchtowers for Bitcoin.
Financial Cryptography and Data Security (FC) (2020), 346–366. https://doi.org/
10.1007/978-3-030-51280-4_19

[10] Zeta Avarikioti, Stefan Schmid, and Samarth Tiwari. 2024. Musketeer: Incentive-
Compatible Rebalancing for Payment Channel Networks. Advances in Financial
Technologies (AFT) (2024). https://ia.cr/2023/938

[11] Zeta Avarikioti, Yuheng Wang, and Yuyi Wang. 2025. Thunderdome: Timelock-
Free Rationally-Secure Virtual Channels. In USENIX Security Symposium.

[12] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On bitcoin
and red balloons. In Proceedings of the 13th ACM Conference on Electronic Com-
merce, EC 2012, Valencia, Spain, June 4-8, 2012, Boi Faltings, Kevin Leyton-Brown,
and Panos Ipeirotis (Eds.). ACM, 56–73. https://doi.org/10.1145/2229012.2229022

[13] Christian Badertscher, Juan Garay, Ueli Maurer, Daniel Tschudi, and Vassilis
Zikas. 2018. But why does it work? A rational protocol design treatment of
bitcoin. In Advances in Cryptology–EUROCRYPT 2018: 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29-May 3, 2018 Proceedings, Part II 37. Springer, 34–65.

[14] Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. 2024. Transaction
Fee Mechanism Design in a Post-MEV World. In 6th Conference on Advances in
Financial Technologies, AFT 2024, September 23-25, 2024, Vienna, Austria (LIPIcs,
Vol. 316), Rainer Böhme and Lucianna Kiffer (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 29:1–29:24. https://doi.org/10.4230/LIPICS.AFT.2024.29

[15] Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. 2024. Transaction Fee
Mechanism Design with Active Block Producers. In Financial Cryptography and
Data Security. FC 2024 International Workshops - Voting, DeFI, WTSC, CoDecFin,
Willemstad, Curaçao, March 4-8, 2024, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 14746), Jurlind Budurushi, Oksana Kulyk, Sarah Allen,
Theo Diamandis, Ariah Klages-Mundt, Andrea Bracciali, Geoffrey Goodell, and
Shin’ichiro Matsuo (Eds.). Springer, 85–90. https://doi.org/10.1007/978-3-031-
69231-4_6

[16] Iddo Bentov, Pavel Hubáček, Tal Moran, and Asaf Nadler. 2021. Tortoise and
hares consensus: the meshcash framework for incentive-compatible, scalable
cryptocurrencies. In Cyber Security Cryptography and Machine Learning: 5th Inter-
national Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceedings
5. Springer, 114–127.

[17] Lea Salome Brugger, Laura Kovács, Anja Petkovic Komel, Sophie Rain, and
Michael Rawson. 2023. CheckMate: Automated Game-Theoretic Security Rea-
soning. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (Copenhagen, Denmark) (CCS ’23). Association for
Computing Machinery, New York, NY, USA, 1407–1421. https://doi.org/10.1145/
3576915.3623183

[18] Eric Budish, Andrew Lewis-Pye, and Tim Roughgarden. 2024. The Economic
Limits of Permissionless Consensus. In Proceedings of the 25th ACM Conference
on Economics and Computation, EC 2024, New Haven, CT, USA, July 8-11, 2024,
Dirk Bergemann, Robert Kleinberg, and Daniela Sabán (Eds.). ACM, 704–731.
https://doi.org/10.1145/3670865.3673548

[19] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[20] Xi Chen, Christos Papadimitriou, and Tim Roughgarden. 2019. An Axiomatic
Approach to Block Rewards. In Proceedings of the 1st ACM Conference on Ad-
vances in Financial Technologies (AFT ’19). Association for Computing Machinery,

124–131. https://doi.org/10.1145/3318041.3355470
[21] Tarun Chitra, Matheus V. X. Ferreira, and Kshitij Kulkarni. 2023. Credible, Optimal

Auctions via Blockchains. CoRR abs/2301.12532 (2023). https://doi.org/10.48550/
ARXIV.2301.12532 arXiv:2301.12532

[22] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE symposium on security and privacy (SP). IEEE, 910–927.

[23] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-
urable Consensus and Applications to Provably Secure Proof of Stake. Springer-
Verlag, Berlin, Heidelberg, 23–41. https://doi.org/10.1007/978-3-030-32101-7_2

[24] Daniel Mawunyo Doe, Jing Li, Dusit Niyato, Li Wang, and Zhu Han. 2023. In-
centive Mechanism Design for Mitigating Frontrunning and Transaction Re-
ordering in Decentralized Exchanges. IEEE Access 11 (2023), 96014–96028.
https://doi.org/10.1109/ACCESS.2023.3236891

[25] Ittay Eyal and Emin Gün Sirer. 2018. Majority is not enough: Bitcoin mining is
vulnerable. Commun. ACM 61, 7 (2018), 95–102.

[26] Juan Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013.
Rational protocol design: Cryptography against incentive-driven adversaries.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE,
648–657.

[27] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2024. The Bitcoin Backbone
Protocol: Analysis and Applications. J. ACM (apr 2024). https://doi.org/10.1145/
3653445 Just Accepted.

[28] Neil Ghani, Jules Hedges, ViktorWinschel, and Philipp Zahn. 2018. Compositional
Game Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). ACM, 472–481. https://doi.org/10.1145/3209108.3209165

[29] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles (Shanghai,
China) (SOSP ’17). Association for Computing Machinery, New York, NY, USA,
51–68. https://doi.org/10.1145/3132747.3132757

[30] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis.
2016. Blockchain mining games. In Proceedings of the 2016 ACM Conference on
Economics and Computation. 365–382.

[31] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,
357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[32] Aggelos Kiayias and Aikaterini-Panagiota Stouka. 2021. Coalition-safe equilibria
with virtual payoffs. In Proceedings of the 3rd ACM Conference on Advances in
Financial Technologies. 71–85.

[33] Kevin Liao and Jonathan Katz. 2017. Incentivizing blockchain forks via whale
transactions. In Financial Cryptography and Data Security: FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers 21. Springer, 264–279.

[34] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang, Ying-
Chang Liang, and Dong In Kim. 2019. A survey on blockchain: A game theoretical
perspective. IEEE Access 7 (2019), 47615–47643.

[35] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. 2018. Anonymous multi-hop locks for blockchain scalability and
interoperability. Cryptology ePrint Archive (2018).

[36] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. 2021. Timelocked
bribing. In Financial Cryptography and Data Security: 25th International Confer-
ence, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part I 25.
Springer, 53–72.

[37] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In Proceedings of
the ACM symposium on principles of distributed computing. 315–324.

[38] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable
off-chain instant payments.

[39] Sophie Rain, Zeta Avarikioti, Laura Kovács, and Matteo Maffei. 2023.
Towards a Game-Theoretic Security Analysis of Off-Chain Protocols.
IEEE Computer Security Foundations Symposium (CSF) (2023). https://arxiv.org/
abs/2109.07429

[40] Tim Roughgarden. 2024. Transaction Fee Mechanism Design. J. ACM 71, 4 (2024),
30:1–30:25. https://doi.org/10.1145/3674143

[41] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. 2021. MAD-HTLC:
Because HTLC is Crazy-Cheap to Attack. In 2021 IEEE Symposium on Security
and Privacy (SP). 1230–1248. https://doi.org/10.1109/SP40001.2021.00080

[42] Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. 2022. He-HTLC:
Revisiting Incentives in HTLC. Cryptology ePrint Archive, Paper 2022/546.
https://doi.org/10.14722/ndss.2023.24775 https://eprint.iacr.org/2022/546.

[43] YuhengWang, Jiliang Li, Zhou Su, and Yuyi Wang. 2022. Arbitrage attack: Miners
of the world, unite!. In International Conference on Financial Cryptography and
Data Security. Springer, 464–487.

https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_15
https://doi.org/10.1007/978-3-030-51280-4_19
https://doi.org/10.1007/978-3-030-51280-4_19
https://ia.cr/2023/938
https://doi.org/10.1145/2229012.2229022
https://doi.org/10.4230/LIPICS.AFT.2024.29
https://doi.org/10.1007/978-3-031-69231-4_6
https://doi.org/10.1007/978-3-031-69231-4_6
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3670865.3673548
https://doi.org/10.1145/3318041.3355470
https://doi.org/10.48550/ARXIV.2301.12532
https://doi.org/10.48550/ARXIV.2301.12532
https://arxiv.org/abs/2301.12532
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1109/ACCESS.2023.3236891
https://doi.org/10.1145/3653445
https://doi.org/10.1145/3653445
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1007/978-3-319-63688-7_12
https://arxiv.org/abs/2109.07429
https://arxiv.org/abs/2109.07429
https://doi.org/10.1145/3674143
https://doi.org/10.1109/SP40001.2021.00080
https://doi.org/10.14722/ndss.2023.24775
https://eprint.iacr.org/2022/546

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 14

[44] FredrikWinzer, Benjamin Herd, and Sebastian Faust. 2019. Temporary censorship
attacks in the presence of rational miners. In 2019 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 357–366.

[45] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai
Abraham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness
(PODC ’19). Association for Computing Machinery, New York, NY, USA, 347–356.
https://doi.org/10.1145/3293611.3331591

[46] Paolo Zappalà, Marianna Belotti, Maria Potop-Butucaru, and Stefano Secci. 2021.
Game Theoretical Framework for Analyzing Blockchains Robustness. In Leibniz
International Proceedings in Informatics (LIPIcs) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 209). Schloss Dagstuhl, Freiburg, Germany, 42:1–42:18.
https://doi.org/10.4230/LIPIcs.DISC.2021.42

[47] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye
Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.
SoK: Decentralized Finance (DeFi) Attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). 2444–2461. https://doi.org/10.1109/SP46215.2023.10179435

A CRAB PAYMENT CHANNELS IN DETAIL
The CRAB construction is illustrated in Figure 2.

v + 2c

vA

vB + c

c

B

xF

xk
A,C

pkB

pkA, pkB

pkA, pkB

xk
A,S

xk
A,P

A
pkA

pkB
B

c

vA

vA + c

+T

+T

rkA

rkA

pkA, pkB

xk
B,C

. . .

Figure 2: Transaction flow for a CRAB PC

Just as in standard Lightning channels, the CRAB channel locks
its capacity in a 2-of-2 multisignature output via a transaction 𝑥

𝐹
.

Each participant can unilaterally broadcast a commitment transac-
tion that closes the channel and distributes the funds on-chain. In
Figure 2, we specified Alice’s 𝑘-th commitment transaction 𝑥𝑘

𝐴,𝐶
.

These commitment transactions are regularly updated to reflect
the latest balances, but earlier (outdated) versions remain valid and
can still be broadcast. To discourage this, participants exchange
revocation keys during updates, enabling the other party to claim
the entire channel balance through a punishment transaction if an
old commitment is posted. For example, when updating from state
𝑘 to state 𝑘 + 1, Alice will share 𝑟𝑘

𝐴
with Bob and Bob will give 𝑟𝑘

𝐵
to

Alice. Because there is a timelock𝑇 , Alice cannot immediately post
𝑥𝑘
𝐴,𝑆

to claim her funds, giving Bob the opportunity to punish her
by posting 𝑥𝑘

𝐴,𝑃
8 in case state 𝑘 would be an old state. The second

output 𝑐 in 𝑥𝑘
𝐴,𝑃

can be claimed by anyone, and will thus be claimed
by the miner who includes 𝑥𝑘

𝐴,𝑃
.

In standard Lightning, rational miners may be bribed to include
an outdated commitment transaction while censoring the corre-
sponding punishment transaction—resulting in fund loss for the

8In the actual CRAB construction, 𝑥𝑘
𝐴,𝑃

is not specified, and instead replaced by
two transactions; one allowing Bob to claim 𝑣𝐴 and one allowing anyone to claim 𝑐 .
Specifying 𝑥𝑘

𝐴,𝑃
is just for simplification, and does not alter the security analysis as

including only the transaction that would spend 𝑐 renders 𝑥𝑘
𝐴,𝑆

already unspendable.

honest party. CRAB channels mitigate this by requiring both partic-
ipants to lock up collateral, which is forfeited to the miner if a party
attempts to close the channel dishonestly using an old commitment.
Using our framework, we analyse under which conditions such
misbehaviour becomes unprofitable with respect to the COMG.

Consider a CRAB channel between Alice and Bob. Alice wishes
to close the channel and can choose to broadcast either her most
recent commitment transaction 𝑥𝑙

𝐴,𝐶
, reflecting balances 𝑣𝑙

𝐴
and

𝑣𝑙
𝐵
, or an outdated one 𝑥𝑜

𝐴,𝐶
, reflecting 𝑣𝑜

𝐴
and 𝑣𝑜

𝐵
. She may also

choose whether to attach a corresponding spending transaction
𝑥𝑙
𝐴,𝑆

or 𝑥𝑜
𝐴,𝑆

. If Alice posts 𝑥𝑜
𝐴,𝐶

, Bob can retaliate by broadcasting a
punishment transaction 𝑥𝑜

𝐴,𝑃
, which gives him Alice’s balance and

the miner her collateral. Alice can try to prevent this by raising the
fee on 𝑥𝑜

𝐴,𝑆
, effectively bribing miners to ignore the punishment.

Bob may counter-bribe by increasing the fee on his punishment
transaction. This fee race continues until the timelock expires, al-
lowing Alice to settle using 𝑥𝑜

𝐴,𝑆
if the punishment was successfully

censored.
We model this interaction as an application game K with player

set 𝑁 = {𝐴, 𝐵}, and (𝑋, Σ𝑎, 𝜋𝑎) defined via a recursive extensive-
form game. The game unfolds as a sequence (𝐾𝑡)𝑇𝑡=−1, illustrated
in Figures 3 and 4.

A

𝐾0

𝑥𝑜
𝐴,𝐶

𝑥𝑙
𝐴,𝐶

A

{
𝐴 : (𝑥𝑙

𝐴,𝐶
, 0, 𝜀)

𝐴 : (𝑥𝑙
𝐴,𝑆
, 0, 𝜀)

}
𝑥𝑙
𝐴,𝑆 {

𝐴 : (𝑥𝑙
𝐴,𝐶

, 0, 𝜀)
}

nothing

A

{
𝐴 : (𝑥𝑙

𝐴,𝐶
, 0, 𝜀)

𝐴 : (𝑥𝑙
𝐴,𝑆
, 0, 𝜀)

}
𝑥𝑙
𝐴,𝑆 {

𝐴 : (𝑥𝑙
𝐴,𝐶

, 0, 𝜀)
}

nothing

Figure 3: Tree for 𝐾−1.

A

𝑥𝑜
𝐴,𝑆

nothing
B

{
𝐵 : (𝑥𝑜

𝐴,𝑃
, 𝑡, 𝑓 𝑃𝑡)

}
∪ 𝐾𝑡+1

𝑥𝑜
𝐴,𝑃

𝐾𝑡+1

nothing

B

𝐾𝑡+1

nothing

{
𝐵 : (𝑥𝑜

𝐴,𝑃
, 𝑡, 𝑓 𝑃𝑡)

}
∪ 𝐾𝑡+1

𝑥𝑜
𝐴,𝑃

B

𝐾𝑡+1

nothing

{
𝐵 : (𝑥𝑜

𝐴,𝑃
, 𝑡, 𝑓 𝑃𝑡)

}
∪ 𝐾𝑡+1

𝑥𝑜
𝐴,𝑃

Figure 4: Tree for 𝐾𝑡 for 0 ≤ 𝑡 ≤ 𝑇 . If 𝑡 = 𝑇 , replace 𝐾𝑡+1 by ∅.

We can prove a sufficient condition for Alice not posting old
commitment transactions in the parametrised cross-layer game
(K𝑇 ,B0,K𝑇 , 𝜔). Here, 𝜔 can be defined via �̃� as in Definition 3.1

https://doi.org/10.1145/3293611.3331591
https://doi.org/10.4230/LIPIcs.DISC.2021.42
https://doi.org/10.1109/SP46215.2023.10179435

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 15

by:

�̃�𝐴 (𝑏) =


𝑣𝑙
𝐴
+ 𝑐, 𝑏 ⊇ {𝑥𝑙

𝐴,𝐶
, 𝑥𝑙

𝐴,𝑆
},

𝑣𝑜
𝐴
+ 𝑐, 𝑏 ⊇ {𝑥𝑜

𝐴,𝐶
, 𝑥𝑜

𝐴,𝑆
},

0, 𝑏 ⊇ {𝑥𝑜
𝐴,𝐶

, 𝑥𝑜
𝐴,𝑃

},

�̃�𝐵 (𝑏) =


𝑣𝑙
𝐵
+ 𝑐, 𝑏 ⊇ {𝑥𝑙

𝐴,𝐶
},

𝑣𝑜
𝐵
+ 𝑐, 𝑏 ⊇ {𝑥𝑜

𝐴,𝐶
},

𝑣 + 𝑐, 𝑏 ⊇ {𝑥𝑜
𝐴,𝐶

, 𝑥𝑜
𝐴,𝑃

},

�̃� 𝑗 (𝑏) =
{
𝑐, 𝑏 ⊇ {𝑥𝑜

𝐴,𝐶
, 𝑥𝑜

𝐴,𝑃
}

0, otherwise,

where 𝑗 is the miner who included 𝑥𝑜
𝐴,𝑃

. With the notation 𝑏 ⊇ 𝑆
we mean every blockchain ordering that prioritises the transactions
in 𝑆 over any possible transactions that might spend the same funds
as the transactions in 𝑆 , by either putting the former transactions
earlier in the ordering than the latter, or not including the latter in
the ordering at all.

B PROOFS
B.1 Proof of Theorem 3.12
For ease of notation, we will for this proof write 𝜎 and Σ instead
of 𝜎𝑎 and Σ𝑎 for strategies and strategy profiles in the application
game. Let us first define the concept of a projection on a player
subset, which will be useful in a bit.

Definition B.1 (Projection on a player subset). For a player set 𝑁 ,
and a subset 𝑆 ⊆ 𝑁 , we say that the transformation 𝜂𝑆 : 𝑆 → 𝑆 is a
projection on S of the transformation 𝜂 : 𝑁 → 𝑁 , if for every 𝑖 ∈ 𝑆
we have

𝜂𝑆 (𝑖) =
{
𝜂 (𝑖), 𝜂 (𝑖) ∈ 𝑆,
𝜁 (𝜂 (𝑖)), 𝜂 (𝑖) ∉ 𝑆,

for some injective map 𝜁 : 𝜂 (𝑆) \ 𝑆 → 𝑆 \ 𝜂 (𝑆), defined whenever
𝜂 (𝑆) \ 𝑆 ≠ ∅.

It suffices to show that for each value of the parameter 𝑝 ∈ P,
(((A2 ◦g A1)𝑝 , 𝛽, 𝜔), 𝜎𝑝) is IC w.r.t 𝛽 (implying player set 𝑀),
where g is a collection (𝑔𝑝)𝑝∈P of constant functions. We proceed
by contradiction. Fix some 𝑝 ∈ P, let 𝜂 : 𝑁 ∪𝑀 → 𝑁 ∪𝑀 (with
𝑁 = 𝑁1 ∪ 𝑁2) be some transformation, and denote by Ã the 𝜂-CR
of A := (A2 ◦g A1)𝑝 . We will derive a contradiction by assuming

that the strategy profile 𝜎𝑝 := (𝜎𝑝1 , (𝜎
𝑔𝑝 (𝜎1)
2)

𝜎1∈Σ𝑝1
), which we will

refer to as 𝜎 = (𝜎1, 𝜎2) as 𝑝 ∈ P is fixed and 𝑔𝑝 (𝜎1) = 𝑞𝑝 for some
constant 𝑞𝑝 ∈ Q, is not a Nash equilibrium for (Ã, 𝛽, 𝜔). That is,
in (Ã, 𝛽, 𝜔) there exists a deviation 𝜎 = (𝜎1, 𝜎2) by some player
𝑘 ∈ 𝑁 ∪𝑀 such that 𝑢𝑘 (𝜎) > 𝑢𝑘 (𝜎).

Let us denote by 𝜂1 and 𝜂2 the projections of 𝜂 on 𝑁1 ∪ 𝑀

and 𝑁2 ∪𝑀 , as defined in Definition B.1. These projections define
CRs Ã1 of A1 and Ã2 of A2, respectively. It should be clear by
additivity of the execution function, and by the fact that the utility
of a collusion of players is the sum of the utilities of the individual
players in that collusion, that 𝑢𝑘 (𝜎) = 𝑢1,𝑘1 (𝜎1) + 𝑢2,𝑘2 (𝜎2), and
𝑢𝑘 (𝜎) = 𝑢1,𝑘1 (𝜎1) + 𝑢2,𝑘2 (𝜎2), where 𝑘1 = 𝜂1 (𝜂−1 (𝑘) ∩ (𝑁1 ∪𝑀))
and 𝑘2 = 𝜂2 (𝜂−1 (𝑘) ∩ (𝑁2 ∪𝑀)). But then, by assumption,

𝑢1,𝑘1 (𝜎1) + 𝑢2,𝑘2 (𝜎2) > 𝑢1,𝑘1 (𝜎1) + 𝑢2,𝑘2 (𝜎2),

which means that 𝑢1,𝑘1 (𝜎1) > 𝑢1,𝑘1 (𝜎1) or 𝑢2,𝑘2 (𝜎2) > 𝑢2,𝑘2 (𝜎2).
But then, 𝜎1 is a profitable deviation by 𝑘1 from 𝜎1 in (Ã1, 𝛽, 𝜔),
or 𝜎2 is a profitable deviation by 𝑘2 from 𝜎2 in (Ã2, 𝛽, 𝜔). This
contradicts Π1 and Π2 being both IC w.r.t. 𝛽 .

B.2 Proof of Theorem 4.1
For ease of notation, we will for this proof write 𝜎 instead of 𝜎𝑏𝑔
for strategies and strategy profiles in the COMG. We will work our
way backwards, starting at round 𝑇 . For each round 𝑡 = 0, . . . ,𝑇 ,
and for each miner 𝑗 = 1, . . . ,𝑚, we will compute the expected gain
𝑣𝑡
𝑗

(
𝜎𝑡
𝑗
; (𝜎𝑠

𝑗
)𝑇
𝑠=𝑡+1

)
9, where 𝜎𝑠

𝑗
∈ {1, 2} denotes the decision taken by

miner 𝑗 at time 𝑠 , where 𝜎𝑠
𝑗
= 1 encodes the miner trying to include

𝑥1 in round 𝑠 , and 𝜎𝑠
𝑗
= 2 encodes the miner censoring 𝑥1 in round

𝑠 , or including 𝑥2 if possible.
For miner 𝑗 = 1, . . . ,𝑚 we have the following expected gain in

round 𝑇 :

𝑣𝑇𝑗

(
𝜎𝑇𝑗

)
=

{
𝜆 𝑗 𝑓1, 𝜎𝑇

𝑗
= 1,

𝜆 𝑗 𝑓2, 𝜎𝑇
𝑗
= 2.

(2)

By assumption, 𝑓1 < 𝑓2 and so in round𝑇 all miners will include 𝑥2.
Keep in mind that in the COMG, we also consider a portion of the
hashrate 𝜆0 that will by construction always include 𝑥1 in rounds
before 𝑇 , and will switch to including 𝑥2 only in round 𝑇 as it is
the more rewarding transaction to include.

For rounds 𝑡 < 𝑇 , the expected gain depends on what players
expect to gain in subsequent rounds. For example, at a round 𝑡 < 𝑇 ,
a miner 𝑗 can decide whether to include 𝑥1. Out of the remaining
miners, there will be a portion of hashrate 𝜆𝑡

𝐼 , 𝑗
that will include 𝑥1 at

round 𝑡 , and a portion of hashrate 𝜆𝑡
𝐶,𝑗

that will censor 𝑥1 at round
𝑡 . Hence, with probability 𝜆𝑡

𝐼 , 𝑗
, in round 𝑡 another miner will mine a

block including 𝑥1, leaving 𝑗 with a zero gain. With probability 𝜆𝑡
𝐶,𝑗

,
another miner will mine a block in round 𝑡 excluding 𝑥1, leading
to miner 𝑗 having to decide in round 𝑡 + 1 again whether or not to
include 𝑥1. If we assume that 𝑗 ’s decision in round 𝑡 + 1 leads to
an expected gain of 𝑔, 𝑗 will have with probability 𝜆𝑡

𝐶,𝑗
a gain of 𝑔.

This reasoning leads us to the following recursive expression for
the expected gain in round 𝑡 = 0, . . . ,𝑇 − 1:

𝑣𝑡𝑗

(
𝜎𝑡𝑗 ; (𝜎

𝑠
𝑗)
𝑇
𝑠=𝑡+1

)
=

𝜆 𝑗 𝑓1 + 𝜆𝑡𝐶,𝑗𝑣
𝑡+1
𝑗

(
𝜎𝑡+1
𝑗

; (𝜎𝑠
𝑗
)𝑇
𝑠=𝑡+2

)
, 𝜎𝑡

𝑗
= 1,

𝜆 𝑗𝑣
𝑡+1
𝑗

(
𝜎𝑡+1
𝑗

; (𝜎𝑠
𝑗
)𝑇
𝑠=𝑡+2

)
+ 𝜆𝑡

𝐶,𝑗
𝑣𝑡+1
𝑗

(
𝜎𝑡+1
𝑗

; (𝜎𝑠
𝑗
)𝑇
𝑠=𝑡+2

)
, 𝜎𝑡

𝑗
= 2.

(3)

Hence, if 𝑓1 < 𝑣𝑡+1
𝑗

(
𝜎𝑡+1
𝑗

; (𝜎𝑠
𝑗
)𝑇
𝑠=𝑡+2

)
, 𝑗 will choose to censor 𝑥1

instead of including it.
For each miner 𝑗 = 1, . . . ,𝑚, we are interested in the strategy

(𝜎𝑠
𝑗
)𝑇
𝑠=0 that maximises the expected gain 𝑣0

𝑗
. First of all, we claim

that this optimal strategy is always of the the form (1, . . . , 1, 2, . . . , 2).
That is, a miner will always include 𝑥1 up to some point, after which
this miner switches to censoring 𝑥1, never trying to include it again.

9We essentially start the game from round 𝑡 , or equivalently, act as if 𝑥1 was censored
until round 𝑡 .

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 16

Lemma B.2. For a fixed miner 𝑗 = 1, . . . ,𝑚, the strategy (𝜎𝑡𝑗)𝑇𝑡=0
that maximises the expected gain 𝑣0

𝑗
is of the form

𝜎𝑡𝑗 =

{
1, 𝑡 < 𝑡∗

𝑗
,

2, 𝑡 ≥ 𝑡∗
𝑗
.

(4)

for some 𝑡∗
𝑗
∈ {0, . . . ,𝑇 }.

Proof. Clearly, since 𝑓1 < 𝑓2, 𝜎𝑇𝑗 = 2. Let us now assume that
for some 𝑡 ∈ {1, . . . ,𝑇 }, and given a sequence (𝜎𝑠𝑗)𝑇𝑠=𝑡+1, we have
𝜎𝑡𝑗 = 1. By Equation (3), this implies that 𝑓1 ≥ 𝑣𝑡+1

𝑗

(
(𝜎𝑠𝑗)𝑇𝑠=𝑡+1

)
.

Again by Equation (3), we find that

𝑣𝑡𝑗

(
𝜎𝑡𝑗 ; (𝜎

𝑠
𝑗)
𝑇
𝑠=𝑡+1

)
= (𝜆 𝑗 + 𝜆𝑡𝐶,𝑗)𝑣

𝑡+1
𝑗

(
𝜎𝑡+1𝑗 ; (𝜎𝑠𝑗)

𝑇
𝑠=𝑡+2

)
≤ (𝜆 𝑗 + 𝜆𝑡𝐶,𝑗) 𝑓1 ≤ 𝑓1 .

But then, using Equation (3) one last time for round 𝑡 − 1, we
find 𝑣𝑡−1

𝑗

(
1; (𝜎𝑠𝑗)𝑇𝑠=𝑡

)
≥ 𝑣𝑡−1

𝑗

(
2; (𝜎𝑠𝑗)𝑇𝑠=𝑡

)
. Hence, 𝜎𝑡−1𝑗 = 1. By an

induction argument, this implies that if we have 𝜎𝑡𝑗 = 1 at some
round 𝑡 ∈ {0, . . . ,𝑇 − 1}, we have 𝜎𝑠𝑗 = 1 for all 𝑠 < 𝑡 as well. By
contraposition and a similar induction argument, if we have 𝜎𝑡𝑗 = 2
at some round 𝑡 ∈ {0, . . . ,𝑇 − 1}, we must also have 𝜎𝑠𝑗 = 2 for
all 𝑠 > 𝑡 . Consequently, the optimal strategy must be of the form
specified in (4). □

By Lemma B.2, determining the optimal strategy for each miner
amounts to finding the round 𝑡∗

𝑗
at which miner 𝑗 switches from

including 𝑥1 to censoring 𝑥1, for each 𝑗 = 1, . . . ,𝑚. Combining (2),
(3), and (4), we know that for any miner 𝑗 = 1, . . . ,𝑚, the expected
gain for 𝑡 ≥ 𝑡∗

𝑗
is given by

𝑣𝑡𝑗

(
(𝜎𝑠𝑗)

𝑇
𝑠=𝑡

)
=

(
𝑇−1∏
𝑠=𝑡

𝜆𝑠𝐶

)
𝜆 𝑗 𝑓2, (5)

where for 𝑡 ≥ 𝑡∗
𝑗
, we defined 𝜆𝑡

𝐶
= 𝜆 𝑗 + 𝜆𝑡𝐶,𝑗 as the total portion of

hashrate that is censoring 𝑥1 in round 𝑡 . Now remark that if we

have 𝜎𝑡𝑗 = 2, we have 𝑣𝑡+1
𝑗

(
(𝜎𝑠𝑗)𝑇𝑠=𝑡+1

)
> 𝑓1. Consequently, for any

miner 𝑘 ∈ { 𝑗 + 1, . . . ,𝑚}, which has by Definition 2.6 a hashrate
𝜆𝑘 ≥ 𝜆 𝑗 , (5) implies that,

𝑣𝑡+1
𝑘

(
(𝜎𝑠

𝑘
)𝑇𝑠=𝑡+1

)
=

(
𝑇−1∏
𝑠=𝑡+1

𝜆𝑠𝐶

)
𝜆𝑘 𝑓2

≥
(
𝑇−1∏
𝑠=𝑡+1

𝜆𝑠𝐶

)
𝜆 𝑗 𝑓2

= 𝑣𝑡+1
𝑘

(
(𝜎𝑠𝑗)

𝑇
𝑠=𝑡+1

)
> 𝑓1 .

where the first equality holds whenever 𝑡 + 1 ≥ 𝑡∗
𝑘
. That is, 𝜎𝑡

𝑘
= 2.

By induction, one can easily find the following Corollary.

Corollary B.3. Assume that 𝜆 𝑗 ≤ 𝜆𝑘 for some 𝑗, 𝑘 ∈ {1, . . . ,𝑚}.
Then 𝜎𝑡𝑗 = 2 implies that 𝜎𝑡

𝑘
= 2.

In other words, larger miners will start censoring 𝑥1 before
smaller miners.

Starting at 𝑡 = 𝑇 and working our way backwards, we will have
an ever-shrinking set of censoring miners, where going further

back in time will result in the smallest miner that is still censoring
switching to including 𝑥1. To compute the times 𝑡∗

𝑗
for all 𝑗 =

1, . . . ,𝑚, it will therefore be easier to sometimes work with the
reverse time 𝑟 := 𝑇 − 𝑡 , looking backwards starting from 𝑡 = 𝑇 and
computing the value 𝑟∗

𝑗
:= 𝑇 − 𝑡∗

𝑗
, starting from the smallest miner

and working our way up.
At 𝑟 = 0 (that is, 𝑡 = 𝑇), we have already established that all

miners will go for 𝑥2. At 𝑟 = 1, (3) tells us that miner 𝑗 ∈ {1, . . . ,𝑚}
will censor 𝑥1 as long as 𝑓1 < 𝜆 𝑗 𝑓2. In other words, all miners with
a hashrate smaller than or equal to 𝑓1/𝑓2 will include 𝑥1 at 𝑟 = 0
(which is round 𝑇 − 1). Say there are ℓ miners with such a small
hashrate, i.e., 𝜆1 ≤ . . . 𝜆ℓ ≤ 𝑓1/𝑓2 < 𝜆ℓ+1. Then for all 𝑗 = 1, . . . , ℓ ,
we have 𝑟∗

𝑗
= 0 and so 𝑡∗

𝑗
= 𝑇 .

Let us now consider miner 𝑗 = ℓ + 1. This miner will still censor
at 𝑟 = 1, but how long will this miner keep censoring? We are
looking for the smallest value of 𝑡 for which 𝑣𝑡+1

ℓ+1

(
(2)𝑇

𝑠=𝑡+1

)
> 𝑓1.

In other words, by Equation 5, we are looking for the smallest 𝑡 for
which (

𝑇−1∏
𝑠=𝑡+1

𝜆𝑠𝐶

)
𝜆ℓ+1 𝑓2 > 𝑓1 .

We know that the hashrate
∑ℓ
𝑘=1 𝜆𝑘 is already trying to include 𝑥1,

and that for all rounds larger than this smallest 𝑡 , 𝑗 = ℓ + 1 will
be censoring. Hence, by Corollary B.3, we know that the portion∑𝑚
𝑘=ℓ+1 𝜆𝑘 of hashrate will censor 𝑥1. That is, 𝜆

𝑠
𝐶

=
∑𝑚
𝑘=ℓ+1 𝜆𝑘 =

1 − 𝜆0 −
∑ℓ
𝑘=1 𝜆𝑘 for 𝑠 = 𝑡, . . . ,𝑇 − 1. We are thus looking for 𝑟∗

ℓ+1,
the largest 𝑟 such that(

𝑚∑︁
𝑘=ℓ+1

𝜆𝑘

)𝑟−1
𝜆ℓ+1 𝑓2 > 𝑓1 .

It is easy to see that since 𝑟 ∈ N0, 𝑟∗ℓ+1 − 1 = ⌊𝜌ℓ+1⌋, where 𝜌ℓ+1
satisfies(

𝑚∑︁
𝑘=ℓ+1

𝜆𝑘

)𝜌ℓ+1
𝜆ℓ+1 𝑓2 = 𝑓1 =⇒ 𝜌ℓ+1 =

log 𝑓1
𝜆ℓ+1 𝑓2

log
∑𝑚
𝑘=ℓ+1 𝜆𝑘

.

In other words, we have 𝑟∗
ℓ+1 = ⌈𝜌ℓ+1⌉. Moving on, for the next

miner 𝑗 = ℓ + 2, we know that 𝑟∗
𝑗
≥ 𝑟∗

ℓ+1. For 𝑟 > 𝑟
∗
ℓ+1, miner ℓ + 1

is no longer censoring 𝑥1, hence from then on we have a portion∑𝑚
𝑘=ℓ+2 𝜆𝑘 censoring 𝑥1. We are thus looking for the largest 𝑟 such

that (
𝑚∑︁

𝑘=ℓ+2
𝜆𝑘

)𝑟−𝑟 ∗ℓ+1−1 (𝑚∑︁
𝑘=ℓ+1

𝜆𝑘

)𝑟 ∗ℓ+1
𝜆ℓ+2 𝑓2 > 𝑓1 .

Again, since 𝑟 ∈ N0, we have 𝑟∗ℓ+2−1 = ⌊𝜌ℓ+2⌋, and so 𝑟∗ℓ+2 = ⌈𝜌ℓ+2⌉,
where 𝜌ℓ+2 is defined by(

𝑚∑︁
𝑘=ℓ+2

𝜆𝑘

)𝜌ℓ+2−⌈𝜌ℓ+1 ⌉ (𝑚∑︁
𝑘=ℓ+1

𝜆𝑘

) ⌈𝜌ℓ+1 ⌉
𝜆ℓ+2 𝑓2 = 𝑓1,

which implies

𝜌ℓ+2 = ⌈𝜌ℓ+1⌉ +
log 𝑓1

𝜆ℓ+2 𝑓2
− ⌈𝜌ℓ+1⌉ log

(∑𝑚
𝑘=ℓ+1 𝜆𝑘

)
log

∑𝑚
𝑘=ℓ+2 𝜆𝑘

.

Repeating this argument inductively, one can see that more gen-
erally, for miner 𝑗 ∈ {ℓ + 1, . . . ,𝑚}, we have 𝑟∗

𝑗
= ⌈𝜌 𝑗 ⌉, where 𝜌 𝑗

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 17

satisfies

©­«
𝑚∑︁
𝑘=𝑗

𝜆𝑘
ª®¬
𝜌 𝑗−⌈𝜌 𝑗−1 ⌉ 𝑗−1∏

𝑖=ℓ+1

©­«
(
𝑚∑︁
𝑘=𝑖

𝜆𝑘

) ⌈𝜌𝑖 ⌉−⌈𝜌𝑖−1 ⌉ª®¬𝜆 𝑗 𝑓2 = 𝑓1 .
where we set 𝜌ℓ = 0. This gives us the following recursion for 𝜌 𝑗 :

𝜌 𝑗 = ⌈𝜌 𝑗−1⌉ +
log 𝑓1

𝜆 𝑗 𝑓2
− ∑𝑗−1

𝑖=ℓ+1 (⌈𝜌𝑖 ⌉ − ⌈𝜌𝑖−1⌉) log
(∑𝑚

𝑘=𝑖
𝜆𝑘

)
log

∑𝑚
𝑘=𝑗

𝜆𝑘
.

(6)
This identity allows us to compute recursively the values 𝑟∗

𝑗
= ⌈𝜌 𝑗 ⌉

for every 𝑗 ∈ {ℓ + 1, . . . ,𝑚}, for any given hashrate distribution 𝝀
and fees 𝑓1, 𝑓2.

Now, given the values (𝑟∗
𝑗
)𝑚
𝑗=1 (keep in mind that 𝑟∗

𝑗
= 0 for

𝑗 = 1, . . . , ℓ), we can write down the probability 𝑝 (𝑇 ;𝝀, 𝑓1, 𝑓2) that
𝑥1 will be included instead of 𝑥2, as a function of the timelock 𝑇 .
Clearly, if 𝑇 > 𝑟∗𝑚 , there will be at least one round in which all
the miners will try to mine a block that includes 𝑥1, so 𝑥1 will be
included with probability 1. Trivially, since 𝑓2 > 𝑓1, if 𝑇 = 0, all
miners will go for 𝑥2 and so 𝑥1 will be included with probability 0.
Now, suppose that𝑇 > 𝑟∗

𝑗−1 and𝑇 ≤ 𝑟∗
𝑗
for some 𝑗 ∈ {1, . . . ,𝑚} (we

set 𝑟∗0 = 0). Then the probability that 𝑥1 is censored for 𝑇 rounds is∏𝑇−1
𝑠=0 𝜆

𝑠
𝐶
. Since 𝜆𝑠

𝐶
=

∑𝑚
𝑘=𝑗

𝜆𝑘 for 𝑠 = 𝑟∗
𝑗−1 + 1, . . . , 𝑟

∗
𝑗
, we can write

𝑝 (𝑇 ;𝝀, 𝑓1, 𝑓2) = 1 − ©­«
𝑚∑︁
𝑘=𝑗

𝜆𝑘
ª®¬
𝑇−𝑟 ∗𝑗−1 𝑗−1∏

𝑖=1

©­«
(
𝑚∑︁
𝑘=𝑖

𝜆𝑘

)𝑟 ∗𝑖 −𝑟 ∗𝑖−1ª®¬. (7)

B.3 Proof of Theorem 4.3
Suppose that 𝑡∗𝑚 (𝑓𝐶1 , 𝑣1;𝝀,𝑇1) + 1 < 𝑡∗𝑚 (𝑓 𝐷2 , 𝑣2;𝝀,𝑇2). Dave will
deviate from the intended protocol behaviour inH2 by not sharing
the secret with Charlie until 𝑡 := 𝑡∗𝑚 (𝑓𝐶1 , 𝑣1;𝝀,𝑇1) + 1. At time 𝑡 , the
Charlie-Dave channel will simply be updated off-chain (censoring
would indeed fail with probability 1), giving Dave the same utility
as if he would act according to the protocol. Charlie will want to
claim 𝑣1 in H1, but Dave will not respond, forcing Charlie to close
the channel and post 𝑥𝐻1 , 𝑥

𝐶
1 , the latter with a fee at most 𝑓𝐶1 (we

can assume without loss of generality that 𝑥𝐻1 has fee 0). One can

see that there must exist an 𝜀 > 0 such that 𝑡∗𝑚 (𝑓𝐶1 , 𝑣1 − 𝜀;𝝀,𝑇1) = 𝑡 .
Dave will post 𝑥𝐷1 with the fee 𝑣1 − 𝜀. With positive probability, 𝑥𝐷1
will be included, in which case Dave gains 𝜀 > 0. Dave’s expected
utility gain is positive and he will thus deviate from the intended
protocol behaviour.

B.4 Proof of Theorem 4.4
Assume without loss of generality that 𝑡𝑠3 = 0. If everyone were
to follow the protocol, we would have in H3 Dave sharing 𝑠3 at
𝑡 = 𝑡𝑠3 = 0 with Charlie, who can update the channel, leading to
the transaction triple (𝑥𝑃3 , 0, 0) being outputted. Charlie can now
share 𝑠2 at 𝑡 = 0 with Dave inH2, who will also update the chan-
nel, leading to (𝑥𝑃2 , 0, 0) being outputted. Similarly, in H1, Dave
will share 𝑠1 at 𝑡 = 0 with Alice, leading to (𝑥𝑃1 , 0, 0) being out-
putted. The blockchain game induced by the transaction triple
set {(𝑥𝑃1 , 0, 0), (𝑥

𝑃
2 , 0, 0), (𝑥

𝑃
3 , 0, 0)} will trivially lead to an ordering

which includes 𝑥𝑃1 , 𝑥
𝑃
2 , 𝑥

𝑃
3 . This implies a utility of 𝑣𝐴1 for Alice,

𝑣𝐶2 + 𝑣𝐶3 + 𝑣2 for Charlie, and 𝑣𝐵1 + 𝑣𝐵2 + 𝑣1 + 𝑣𝐷3 + 𝑣3 for Dave.
However, Dave can perform the following deviation. Instead of

sharing 𝑠3 in H3, Dave does not share the secret at all, i.e., 𝜏𝐷 = ∞.
Since Charlie does not deviate, at 𝑡 = 𝑇3, Charlie will initiate a
refund and Dave will accept, leading to the triple (𝑥𝑅3 ,𝑇3, 0). Since
𝜏3,𝐷 = ∞, Dave will initiate a refund at 𝑡 = 𝑇2 in H2, and Charlie
will accept, outputting (𝑥𝑅2 ,𝑇2, 0). Finally, since Dave knows the
secret 𝑠1, Dave will actually share 𝑠1 with Alice at 𝑡 = 0 in H1,
outputting (𝑥𝑃1 , 0, 0). These three transaction triples will lead via
the blockchain game to a utility of 𝑣𝐴1 for Alice, just as before, but to
a utility of 𝑣𝐶2 +𝑣

𝐶
3 +𝑣

3 for Charlie, and a utility of 𝑣𝐵1 +𝑣
1+𝑣𝐵2 +𝑣

2+𝑣𝐷3
for Dave. Clearly, Dave has a gain of 𝑣𝐵1 + 𝑣1 + 𝑣𝐵2 + 𝑣2 + 𝑣𝐷3 − (𝑣𝐵1 +
𝑣𝐵2 + 𝑣1 + 𝑣𝐷3 + 𝑣3) = 𝑣2 − 𝑣3 by deviating.

B.5 Proof of Theorem 4.5
Realise that as a result of playing the sequence (𝐾𝑡)𝑇𝑡=0 and the
subsequent blockchain game, the resulting blockchain ordering
will include the old commitment transactions and either a spending
transaction or a punishment transaction. In the case of a spending
transaction, Alice would receive an amount 𝑣𝑜

𝐴
+ 𝑐 , whereas in the

case of a punishment transaction, shewould receive 0. If Alicewould
post the latest commitment transaction, she would receive 𝑣𝑙

𝐴
+ 𝑐 .

Since Alice is rational, she will therefore not be willing to bribe the
miners with more than 𝑣𝑜

𝐴
− 𝑣𝑙

𝐴
. If Bob already broadcasts in 𝐾0

the punishment transaction, which rewards the miner immediately
with an amount 𝑐 , and if 𝑐 is high enough for the miners not to
censor the punishment transaction, Alice will have no incentive to
broadcast the spending transaction.

This brings us in the setting of Section 4.1, with the punishment
transaction yielding an immediate reward of 𝑐 to the miners, and
the spending transaction yielding a reward of at most 𝑣𝑜

𝐴
− 𝑣𝑙

𝐴
after

𝑇 blocks. Hence, for a given hashrate distribution 𝝀, Theorem 4.1
guarantees us that the punishment transaction will be included with
probability 1 if 𝑇 > ⌈𝜌𝑚 (𝑐, 𝑣𝑜

𝐴
− 𝑣𝑙

𝐴
;𝝀)⌉. Since 𝑣𝑜

𝐴
− 𝑣𝑙

𝐴
≤ 𝑣 , if 𝑇 >

⌈𝜌𝑚 (𝑐, 𝑣 ;𝝀)⌉, the punishment transaction will always be included
and so Alice has no incentive to broadcast an old commitment
transaction.

C BROADER APPLICATIONS
Composition Across Different Applications. We begin by il-
lustrating how our framework supports reasoning about the in-
teraction of distinct application-layer protocols that execute con-
currently on a shared blockchain infrastructure. Such interactions
are increasingly prevalent in decentralised finance (DeFi), where
composability enables sophisticated behaviour but also introduces
subtle incentive misalignments. We present two representative ex-
amples, Cross-DEX arbitrage and Oracle-to-DEX feedback loops,
that highlight how our framework can formally capture cross-
application dependencies and enable compositional security analy-
sis that would be difficult to achieve in isolation.

Cross-DEX Arbitrage. Arbitrage strategies across decentralised
exchanges (DEXs) may span multiple smart contracts executing
in parallel on the same blockchain. While individual DEXs might
appear secure in isolation, the compositional perspective reveals

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 18

how IC behaviour at one layer (e.g., submitting a buy order) can
enable profit extraction in another (e.g., selling on a second DEX
before the price adjusts). Our framework captures these interac-
tions as separate games composed over a shared blockchain layer,
making it possible to analyse whether such arbitrage behaviours
are expected, profitable, or potentially destabilising under different
network and consensus assumptions.

Oracle-DEX Feedback Loops. Oracles supply real-world data to
smart contracts, and DEXs may use this data to trigger conditional
logic such as liquidations or price-based execution. This setup
creates a feedback loop: oracle updates influence DEX behaviour,
which in turn can incentivise manipulation of the oracle. Our frame-
work captures this setting by representing the oracle and DEX as
two parametrised application games, composed through a depen-
dency on a shared data stream. By instantiating different network
games or blockchain models (e.g., censorship-tolerant vs. adversar-
ial ordering), we can formally analyse the conditions under which
oracle manipulation becomes profitable and explore mitigation
strategies such as delay windows or cross-validation mechanisms.

Cross-Blockchain Games: Atomic Swaps. Atomic swaps are a
class of protocols that enable trustless exchange of assets between
two different blockchains—such as Bitcoin and Ethereum—without
intermediaries. Modelling such protocols requires reasoning about
two independent blockchain environments, each with its own set
of participants, timing assumptions, and strategic behaviour. Our
framework naturally extends to this setting by treating each block-
chain as a separate but composable component.

To model an atomic swap, we instantiate two distinct block-
chain games: B (1) and B (2) , corresponding to the execution en-
vironments of the two blockchains. Each blockchain game has its
own player set, transaction structure, and execution function. Like-
wise, the protocols executed on these blockchains—e.g., Hashed
Timelock Contracts (HTLCs) on both chains—are modelled as sep-
arate parametrised application games A1 = (A𝑝

1)𝑝∈P and A1 =

(A𝑞

2)𝑞∈Q , possibly sharing overlapping players. For simplicity, as-
sume we have in both games players sets containing Alice and
Bob.

The interaction between the two chains is captured via a shared
parameter, typically a secret 𝑠 revealed through the execution of a
transaction on one blockchain. For example, Alice posts a transac-
tion on B (1) that discloses 𝑠 , enabling Bob to claim funds on B (2)

before a timelock expires. We express this dependency by consider-
ing the composition A2 ◦g A1, where similarly to the collection
g𝑑𝑒𝑝 in Section 4.2.2, we define the collection g as (𝑔𝑝)𝑝∈P where
for all 𝑝 ∈ P, 𝑔𝑝 (𝜎𝑎,1) is a function of the time 𝜏𝐴 (𝜎𝑎,1) at which
Alice discloses 𝑠 in case of strategy profile 𝜎𝑎,1 ∈ Σ

𝑝

𝑎,1.

This yields two cross-layer games (A𝑝

1 ,NA𝑝

1
,B (1)

NA𝑝
1

, 𝜔1) and

(A𝑝

2 ,NA𝑝

2
,B (2)

NA𝑝
2

, 𝜔2), whose compositional analysis allows us to

study incentive compatibility in the joint system. Specifically, our
framework allows for evaluating under which conditions ratio-
nal participants would follow the intended swap protocol or de-
viate—e.g., by claiming coins on one chain without enabling the
counterparty to do so on the other.

A key advantage of our approach is that each blockchain can be
modelled with different network assumptions, execution rules, or
adversarial capabilities. As such, one can study swap security under
heterogeneous conditions—such as delayed propagation, partial
censorship, or differing hashrate distributions—while preserving a
modular and rigorous incentive analysis. This illustrates how our
framework extends beyond single-chain reasoning to capture the
growing class of cross-chain protocols in a principled and composi-
tional manner.

ComposingComplexApplication-Network-Consensus Layer:
MEV Auctions and PBS. Proposer-Builder Separation (PBS) is a
design principle introduced to mitigate MEV centralisation in proof-
of-stake systems like Ethereum. In PBS, specialised actors called
builders aggregate user transactions into blocks and participate in
out-of-protocol block auctions to sell these blocks to validators or
proposers, who ultimately publish them on-chain. This decouples
the roles of transaction inclusion and block finalisation, creating
a complex multi-agent incentive environment spanning all block-
chain layers.

Our framework naturally captures the layered structure of PBS.
First, we model the searchers—who scan mempools and dApps for
profitable transaction orderings—as players in one or more applica-
tion games. Each application game produces a set of transaction
triples based on strategic behaviour, including MEV-seeking bun-
dles.

These bundles are passed into a network-layer game NPBS, rep-
resenting the builder auction layer. In this game, multiple builders
(players) receive bundles from searchers and compete to construct
block proposals. Each builder’s strategy is to select and order a
subset of received transactions into a candidate block, compute a
bid (i.e., the payment they are willing to offer to the proposer), and
submit this to the auction.

The proposer is modelled either as a designated player in the
blockchain game or as part of the network game logic. It selects
the highest-bidding builder and forwards its block to the consensus
layer, inducing the actual blockchain ordering 𝑏. The corresponding
blockchain game B thus reflects not direct transaction submission,
but the output of the PBS auction, mediated by proposer selection
rules and builder behaviour.

The execution function 𝜔 maps the resulting blockchain ordering
to utilities for all participants: searchers receive utility if their bun-
dles are included profitably, builders earn the difference between
the bid and their internal profit margin, and the proposer earns the
winning bid.

This compositional structure allows us to: (i) model timing asym-
metries (e.g., builders with faster access to bundles), (ii) incorporate
collusion or exclusive order flow viaNPBS, (iii) reason about incentive
compatibility of proposer or builder strategies, and (iv) study the
effect of network propagation models (e.g., which searchers reach
which builders) on MEV extraction.

Crucially, since application games are parametrised, our frame-
work supports scenarios where the utility of one application-layer
actor (e.g., a searcher exploiting a DEX arbitrage) depends on the
success of another (e.g., a liquidator in a lending protocol), high-
lighting cross-application interactions common in real-world MEV.

Zeta Avarikioti, Georg Fuchsbauer, Pim Keer, Matteo Maffei, and Fabian Regen 19

By explicitly modelling the PBS architecture as a compositional
game, we enable principled analysis of incentive alignment between
searchers, builders, and proposers. This facilitates exploration of
mechanism design questions such as: what auction formats dis-
courage censorship? How should rebates or fees be structured to

incentivise honest builder behaviour? And how robust are MEV
mitigation techniques under strategic deviation? Our framework
provides the tools to formally investigate such questions within a
layered game-theoretic abstraction.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Model
	2.1 The Blockchain Game
	2.2 The Application Game
	2.3 The Network Game

	3 Composition
	3.1 Cross-layer Composition
	3.2 Cross-application Composition

	4 Illustrative Use Cases
	4.1 The Censor-Only Miner Game
	4.2 Timelock-based Games
	4.3 A Simple Example of MEV
	4.4 Broader Applications

	5 Conclusion
	References
	A CRAB Payment Channels in Detail
	B Proofs
	B.1 Proof of Theorem 3.12
	B.2 Proof of Theorem 4.1
	B.3 Proof of Theorem 4.3
	B.4 Proof of Theorem 4.4
	B.5 Proof of Theorem 4.5

	C Broader Applications

