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Abstract: Increasing emphasis on the use of real-world evidence (RWE) to support 

clinical policy and regulatory decision-making has led to a proliferation of guidance, 

advice, and frameworks from regulatory agencies, academia, professional societies, 

and industry. A broad spectrum of studies use real-world data (RWD) to produce RWE, 

ranging from randomized controlled trials with outcomes assessed using RWD to fully 

observational studies. Yet many RWE study proposals lack sufficient detail to evaluate 

adequacy, and many analyses of RWD suffer from implausible assumptions, other 

methodological flaws, or inappropriate interpretations. The Causal Roadmap is an 

explicit, itemized, iterative process that guides investigators to pre-specify analytic study 

designs; it addresses a wide range of guidance within a single framework. By requiring 

transparent evaluation of causal assumptions and facilitating objective comparisons of 

design and analysis choices based on pre-specified criteria, the Roadmap can help 

investigators to evaluate the quality of evidence that a given study is likely to produce, 

specify a study to generate high-quality RWE, and communicate effectively with 

regulatory agencies and other stakeholders. This paper aims to disseminate and extend 

the Causal Roadmap framework for use by clinical and translational researchers, with 

companion papers demonstrating application of the Causal Roadmap for specific use 

cases. 

 

  



Introduction 

The 21st century has witnessed a dramatic increase in the quality, diversity, and 

availability of real-world healthcare data (RWD) in forms such as electronic health 

records and registry or claims databases[1]. In 2016, as part of a strategy to improve 

the efficiency of medical product development, the United States Congress passed the 

21st Century Cures Act[2] that mandated the development of United States Food and 

Drug Administration (FDA) guidance on potential regulatory uses of real-world evidence 

(RWE) – defined as “clinical evidence about the usage and potential benefits or risks of 

a medical product derived from analysis of RWD”[3]. Internationally, stakeholders 

including other regulatory agencies, industry, payers, academia, and patient groups 

have also increasingly endorsed the use of RWE to support regulatory decisions[4,5]. 

Emerging sources of RWE under evaluation include pragmatic clinical trials, externally 

controlled trials or hybrid randomized-external data studies, and long-term follow-up 

studies[6–8]. 

 

There are multiple motivations for generating RWE. First, RWE has long been used in 

post-market safety surveillance to uncover the presence of rare adverse events not 

adequately evaluated by phase III randomized controlled trials (RCTs) for reasons 

including strict eligibility criteria, strict treatment protocols, limited patient numbers, and 

limited time on treatment and in follow-up[9]. Second, recent drug development efforts 

have more commonly targeted rare diseases or conditions without effective 

treatments[10]. RWD can be useful in such contexts when it is not practical to 

randomize enough participants to power a standard RCT or when there is an ethical 



imperative to minimize the number of patients assigned to the trial control arm[11,12]. 

RWE was also highly valuable during the COVID-19 pandemic; observational studies 

reported timely evidence of vaccine booster effectiveness[13,14], compared the 

effectiveness of different vaccines[15], and evaluated vaccine effectiveness during 

pregnancy[16]. 

 

Despite the many ways in which RWE may support policy or regulatory decision-

making, the prospect of erroneous conclusions resulting from potentially biased effect 

estimates has led to appropriate caution when interpreting the results of RWE studies. 

One concern is data availability; data sources might not include all relevant information 

for causal estimation even in randomized studies that generate RWE. Another concern 

is lack of randomized treatment allocation in observational RWE. These issues create 

challenges for estimating a causal relationship outside of the “traditional” clinical trial 

space.  

 

In an attempt to guide investigators towards better practices for RWE studies, there has 

been a blossoming of input from regulatory agencies, academia, and industry in the 

form of guidelines and frameworks addressing different stages of the process of 

evidence generation[3,5,17–23]. Yet incoming submissions to regulatory agencies lack 

standardization and consistent inclusion of all information that is relevant for evaluating 

the quality of evidence that may be produced by a given RWE study[20]. How, then, can 

we help investigators do a better job of estimating causal effects – and evaluating the 



plausibility of assumptions needed to estimate causal effects – based at least partially 

on RWD? 

 

To help answer this question, the Forum on the Integration of Observational and 

Randomized Data (FIORD) meeting was held in Washington, D.C. November 17-18, 

2022 to discuss perspectives from regulatory and federal medical research agencies, 

industry, academia, trialists, methodologists, and software developers. FIORD 

participants discussed their experiences with RWE guidance and best practices and 

identified necessary steps and priorities for broadening usage by investigators. 

Specifically, participants determined the need for a unifying structure to assist with 

specification of a complete analytic design for an RWE study, including both the 

statistical analysis plan and additional design elements relevant for optimizing and 

evaluating the quality of evidence produced. 

 

The Causal Roadmap[24–30] (hereafter, the Roadmap) addresses this need because it 

is a general, adaptable framework for causal and statistical inference that is applicable 

to all studies that generate RWE, including studies with randomized treatment allocation 

and prospective and retrospective observational designs. It is consistent with existing 

guidance and makes the steps necessary for pre-specifying the analytic design of RWE 

studies explicit. The Roadmap includes steps of defining a study question and the target 

of estimation, defining the processes that generate data to answer that question, 

articulating the assumptions required to give results a causal interpretation, selecting 

appropriate statistical analyses, and pre-specifying sensitivity analyses. Following the 



Roadmap may lead to either 1) a fully specified analytic study design (including pre-

specified analysis plan) that is sufficient to generate high-quality RWE; or, 2) an 

evidence-based decision that an RWE study to generate the required level of evidence 

is not currently feasible, with insights into what data would be needed to generate 

suitable RWE in the future.  

 

The goal of this paper is to disseminate a Roadmap-based unifying framework for 

specifying analytic study designs for RWE generation to an audience of clinical and 

translational researchers. We provide an overview of the Roadmap, including a list of 

steps to consider when proposing studies that incorporate RWD. Members of the 

FIORD Working Groups also provide three case studies as companion papers 

demonstrating application of the Roadmap for different use cases, as described in Table 

1.  

Table 1: Case Studies Demonstrating Use of the Roadmap 

Case Study  Context Roadmap Steps Emphasized 

Sentinel System and 
Scalable Phenotyping 

Drug safety and 
monitoring 

Outcome-blind† simulations to guide 
estimator pre-specification and 
machine learning plus natural 
language processing to enhance 
identifiability 

Nifurtimox for Chagas 
Disease 

RCT infeasible Sensitivity analysis and defining the 
plausible causal gap 

Semaglutide and 
Cardiovascular Outcomes 

Secondary 
indications 

Roadmap for hybrid RCT-RWD 
studies and comparison of complete 
analytic study designs 

†We use outcome-blind to mean without information on the observed treatment-
outcome association. 
 



Overview of the Causal Roadmap for clinical and translational scientists 

 

We walk through the steps of the 

Roadmap, depicted in Figure 1, 

explaining their execution in 

general terms for simple scenarios, 

why they are important, and why 

multidisciplinary collaboration is 

valuable to accomplish each step. 

The structured approach outlined 

in Roadmap Steps 1-6 leads to 

specification of a complete analytic 

study design, which we define as 

including not only the type of study 

(e.g., randomized trial, 

observational cohort) but also 

elements of study design from the 

causal inference literature and the 

statistical analysis plan. The 

Roadmap does not cover all the 

steps necessary to write a protocol 

for running a prospective study, but 

instead specifies an explicit 



process for defining the study design itself, including information that is relevant for 

evaluating the quality of RWE that may be generated by that design. We suggest that 

following the Roadmap can help investigators generate high-quality RWE to answer 

questions that are important to patients, payers, regulators, and other stakeholders.   

 

A century’s worth of literature has contributed to the concepts described in the 

Roadmap. Several books explain nuances of these concepts[24,31–36]. The current 

paper is not a comprehensive introduction, but rather aims to highlight steps that need 

to be considered to conduct high-quality causal inference and evidence generation.  

 

Step 1: Causal question, causal model, and causal estimand 

 

Step 1 involves defining a causal question, causal model, and the causal estimand that 

would answer that question. Formally, the causal model that describes relationships 

between key study variables would be defined before the causal estimand[25]. 

However, to facilitate explanation of these concepts, we start by using frameworks for 

specifying components of a causal estimand to also specify key elements of the causal 

model (Step 1a) before completing our causal model in Step 1b. 

 

Step 1a: Define the causal question and causal estimand 

 

Many causal questions start with the objective of estimating the effect of an exposure 

(e.g., a medication or intervention) on an outcome.  Building on decades of research in 



the careful conduct of randomized and observational studies[36–40], both the 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals 

for Human Use (ICH) E9(R1)[41] and Target Trial Emulation[17,32,42,43] frameworks 

prompt investigators to define components of a causal question and estimand. The 

causal estimand is a mathematical quantity that answers the causal question (Table 2). 

 

Table 2: Components of a Causal Question and Estimand per ICH E9(R1)[41] and 
Target Trial Emulation[17]  
ICH E9(R1) 

attribute  
Target Trial 
Emulation 
Protocol 

Component 

Explanation Related 
Notation in this 

Paper 

Population Eligibility 
criteria 

Inclusion and exclusion criteria, 
including dates of eligibility, for the 
potential study population 

Measured 
baseline 
characteristics†: 
W 

Treatment  Treatment 
strategies 

The ideal hypothetical intervention(s) 
of interest in each arm of the target 
trial, including what treatment or 
exposure or intervention individuals 
would experience at study baseline 
and any post-baseline interventions, 
such as preventing censoring or 
requiring adherence for a specified 
duration. 
 

Baseline 
treatment: A, 
Censoring††: C  

 Follow-up 
period  

The events that define the starting 
(e.g., randomization, prescription) and 
stopping (e.g., outcome, death) points 
for the observation period 

 

Variable or 
endpoint 

Outcome Outcome of interest, including the 
timepoint(s) at which the outcome will 
be evaluated 

Outcome: Y 

Population 
summary 

Causal 
contrasts of 
interest 

Causal Estimand†††: e.g., average 
treatment effect, causal relative risk, 
average treatment effect within pre-

See below 



specified subgroups 
†Baseline participant characteristics can include additional variables not used to define 
eligibility criteria. Baseline variables do not completely characterize the population, but 
for simplicity, we only consider measured baseline characteristics in the notation below. 
††In the current paper we focus on interventions on baseline treatment and postbaseline 
censoring. However, the approach represented extends naturally to treatment strategies 
that incorporate additional postbaseline interventions, (see e.g., Robins and Hernán 
(2009)[100], Petersen (2014)[28]) 
†††A mathematical quantity that is a function of potential outcomes (see below).  
 

 

An example of a question guided by these attributes might be: How would the risk of 

disease progression by 2 years have differed if all individuals who met eligibility criteria 

had experienced treatment strategy A=1 (e.g., drug under investigation) versus 

treatment strategy A=0 (e.g., active comparator) and no one dropped out of the study 

(C=0)? The best (albeit impossible!) way to answer this question would be to evaluate 

both the potential outcomes[44,45] individuals would have had if they had experienced 

treatment strategy A=1 and not been censored (Ya=1,c=0 ) and the potential outcomes 

individuals would have had if they had experienced treatment strategy A=0 and not 

been censored (Ya=0,c=0).  

 

A formal structural causal model would help us describe the causal pathways that 

generate these potential outcomes[46]. For now, we simply consider that, if we were 

able to observe both potential outcomes for all members of our target population, then 

the answer to our question would be given by the causal risk difference (or “Average 

Treatment Effect”), 

𝛹∗ 	= 	𝑃(𝑌"#$,&#' 	= 1) 	− 	𝑃(𝑌"#',&#' 	= 1). 
 



This mathematical quantity that is a function of potential outcomes is called a causal 

estimand. Table 2 lists other examples of causal estimands.   

 

Importance: Even though we can only observe at most one potential outcome for each 

individual[47], and even though it is not possible to guarantee complete follow-up in a 

real trial, precise definition of the causal question and estimand based on the treatment 

strategies defined in Table 2 is crucial for specifying a study design and analysis plan to 

provide the best possible effect estimate. Ultimately, we need to evaluate a 

mathematical expression that translates the available data into a number (e.g., a 5% 

decrease in risk of disease progression). To assess whether that number provides an 

answer to our causal question, we must first define mathematically what we aim to 

estimate.  

 

Build a Multidisciplinary Collaboration: If you are not certain how to translate your 

research question into a causal estimand, collaborate with an expert in causal 

inference. 

 

Step 1b: Specify a causal model describing how data have been or will be 

generated  

 

Next, we consider what we know (and don’t know) about the real-life processes that will 

generate – or that have already generated – data to answer this question. First, we 

consider the type of study (e.g., pragmatic RCT, retrospective cohort study). Then, we 



consider what factors affect the variables that are part of our treatment strategies – 

found in Table 2 and referred to as intervention variables below – and the outcome in 

our proposed study.  

 

This background knowledge comprises the causal model[46]. We specified some key 

variables in our causal model in Step 1a (in Table 2 and our potential outcomes). Now, 

we add additional detail to our causal model by describing potential causal relationships 

between these and other important variables. Multiple tools and frameworks can help 

elicit this information, but conceptual models and causal graphs, such as directed 

acyclic graphs or single world intervention graphs, are some of the most 

common[39,48–51].  

 

Figure 2 gives a simple example of causal graph construction, starting with writing down 

all intervention and outcome variables. When some outcomes are missing, we don’t 

observe the outcome, Y, for all participants. Instead, we observe 𝑌⋆, which is equal to 

the actual outcome if it was observed and is missing otherwise (Figure 2a). Arrows 

denote possible effects of one variable on another.  

 



 

 

Then, we attempt to write down factors that might influence these variables. Figure 2b 

shows two examples (age and a biomarker), though real causal graphs generally 

include many more variables. In a classic randomized trial, only the randomization 

procedure affects baseline treatment assignment, whereas in an observational study 

(depicted in Figure 2), participant characteristics affect the baseline treatment. Next, we 

consider factors that are unmeasured or difficult to measure that might influence 

treatment, outcomes, or censoring. Figure 2c shows access to healthcare as an 

example.  

 

Causal graphs can become much more complicated, especially when working with 

longitudinal data[52], using proxies for unmeasured variables[53], or combining different 

data sources[54] (as demonstrated in the case study of Semaglutide and 

Cardiovascular Outcomes). A carefully constructed causal graph should also 

demonstrate issues such as competing risks, intercurrent events, or measurement 

error[32,55].  



 

Importance: Considering which factors may affect intervention variables and outcomes 

helps to determine whether we can answer our question based on existing data or data 

that we will collect. The final graph should be our best honest judgement based on 

available evidence and incorporating remaining uncertainty[32].  

 

Build a Multidisciplinary Collaboration: If questions remain about some aspect of this 

model, such as how physicians decide to prescribe a medication in different practice 

settings, obtain input from clinicians or other relevant collaborators before moving on.  

 

Stop! Do you need to modify your causal question and estimand (Step 1a) based 

on Step 1b? 

 

After writing down our causal model, we sometimes need to change our question[56]. 

For example, we may have realized that an intercurrent event (such as death) prevents 

us from observing the outcome for some individuals. As suggested by ICH E9(R1), we 

could modify the question to consider the effect on a composite outcome of the original 

Y or death[41]. ICH E9(R1)[41] discusses other intercurrent events and potential 

modifications to the estimand. 

 

Step 2: Describe the observed data 

 



The causal model from Step 1b lets us specify what we know about the real-world 

processes that generate our observed data. This model can inform what data we collect 

in a prospective study or help to determine whether existing data sources include 

relevant information. Next, we describe the actual data we will observe.  

 

Specific questions to address regarding the observed data include the following: How 

are the relevant exposures, outcomes, and covariates, including those defining eligibility 

criteria, measured in the observed data? Are they measured differently (including 

different monitoring protocols) in different data sources or at different timepoints? Are 

we able to measure all variables that are important common causes of the intervention 

variables and the outcome? Is the definition of time zero in the data consistent with the 

causal question[42]?  

 

Importance: After considering these questions, we may need to modify Step 1. For 

example, if we realize that the data we are able to observe only include patients seen at 

tertiary care facilities, we may need to change the question (Step 1a) to ask about the 

difference in the risk of disease progression by two years if all individuals meeting our 

eligibility criteria and receiving care at a tertiary facility received one intervention or the 

other. Knowledge about factors that affect how variables are measured and whether 

they are missing should be incorporated in the causal model (Step 1b). Completing this 

step also helps investigators assess whether the data are fit-for-use[3] and whether we 

are able to estimate a causal effect from the observed data (discussed in Step 3). 

 



Build a Multidisciplinary Collaboration: If you are unsure about the way variables are 

measured in relation to underlying medical concepts or in relation to a particular care 

setting, collaborate with a clinician or clinical informaticist. If you are unsure of how to 

match baseline time zero in your observed data with the follow-up period in your causal 

question, collaborate with a statistician.  

 

Step 3: Assess identifiability: Can the proposed study provide an answer to our 

causal question? 

 

In Step 3, we ask whether the data we do observe (Step 2), together with our 

knowledge about how these data are generated (Step 1b), are sufficient to let us 

answer our causal question (Step 1a). As described in Step 1a, we cannot directly 

estimate our causal estimand (which is a function of counterfactual outcomes). Instead, 

we will evaluate a function of the observed data (called a statistical estimand, described 

in Step 4). The difference between the true values of the statistical and causal 

estimands is sometimes referred to as the causal gap[27]. If there is a causal gap, even 

a perfect estimate of the statistical estimand would not provide an answer to our causal 

question.  

 

While we can never be certain of the size of the causal gap for studies incorporating 

RWD and even for many questions using data from traditional RCTs, we must use our 

background knowledge to provide an honest appraisal. Causal identification 

assumptions help us to explicitly state what must be true in order to conclude that the 



causal gap is zero and that we are thus able to estimate a causal effect using the 

proposed data. Table 3 lists two common identification assumptions to consider for 

most cases with informal explanations of their meaning. Exchangeability, in particular, 

can also be framed in terms of causal graphs[46].  In some cases, further assumptions 

may be necessary. Hernán and Robins (2020)[32], among others, provide in-depth 

discussions of identification assumptions. The case studies associated with this paper 

demonstrate the evaluation of these assumptions.  

 

Table 3: Common Identification Assumptions  

Assumption Basic Explanation of Meaning 

Exchangeability†  This assumption is generally true if there are no unmeasured 
common causes of variables that are part of the treatment 
strategies (Table 2: e.g., baseline or postbaseline treatment(s), 
censoring) and the outcome (informally, if there is no 
unmeasured confounding). 

Positivity This assumption is true if, for every possible combination of 
measured confounding variables, individuals with those 
characteristics have a positive probability of following any of the 
treatment strategies of interest. 

†Full exchangeability is generally not required if weaker conditions (e.g., mean 
exchangeability, sequential conditional exchangeability, or others) hold[32].  
 

Importance: Considering and documenting the plausibility of the causal identification 

assumptions helps to determine whether steps can be taken to decrease the potential 

magnitude of the causal gap. If we conclude that these assumptions are unlikely to be 

satisfied, then we should consider modifications to Steps 1-2. We may need to limit the 

target population to those who have a chance of receiving the intervention or evaluate 

the effect of a more realistic treatment rule to improve the plausibility of the positivity 



assumption[57,58]. We may need to measure more of the common causes depicted in 

our causal graph or modify the question to improve the plausibility of the 

exchangeability assumption[59]. If multiple study designs are feasible, Step 3 can help 

us to consider which study design is based on more reasonable assumptions[60].  

 

If we know that a key variable affecting treatment and outcomes or censoring and 

outcomes is not measured, then we generally cannot identify a causal effect from the 

observed data without measuring that variable or making additional 

assumptions[17,32,37]. For this and other reasons, many studies analyzing RWD 

appropriately report statistical associations and not causal effects, though sensitivity 

analyses (Step 6) may still help to evaluate whether a causal effect exists[61,62]. 

Nonetheless, if a retrospective study was initially proposed but the causal identification 

assumptions are highly implausible and cannot be improved using existing data, then 

investigators should consider prospective data collection to better evaluate the effect of 

interest. 

 

In general, it would be unreasonable to expect that all causal identification assumptions 

would be exactly true in RWE studies, or even in many traditional RCTs due to issues 

such as informative missingness[32]. Yet careful documentation of Steps 1-3 in the pre-

specified analysis plan and in the study report helps not only the investigator but also 

regulators, clinicians, and other stakeholders to evaluate the quality of evidence 

generated by the study about the causal effect of interest. Step 3 helps us to specify a 

study with the smallest causal gap possible. Sensitivity analyses, discussed in Step 6, 



help to quantify a reasonable range for the causal gap, further aiding in the 

interpretation of RWE study results. 

 

Build a Multidisciplinary Collaboration: An expert in causal inference can help to 

formally evaluate all causal identification assumptions. The exchangeability assumption 

can become quite complicated if there are multiple intervention variables[39,52]. In such 

cases, graphical criteria may be used to determine visually from a causal graph whether 

sufficient variables have been measured to satisfy the exchangeability 

assumption[39,46,63]. Software programs can also facilitate this process[64,65]. 

 

Step 4: Define the statistical estimand 

 

If, after assessing identifiability, we decide to proceed with our study, we aim to define a 

statistical estimand that is as close as possible to the causal estimand of interest.  

Recall our causal risk difference for a single time-point intervention and outcome: 

𝛹∗ 	= 	𝑃(𝑌"#$,&#' 	= 1) 	− 	𝑃(𝑌"#',&#' 	= 1). 

 

In a simple case where participant characteristics other than our intervention variables 

and outcome – denoted W – are only measured at baseline, then the statistical 

estimand that is equivalent to the causal effect if all identification assumptions are true 

is given by 

	𝛹	 = 	𝐸)(𝑃[𝑌⋆|𝐶 = 0, 𝐴 = 1,𝑊] 	− 	𝑃[𝑌⋆|𝐶 = 0, 𝐴 = 0,𝑊]). 
 



In words, we have re-written our causal question (which is defined based on potential 

outcomes that we cannot simultaneously observe) in terms of a quantity that we can 

estimate with our data: the average (for our target population) of the difference in risk of 

our observed outcome associated with the different treatment strategies, adjusted for 

measured confounders. 

 

Importance: The traditional practice of defining the statistical estimand as a coefficient 

in a regression model has several downsides, even if the model is correct (a 

questionable assumption discussed below)[24]. This approach starts with a tool (e.g., a 

regression model) and then asks what problem it can solve, rather than starting with a 

problem and choosing the best tool[66]. For example, the hazard ratio may be 

estimated based on a coefficient in a Cox regression but does not correspond to a 

clearly defined causal effect[67–69]. Instead, the Roadmap guides us to choose a 

statistical estimand that is as close as possible to the causal estimand. We thus specify 

a well-defined quantity that can be estimated from the observed data and that is directly 

linked to the causal question. 

 

Build a Multidisciplinary Collaboration: Defining a statistical estimand that would be 

equivalent to the causal effect of interest under identification assumptions is more 

challenging when there are post-baseline variables that are affected by the exposure 

and that, in turn, affect both the outcome and subsequent intervention variables[39]. 

This situation is common in studies where the exposure is measured at multiple time-



points. In such a situation, statistician collaborators can help to define the statistical 

estimand using approaches such as the longitudinal g-computation formula[39].   

 

Step 5: Choose a statistical model and estimator that respects available 

knowledge and uncertainty based on statistical properties 

 

The next step is to define a statistical model (formally, the set of possible data 

distributions) and to choose a statistical estimator. The statistical model should be 

compatible with the causal model (Step 1b). For example, knowledge that treatment will 

be randomized (design knowledge that we described in our causal model) implies 

balance in baseline characteristics across the two arms (with slight differences due to 

chance in a specific study sample). We could also incorporate knowledge that a 

continuous outcome falls within a known range or that a dose-response curve is 

monotonic (e.g., based on prior biological data) into our statistical model. A good 

statistical model summarizes such statistical knowledge about the form of the 

relationships between observed variables that is supported by available evidence 

without adding any unsubstantiated assumptions (such as linearity, or absence of 

interactions); models of this type are often referred to as semi- or non-parametric or 

simply realistic statistical models[24]. 

 

Given a statistical model, the choice of estimator should be based on pre-specified 

statistical performance benchmarks that evaluate how well it is likely to perform in 

estimating the statistical estimand[24]. Examples include type 1 error control, 95% 



confidence interval (CI) coverage, statistical bias, and precision. Statistical bias refers to 

how far the average estimate across many samples would be from the true value of the 

statistical estimand. An estimator must be flexible enough to perform well even when we 

do not know the form of the association between variables in our dataset, and it must be 

fully pre-specified[24]. 

 

Most available estimators rely on estimating an outcome regression (i.e., the expected 

value of the outcome given the treatment and values of confounders), a propensity 

score (i.e., the probability of receiving a treatment or intervention given the measured 

confounders), or both. Without knowing the form of these functions, we do not know a 

priori whether they are more likely to be accurately modeled with a parametric 

regression or a flexible machine learning algorithm allowing for non-linearities and 

interactions between variables[24,66,70]. The traditional practice of defaulting to a 

parametric regression as the statistical estimator imposes additional untestable 

statistical assumptions, even though they are not necessary. Fortunately, estimators 

exist that allow for full pre-specification of all machine learning and parametric 

approaches used, data-adaptive selection (e.g., cross-validation) of the algorithm(s) that 

perform best for a given dataset, and theoretically-sound 95% confidence interval 

construction (leading to proper coverage under reasonable conditions)[24].  

 

Importance: Effect estimates that are based on incorrectly specified models – such as 

a main terms linear regression when there is truly non-linearity or interactions between 

variables – are biased, and that bias does not get smaller as sample size increases[24]. 



This bias may result in inaccurate conclusions. We aim to choose an estimator that not 

only has minimal bias but also is efficient – thereby producing 95% confidence intervals 

that are accurate but as narrow as possible – to make maximal use of the data[24].  

 

If, after consideration of the statistical assumptions and properties of the estimators, 

multiple estimators are considered, then the bias, variance, and 95% CI coverage of all 

estimators should be compared using outcome-blind simulations that mimic the true 

proposed experiment as closely as possible[71]. We use outcome-blind to mean that 

the simulations are conducted without information on the observed treatment-outcome 

association; such simulations may utilize other information from the collected data (if 

available), such as data on baseline covariates, treatment, and censoring, to 

approximate the real experiment[71]. Simulations conducted before data collection may 

use a range of plausible values for these study characteristics[72]. As recommended by 

ICH E9(R1), simulations should also be conducted for cases involving plausible 

violations of the statistical assumptions of the estimators[41]. Examples of such 

violations include non-linearity for linear models or inaccurate prior distributions for 

Bayesian parameters. For an example of conducting such a simulation, please see the 

Drug Safety and Monitoring case study. 

 

Build a Multidisciplinary Collaboration: Statistician collaborators can help to pre-

specify an estimator with the statistical properties described above. Resources are 

increasingly available to assist with pre-specification of statistical analysis plans (SAPs) 

based on state-of-the-art estimation approaches. For example, Gruber et al. (2022)[73] 



provide a detailed description of how to pre-specify a SAP using targeted minimum loss-

based estimation (TMLE)[74] and super learning[70], a combined approach that 

integrates machine learning to minimize the chance that statistical modeling 

assumptions are violated[24]. 

 

Step 6: Specify a procedure for sensitivity analysis 

 

Sensitivity analyses in Step 6 attempt to quantify how the estimated results (Step 5) 

would change if the untestable causal identification assumptions from Step 3 were 

violated[32,61,75–77]. In contrast, the simulations in Step 5 consider bias due to 

violations of testable statistical assumptions, which ICH E9(R1) considers as a different 

form of sensitivity analysis[41]. One mechanism of conducting a causal sensitivity 

analysis in Step 6 is to consider the potential magnitude and direction of the causal gap; 

this process requires subject matter expertise and review of prior evidence[61,76–78]. 

Sensitivity analysis also allows for construction of confidence intervals that account for 

plausible values of the causal gap[27,61,76–78]. Alternatively, investigators may assess 

for causal bias using negative control variables, discussed in detail by Lipsitch et al. 

(2010)[79] and Shi et al. (2020)[80].  

 

The specifics of these methods – and alternate approaches – are beyond the scope of 

this paper, but the case study of Nifurtimox for Chagas Disease provides an overview of 

methods for sensitivity analysis, as well as a worked example of using available 

evidence to assess a plausible range for the causal gap. As discussed in this case 



study, the method of sensitivity analysis should be pre-specified prior to estimating the 

effect of interest[81]. This process avoids the bias that might occur if experts know the 

value of the estimate before defining the procedure they will use to decide whether a 

given shift in that estimate due to bias is reasonable[76].  

 

Importance: The process of using prior evidence to reason about likely values of the 

causal gap helps investigators to assess the plausibility that the bias due to a violation 

of identification assumptions could be large enough that the observed effect is 

negated[27,61,62,82]. While the exact magnitude of the causal effect may still not be 

identified due to known issues such as the potential for residual confounding, if an 

estimated effect is large enough, we may still obtain credible evidence that an effect 

exists[62,83]; this was the case in Cornfield et al. (1959)’s frequently-cited assessment 

of the effect of smoking on lung cancer[84]. Conversely, if the anticipated effect size is 

small and the plausible range of the causal gap is large, the proposed study may not be 

able to provide actionable information. Considering these tradeoffs can help 

investigators to decide whether to pursue a given RWE study or to consider alternate 

designs that are more likely to provide high-quality evidence of whether a causal effect 

exists[62,85]. 

 

Build a Multidisciplinary Collaboration:  If multiple correlated sources of bias are 

likely, more complex methods of evaluating a plausible range for the causal gap – and 

collaboration with investigators familiar with these methods – may be required[76]. 

 



Step 7: Compare alternative complete analytic study designs   

 

Roadmap Steps 1-6 help us to specify a complete analytic study design, including the 

causal question and estimand, type of study and additional knowledge about how the 

data are generated, specifics of the data sources that will be collected and/or analyzed, 

assumptions that the study relies on to evaluate a causal effect, statistical estimand, 

statistical estimator, and procedure for sensitivity analysis. The type of study described 

by this analytic design could fall anywhere on the spectrum from a traditional RCT to a 

fully observational analysis. In cases when it is not possible to conduct a traditional RCT 

due to logistical or ethical reasons – or when RCT results would not be available in time 

to provide actionable information – the value of RWE studies is clear despite the 

possibility of a causal gap[32]. If an RCT is feasible, baseline randomization of an 

intervention (as part of either a traditional or pragmatic RCT[86]) still generally affords a 

higher degree of certainty that the estimated effect is causal compared to analysis of 

non-randomized data. Yet sometimes, it is feasible to consider multiple different 

observational and/or randomized designs – each with different potential benefits and 

downsides. 

 

Consider a situation in which there is some evidence for a favorable risk-benefit profile 

of a previously studied intervention based on prior data, but those data are by 

themselves insufficient for regulatory approval for a secondary indication or for clear 

modification of treatment guidelines. In this context, it is possible that conducting a well-

designed RWE study or hybrid RCT-RWD study as opposed to a traditional RCT alone 



will shorten the time to a definitive conclusion, decrease the time patients are exposed 

to an inferior product, or provide other quantifiable benefits to patients while still 

providing acceptable control of type I and II errors[87–89]. Yet other times, a proposed 

RWE design may be inferior to alternative options, or one design may not be clearly 

superior to another. When multiple study designs are considered, outcome-blind 

simulations consistent with our description of Steps 1-6 can help to compare not only 

type 1 error and power, but also metrics quantifying how the proposed designs will 

modify the medical product development process[87]. The case study of Semaglutide 

and Cardiovascular Outcomes demonstrates how to compare study designs that are 

based on Roadmap Steps 1-6.  

 

Importance: A simulated comparison is not always necessary; one study design may 

be clearly superior to another. Yet often there are tradeoffs between studies with 

different specifications of Roadmap Steps 1-6. For example, in some contexts, we may 

consider augmenting an RCT with external data. When comparing the RCT design to 

the augmented RCT design, there may be a tradeoff between a) the probability of 

correctly stopping the study early when appropriate external controls are available and 

b) the worst-case type 1 error that would be expected if inappropriate external controls 

are considered[89]. Another example would be the tradeoff between the potential 

magnitudes of the causal gap when different assumptions are violated to varying 

degrees for studies relying on alternate sets of causal identification assumptions[60].  

Simulated quantification of these tradeoffs using pre-specified benchmarks can help 

investigators to make design choices transparent[90].  



 

Build a Multidisciplinary Collaboration: Factors to consider when comparing different 

analytic designs include the expected magnitude of benefit based on prior data and the 

quality of that data[11], the plausible bounds on the causal gap for a given RWE study, 

the treatments that are currently available[11], and preferences regarding tradeoffs 

between design characteristics such as type I versus type II error control[90]. Because 

these tradeoffs will be context-dependent[11,90], collaboration with patient groups and 

discussion with regulatory agencies is often valuable when choosing a study design 

from multiple potential options.  

 

A list of Roadmap steps for specifying a complete analytic study design 

 

Table 4 provides a list of considerations to assist investigators in completing and 

documenting all steps of the Roadmap. Complete reporting of RWE study results should 

include all pre-specified Roadmap steps, though information supporting decisions in the 

final design and analysis plan, such as causal graphs or simulations, may be included 

as supplementary material. Note that all steps should be pre-specified before 

conducting the study. 

 

 
 
 
 
 
 
 



Table 4: Steps for Specifying a Complete Analytic Study Design Using the 
Roadmap 

Roadmap Step 

1a 

● Specify the causal question and estimand. 
● ICH E9(R1) attributes: Population, treatment, variable or endpoint, 

population summary[41] 
● Target Trial Emulation Protocol Components: Eligibility criteria, 

treatment strategies, follow-up period, outcome, causal contrasts of 
interest [32]  

1b 

● Specify the causal model (based on background knowledge about the 
proposed study). 

● Specify the type of study (e.g., traditional RCT, retrospective 
cohort) 

● Document whether censoring, competing risks, or other intercurrent 
events occurred and factors that may have affected them. Adjust 
the question as needed. 

2 

● Define the observed data that will be or has been collected. 
● Document how the inclusion/exclusion criteria, treatment variables, 

outcome(s), and other relevant variables are measured, how time 
zero is defined, and important differences between data sources. 

3 

● Assess identifiability of the causal estimand from the observed data. 
● Explicitly state the assumptions required for identification, and 

evaluate their plausibility. 
● Consider modifications to Steps 1-2 to minimize the causal gap. 

● If a retrospective study had been planned but identification 
assumptions are highly implausible, consider primary data 
collection or linkage of data from different sources as 
necessary to ensure relevant information capture for the 
causal question and estimand. 

4 ● Define the statistical estimand. 

5 

● Specify the statistical model, estimator, and method of confidence interval 
construction. 
● List the assumptions the proposed estimator and method of confidence 

interval construction rely upon. 
● Describe the expected statistical bias and variance of the estimator 

under plausible conditions. 
● If multiple estimators are considered, compare them with outcome-

blind simulations based on: 
● statistical bias, variance, 95% CI coverage of the statistical 

estimand, type 1 error, and power 



● with plausible violations of model assumptions.  

6 

● Specify the sensitivity analyses.  
● Document the method for defining plausible bounds for the causal 

gap and/or methods for estimation of the causal gap (e.g., based 
on negative controls). 

● Provide confidence intervals for the causal effect of interest under 
the hypothesized size of the causal gap, across the full range of 
plausible causal gaps.  

7 

● Compare feasible complete analytic designs (Steps 1-6) using outcome-
blind simulations based on: 

● causal metrics (95% CI coverage, type 1 error, and power for a 
causal effect),  

● and metrics to quantify differences in the medical product 
development process of each design. 

● Include a comparison to an RCT if feasible. 
 
 

Discussion 

 

The Roadmap can help investigators to pre-specify a complete analytic design for 

studies that utilize RWD, choose between study designs, and propose high-quality RWE 

studies to the FDA and other agencies. We describe the steps of the Roadmap in order 

to disseminate this methodology to clinical and translational scientists. The case study 

companion papers on Drug Safety and Monitoring, Nifurtimox for Chagas Disease, and 

Semaglutide and Cardiovascular Outcomes demonstrate applications of the Roadmap, 

with each study explaining specific steps in greater detail.  

 

Past descriptions of the Roadmap have largely been targeted to quantitative 

scientists[24–27,29,30]. In this manuscript, we focus on intuitive explanations rather 

than formal mathematical rigor to make these causal inference concepts more 



accessible to a wide audience. We also emphasize the importance of building a 

multidisciplinary collaboration, including both clinicians and statisticians, during the 

study planning phase.  

 

We also introduce an extension of previous versions of the Roadmap to emphasize how 

outcome-blind simulations may be used not only to compare different statistical 

estimators but also to evaluate different study designs. This extension aligns with the 

FDA’s Complex Innovative Trial Designs Program guidance for designs that require 

simulation to estimate type I and II error rates[91], but goes one step further by 

emphasizing a quantitative comparison to a randomized trial or other feasible RWE 

designs. The aim of this additional step is to facilitate evaluation of the strengths and 

weaknesses of each potential approach. 

 

The Roadmap aligns with other recommendations provided in regulatory guidance, as 

well; these include the FDA’s Framework and Draft Guidance documents for RWE that 

emphasize the quality and appropriateness of the data[3,92–94] and the ICH E9(R1) 

guidance on estimands and sensitivity analysis[41]. The Roadmap is also consistent 

with other proposed frameworks for RWE generation. Within the field of causal 

inference, the Roadmap brings together concepts including potential outcomes[44,45], 

the careful design of non-experimental studies[35,36,38,40], causal graphs[39,48–51] 

and structural causal models[46], causal identification[39,46,95], translation of causal to 

statistical estimands using the g-formula[39], and methods for estimation and sensitivity 

analysis[24,34,61,70,75,77].  



 

The Roadmap is compatible with many other frameworks, including many that discuss 

aspects of specific Roadmap steps. Examples include the Target Trial Emulation 

framework[17,43], the Patient-Centered Outcomes Research Institute (PCORI) 

Methodology Standards[19], white papers from the Duke-Margolis Center[18,96], the 

REporting of studies Conducted using Observational Routinely-Collected health Data 

(RECORD) Statement[97], the Structured Preapproval and Postapproval Comparative 

study design framework[98], and the STaRT-RWE template[20]. The purpose of the 

Roadmap is not to replace these – and many other – useful sources of guidance, but 

rather to provide a unified framework that covers the steps necessary to follow a wide 

range of guidance in a centralized location. Furthermore, while many recommendations 

for RWE studies list what to think about (e.g., types of biases or considerations for 

making RWD and trial controls comparable), the Roadmap aims instead to make explicit 

a process for how to make and report design and analysis decisions that is flexible 

enough to be applied to any use case along the spectrum from a traditional RCT to a 

fully observational analysis. 

 

With increasing emphasis by regulatory agencies around the world regarding the 

importance of RWE[5], the number of studies using RWD that contribute to regulatory 

decisions is likely to grow over time. Yet a recent review of RWE studies reported that 

“nearly all [reviewed] studies (95%) had at least one avoidable methodological issue 

known to incur bias”[99]. By following the Roadmap steps to fully pre-specify an analytic 

study design, investigators may set themselves up not only to convey relevant 



information to regulators but also to produce high-quality estimates of causal effects 

using RWD when possible, with an honest evaluation of whether the proposed study is 

adequate for making causal inferences.  
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